

Available online at www.sciencedirect.com

C. R. Chimie 6 (2003) 87–90

Preliminary communication / Communication

A,D-Oligomethylenic capping of α - and β -cyclodextrins

Thomas Lecourt, Jean-Maurice Mallet, Pierre Sinaÿ *

UMR CNRS 8642, département de chimie, École normale supérieure, 24, rue Lhomond, 75231 Paris cedex 05, France

Received 25 October 2002; accepted 13 November 2002

Abstract

 α - and β -cyclodextrins have easily been converted into basket molecules, the handle being an oligomethylenic chain bridging A and D positions on the primary rim. The size of the handle influences the complexing properties of these cyclodextrins. *To cite this article: T. Lecourt et al., C. R. Chimie 6 (2003) 87–90.*

© 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Les α - et β -cyclodextrines ont été aisément transformées en molécules en forme de panier, l'anse étant constituée d'une chaîne oligométhylénique reliant les positions A et D du bord primaire. La taille de l'anse exerce une influence sur les propriétés de complexation de ces cyclodextrines. *Pour citer cet article : T. Lecourt et al., C. R. Chimie 6 (2003) 87–90.*

© 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Keywords: cyclodextrin; basket; metathesis; complexation

Mots clés : cyclodextrine ; panier ; métathèse ; complexation

We have recently described the efficient chemical synthesis of the 6A,6D-butylene-bridged α -cyclodextrin (CD) **3a**. As shown in Fig. 1 [1], this capped α -CD **3a** was easily derived from **1a**, a diol directly obtained in high yield through a diisobutylaluminium (DIBAL)-promoted regioselective de-*O*-benzylation of perbenzylated α -CD.

In this preliminary communication, we would like to report on the extension of this reaction to the synthesis of a new family of 6A,6D-capped cyclodextrins,

* Corresponding author.

together with a preliminary evaluation of their inclusion properties.

The corresponding 6A,6D-butylene-capped β -CD **3** β was first prepared in a similar manner (Fig. 2) from the known diol **1** β [1]. It is worth noting that **3** β has also been very recently synthesised using this procedure [2]. The per-*O*-methylated derivative was able to separate enantiomers of various molecules and shows high selectivity towards large and voluminous molecules. Selected data for **3** β : [α]_D²⁰ = +129 (*c* = 0.2, MeOH); MS (MALDI-TOF): *m/z* (%): 1211.5 (100) [M + Na⁺]; ¹³C NMR (100 MHz, D₂O): 102.2, 102.1, 101.6,

E-mail address: pierre.sinay@ens.fr (P. Sinaÿ).

^{© 2003} Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved. DOI: 10.1016/S1631-0748(03)00005-5

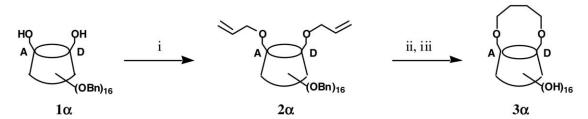


Fig. 1. (*i*) NaH, AllylBr, DMF, rt (92%); (*ii*) Cl₂ (PCy₃)₂ Ru=CHPh (6 mol%), PhH, 60 °C; (*iii*) H₂, Pd/C 10%, Pd black, EtOAc/MeOH (1:1), 48 h, rt (87% over two steps).

