Preliminary communication / Communication

A,D-Oligomethylenic capping of α - and β-cyclodextrins

Thomas Lecourt, Jean-Maurice Mallet, Pierre Sinaÿ *
UMR CNRS 8642, département de chimie, École normale supérieure, 24, rue Lhomond, 75231 Paris cedex 05, France

Received 25 October 2002; accepted 13 November 2002

Abstract

α - and β-cyclodextrins have easily been converted into basket molecules, the handle being an oligomethylenic chain bridging A and D positions on the primary rim. The size of the handle influences the complexing properties of these cyclodextrins. To cite this article: T. Lecourt et al., C. R. Chimie 6 (2003) 87-90. © 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Les α - et β-cyclodextrines ont été aisément transformées en molécules en forme de panier, l'anse étant constituée d'une chaîne oligométhylénique reliant les positions A et D du bord primaire. La taille de l'anse exerce une influence sur les propriétés de complexation de ces cyclodextrines. Pour citer cet article : T. Lecourt et al., C. R. Chimie 6 (2003) 87-90.
© 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Keywords: cyclodextrin; basket; metathesis; complexation

Mots clés : cyclodextrine ; panier ; métathèse ; complexation

We have recently described the efficient chemical synthesis of the 6A,6D-butylene-bridged α-cyclodextrin (CD) 3 $\boldsymbol{\alpha}$. As shown in Fig. 1 [1] this capped $\alpha-\mathrm{CD} 3 \boldsymbol{\alpha}$ was easily derived from $1 \boldsymbol{\alpha}$, a diol directly obtained in high yield through a diisobutylaluminium (DIBAL)-promoted regioselective de- O-benzylation of perbenzylated α-CD.

In this preliminary communication, we would like to report on the extension of this reaction to the synthesis of a new family of 6A,6D-capped cyclodextrins,

[^0]together with a preliminary evaluation of their inclusion properties.

The corresponding 6A,6D-butylene-capped $\beta-C D$ 3β was first prepared in a similar manner Fig. 2 from the known diol $\mathbf{1 \beta}$ [1] It is worth noting that $\mathbf{3 \beta}$ has also been very recently synthesised using this procedure [2] The per- O-methylated derivative was able to separate enantiomers of various molecules and shows high selectivity towards large and voluminous molecules. Selected data for 3ß: $[\alpha]_{\mathrm{D}}{ }^{20}=+129(c=0.2, \mathrm{MeOH})$; MS (MALDI-TOF): $m / z(\%): 1211.5$ (100) [M + $\left.\mathrm{Na}^{+}\right]$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): 102.2, 102.1, 101.6,

Fig. 1. (i) NaH , AllylBr, DMF, rt (92\%); (ii) $\mathrm{Cl}_{2}\left(\mathrm{PCy}_{3}\right)_{2} \mathrm{Ru}=\mathrm{CHPh}(6 \mathrm{~mol} \%), \mathrm{PhH}, 60^{\circ} \mathrm{C}$; (iii) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C} 10 \%$, Pd black, $\mathrm{EtOAc} / \mathrm{MeOH}$ (1:1), 48 h , rt (87% over two steps).

iv α / β

1α
1β
$7 \alpha 98 \%$
8α 90\%
$8 \boldsymbol{\beta}$ 96\%

Fig. 2. (i) AllylBr (4 equiv), NaH (4 equiv), THF, $n \mathrm{Bu}_{4} \mathrm{NI}$ (0.1 equiv), rt, 6 h ; (ii) $\mathrm{Cl}_{2}\left(\mathrm{PCy}_{3}\right)_{2} \mathrm{Ru}=\mathrm{CHPh}(5 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 5 h then $\mathrm{Pb}(\mathrm{OAc})_{4}[4]$ rt overnight; (iii) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C} 10 \%$, Pd black, $\mathrm{EtOAc} / \mathrm{MeOH}(1: 1), 48 \mathrm{~h}$, rt; (iv) for $\alpha-\mathrm{CD}$: AllylBr (1.1 equiv), NaH (2 equiv), THF, $n \mathrm{Bu}_{4} \mathrm{NI}$ (0.1 equiv), $\mathrm{rt}, 18 \mathrm{~h}$; for $\beta-\mathrm{CD}$: AllylBr (1.1 equiv), KH (1.1 equiv), THF, $n \mathrm{Bu}_{4} \mathrm{NI}$ (0.2 equiv), rt, 18 h (v) 5-bromo-pent- 1 -ene (4 equiv), $t \mathrm{BuOK}$ (4 equiv), $n \mathrm{Bu}_{4} \mathrm{NI}$ (0.1 equiv), THF, rt, 8 h ; (vi) 5-bromo-pent- 1 -ene (8 equiv), $t \mathrm{BuOK}$ (8 equiv), $n \mathrm{Bu}_{4} \mathrm{NI}$ (0.1 equiv), THF, rt, 8 h .
101.4, 101.2, 100.4, $99.5\left(7 \times \mathrm{C}_{1}\right), 26.2,25.8$ $\left(2 \times \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$.

The synthesis of the 6A,6D-hexamethylene-bridged CDs $\mathbf{6} \boldsymbol{\alpha}$ and $\mathbf{6} \boldsymbol{\beta}$ was next achieved as shown in Fig. 2 A key feature is the possibility to perform a high-yielding mono- O-allylation of either 1α or 1β to provide $\mathbf{4 \alpha}$ (90%) and $\mathbf{4 \beta}$ (81%), respectively. This opens the door to the preparation of various oligomethylenic capped CDs with odd or even carbon atom numbers. As an example, pentenylation of the alcohol $\mathbf{4 \alpha}$, followed by Ring Closing Metathesis (RCM), then hydrogenolysis, gave the capped CD 6 $\boldsymbol{\alpha}$. Selected data for $\mathbf{6} \boldsymbol{\alpha}:[\alpha]_{D}{ }^{20}$ $=+121(c=0.2, \mathrm{MeOH})$; MS (MALDI-TOF): $m / z(\%)$: 1077.3 (100) $\left[\mathrm{M}+\mathrm{Na}^{+}\right] ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{D}_{2} \mathrm{O}\right): 102.2, \quad 101.8,101.7\left(3 \times \mathrm{C}_{1}\right), 29.2,25.8$ $\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$. A similar sequence provided $\mathbf{6} \boldsymbol{\beta}$. Selected data for $6 \boldsymbol{\beta}:[\alpha]_{\mathrm{D}}{ }^{20}=+123(c=0.2, \mathrm{MeOH})$; MS (MALDI-TOF): $m / z(\%): 1239.5$ (100) $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): 102.6, 102.4, 102.3, $102.2,102.1,102.0,101.8\left(7 \times \mathrm{C}_{1}\right), 29.5,29.2,25.7$, $25.4\left(2 \times \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}, 2 \times \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$. This product has also been recently prepared by another route [3], then converted to the per- O-methylated derivative, which was also able to separate enantiomers of particularly large molecules, including pharmaceuticals of different structural types.

Selected data for $\mathbf{4 \alpha}:[\alpha]_{\mathrm{D}}{ }^{20}=+34\left(c=1, \mathrm{CHCl}_{3}\right)$; MS (FAB): $m / z(\%): 2477.0$ (100) $\left[\mathrm{M}+\mathrm{Na}^{+}\right] ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $134.