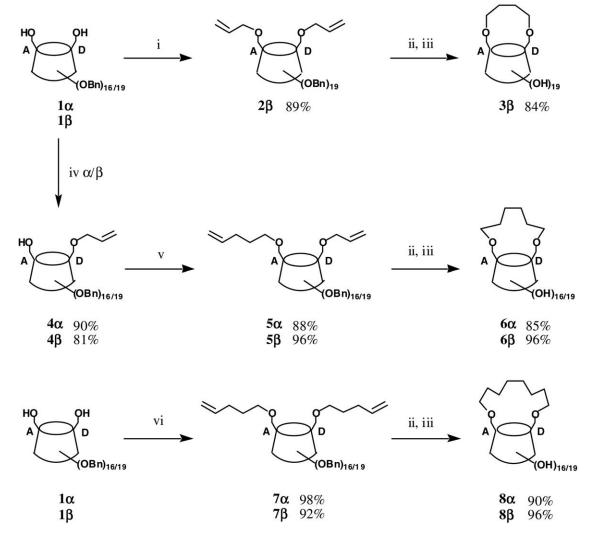


Fig. 2. (*i*) AllylBr (4 equiv), NaH (4 equiv), THF, nBu_4 NI (0.1 equiv), rt, 6 h; (*ii*) Cl_2 (PCy₃)₂ Ru=CHPh (5 mol%), CH₂ Cl₂, reflux, 5 h then Pb(OAc)₄ [4], rt overnight; (*iii*) H₂, Pd/C 10%, Pd black, EtOAc/MeOH (1:1), 48 h, rt; (*iv*) for α -CD: AllylBr (1.1 equiv), NaH (2 equiv), THF, nBu_4 NI (0.1 equiv), rt, 18 h; for β -CD: AllylBr (1.1 equiv), KH (1.1 equiv), THF, nBu_4 NI (0.2 equiv), rt, 18 h; for β -CD: AllylBr (1.1 equiv), KH (1.1 equiv), THF, nBu_4 NI (0.2 equiv), rt, 18 h (*v*) 5-bromo-pent-1-ene (4 equiv), *t*BuOK (4 equiv), nBu_4 NI (0.1 equiv), THF, rt, 8 h; (*vi*) 5-bromo-pent-1-ene (8 equiv), *t*BuOK (8 equiv), nBu_4 NI (0.1 equiv), THF, rt, 8 h.

101.4, 101.2, 100.4, 99.5 (7 × C_1), 26.2, 25.8 (2 × O–CH₂–CH₂).

The synthesis of the 6A,6D-hexamethylene-bridged CDs 6α and 6β was next achieved as shown in Fig. 2. A key feature is the possibility to perform a high-yielding mono-O-allylation of either 1α or 1β to provide 4α (90%) and 4β (81%), respectively. This opens the door to the preparation of various oligomethylenic capped CDs with odd or even carbon atom numbers. As an example, pentenylation of the alcohol 4α , followed by Ring Closing Metathesis (RCM), then hydrogenolysis, gave the capped CD 6 α . Selected data for 6 α : $[\alpha]_{D}^{20}$ =+121 (c = 0.2, MeOH); MS (MALDI-TOF): m/z (%):1077.3 (100) $[M + Na^+]$; ¹³ C NMR (100 MHz, D_2O): 102.2, 101.8, 101.7 (3 × C_1), 29.2, 25.8 $(O-CH_2-CH_2-CH_2)$. A similar sequence provided 6β . Selected data for $\mathbf{6\beta}$: $[\alpha]_{D}^{20} = +123$ (c = 0.2, MeOH); MS (MALDI–TOF): m/z (%): 1239.5 (100) [M + Na⁺]; ¹³C NMR (100 MHz, D₂O): 102.6, 102.4, 102.3, 102.2, 102.1, 102.0, 101.8 (7 × C₁), 29.5, 29.2, 25.7, 25.4 $(2 \times O-CH_2-CH_2, 2 \times O-CH_2-CH_2-CH_2)$. This product has also been recently prepared by another route [3], then converted to the per-O-methylated derivative, which was also able to separate enantiomers of particularly large molecules, including pharmaceuticals of different structural types.

Selected data for 4α : $[\alpha]_D^{20} = +34$ (c = 1, CHCl₃); MS (FAB): m/z (%): 2477.0 (100) [M + Na⁺]; ¹³C NMR (100 MHz, CDCl₃): 134.5 (CH₂=<u>CH</u>-CH₂-O), 116.9 (<u>CH₂=CH-CH₂-O), 98.7, 98.4, 98.1, 98.0, 97.9,</u> 97.8 (6 × \overline{C}_1), 61.2 (CH₂=CH-CH₂-O).

Selected data for 4β (obtained as an inseparable mixture of isomers): MS (FAB): m/z (%): 2910.2 (100) [M + Na⁺]; ¹³C NMR (100 MHz, CDCl₃): 134.64, 134.57 (CH₂=<u>CH</u>-CH₂-O), 116.8 (<u>CH₂=CH-CH₂-O), 98.83 (1 × C₁), 98.73 (2 × C₁), 98.69 (2 × C₁), 98.64, 98.57, 98.45, 98.37, 98.31, 98.16, 98.10, 97.89, 97.70 (9 × C₁), 61.45, 61.38 (CH₂=CH-<u>CH₂-O).</u></u>

Finally, the two 6A,6D-octamethylene bridged cyclodextrins **8a** and **8b** have been prepared as shown in Fig. 2. Selected data for **8a**: $[\alpha]_D^{20} = +120$ (c = 0.15, MeOH); MS (MALDI-TOF): m/z (%): 1105.5 (100) [M + Na⁺]; ¹³C NMR (100 MHz, D₂O): 101.9, 101.5, 101.4 (3 × C₁), 29.2, 28.6, 25.4 (O-CH₂-<u>CH₂-CH₂-CH₂). Selected data for **8b**: $[\alpha]_D^{20} = +125$ (c = 0.2, MeOH); MS (MALDI-TOF): m/z (%): 1267.2 (100) [M + Na⁺]; ¹³C NMR (100</u> MHz, D₂O): 102.7, 102.5, 102.4, 102.1, 102.0, 102.9, 101.7 (7 × C₁), 29.6, 29.3, 28.7, 28.3, 25.8, 25.5 (2 × O–CH₂–<u>CH₂</u>, 2 × O–CH₂–CH₂–<u>CH₂</u>, 2 × O–CH₂–CH₂–CH₂, 2 × O–CH₂–CH₂–CH₂).

The capping of CDs had so far been achieved using tailor-made rigid aromatic disulfonylchlorides [4–16]. It is clear that the direct availability of diols 1α and 1β , combined with high regioselective mono-*O*-allylation and RCM methodology, provides a versatile entry to a family of oligomethylene-capped 6A,6D α - or β -cyclodextrins.

We have now studied the inclusion properties of *p*-nitro-phenolate (PNP) in **3**, **6** and **8a/β**. PNP derivatives are known to include with the nitro group close to the narrower rim [17], and to be very sensitive to the bulk of the guest [18]. The equilibrium constant is determined by UV–visible spectroscopy [19] in a phosphate buffer (pH = 11; I = 0.5). The concentration of PNP is 5×10^{-5} M and, even at the highest concentration of CD (5×10^{-3} M), all PNP is not bound. The values were therefore plotted according to the Hildebrand-Benesi [20] relation (equation (1)):

$$\frac{C_{\rm PNP}}{\Delta A} = \frac{1}{C_{\rm CD} K \Delta \varepsilon} + \frac{1}{\Delta \varepsilon}$$

with *K* the association constant of the CD–PNP complex, C_{PNP} is the concentration in PNP (5 × 10⁻⁵ M), C_{CD} is the concentration of CD (5 × 10⁻³ M; 2.5 × 10⁻³ M; 1.25 × 10⁻³ M; 5 × 10⁻⁴ M; 2.5 × 10⁻⁴ M), $\Delta A = A - A_0$, where A_0 is the absorption of the solution without CD, and *A* the absorption of the solution for a given concentration of CD, and $\Delta \varepsilon$ is the difference between the molar extinction coefficients for free and complexed PNP. The intercept of the linear plot $1/\Delta A = f(1/C_{CD})$ gives $1/\Delta \varepsilon$, and the slope gives $1/K \Delta \varepsilon$.

As reported in Table 1, the association constants for α - (log K = 3.24) and β -CD (log K = 2.80) are in agreement with the literature [21]. There is no inclusion of PNP with the shortly capped-CDs $3\alpha/\beta$. The 6A,6D-hexamethylene capped-CDs $6\alpha/\beta$ show moderate association constants (log K = 2.83 and 2.66, respectively). Concerning the larger capped-CDs, 8α shows an enhancement of its association constant (log K = 3.95).

It thus appears that AD-oligomethylenic capping is able to modulate the complexing properties of cyclodextrins.

Table 1
Association constants of PNP with AD-oligomethylene-capped-CDs
3,6 and $8\alpha/\beta$. NB = no binding

	$\log K$
α-CD	3.24
3α	NB
6a	2.83
8α	3.95
	log K
β-CD	2.80
β-CD 3β	NB
6β	2.66
8β	2.33

Acknowledgements

The authors would like to thank Dr J.-C. Blais (University Pierre et Marie Curie, Paris 6, France) for the MALDI–TOF mass spectra and Cyclolab (Hungary) for a generous supply of pure α and β -CD.

References

- A.J. Pearce, P. Sinaÿ, Angew. Chem. Int. Ed. Engl. 39 (2000) 3610.
- [2] M. Khedmati-Moghaddam, M. Lange, M. Shizuma, W.A. König, New cyclodextrin derivatives and cyclodextrin analogues as stationary phases in enantioselective gas chromatography, 14th Int. Symp. on chirality, Hambourg (Germany), 8–12 September 2002.

- [3] M. Junge, W.A. König, New cyclodextrin derivatives as chiral stationary phase in gas chromatography, 14th Int. Symp. on chirality, Hambourg (Germany), 8–12 September 2002.
- [4] L.A. Paquette, J.D. Schloss, I. Efremov, F. Fabris, F. Gallou, J. Mendez-Andino, J. Yang, Org. Lett. 2 (2000) 1259.
- [5] I. Tabushi, K. Shimokawa, N. Shimizu, H. Shirakata, K. Fujita, J. Am. Chem. Soc. 98 (1976) 7855.
- [6] I. Tabushi, L.C. Yuan, J. Am. Chem. Soc. 103 (1981) 3574.
- [7] I. Tabushi, L.C. Yuan, K. Shimokawa, K.I. Yokota, T. Mizutani, Y. Kuroda, Tetrahedron Lett. 22 (1981) 2273.
- [8] I. Tabushi, Y. Kuroda, K.I. Yokota, L.C. Yuan, J. Am. Chem. Soc. 103 (1981) 711.
- [9] I. Tabushi, T. Nabeshima, H. Kitaguchi, K. Yamamura, J. Am. Chem. Soc. 104 (1982) 2017.
- [10] I. Tabushi, K. Yamamura, T. Nabeshima, J. Am. Chem. Soc. 106 (1984) 5267.
- [11] K. Fujita, A. Matsunaga, T. Imoto, J. Am. Chem. Soc. 106 (1984) 5740.
- [12] I. Tabushi, T. Nabeshima, J. Am. Chem. Soc. 107 (1985) 2638.
- [13] R. Breslow, J.W. Canary, M. Varney, S.T. Waddell, D. Yang, J. Am. Chem. Soc. 112 (1990) 5212.
- [14] K. Koga, K. Ishida, T. Yamada, D.Q. Yuan, K. Fujita, Tetrahedron Lett. 40 (1999) 923.
- [15] K. Koga, D.Q. Yuan, K. Fujita, Tetrahedron Lett. 41 (2000) 6855.
- [16] K. Teranishi, Tetrahedron Lett. 42 (2001) 5477.
- [17] D.J. Wood, F.E. Hruska, W. Saenger, J. Am. Chem. Soc. 99 (1977) 1735.
- [18] R.J. Bergeron, M.A. Channing, G.J. Gibeily, D.M. Pillor, J. Am. Chem. Soc. 99 (1977) 5146.
- [19] F. Cramer, W. Saenger, H.Ch. Spatz, J. Am. Chem. Soc. 89 (1967) 14.
- [20] H.A. Benesi, J.H. Hildebrand, J. Am. Chem. Soc. 71 (1949) 2703.
- [21] R.J. Bergeron, D.M. Pillor, G. Gibeily, W. Roberts, Bioorg. Chem. 7 (1978) 263.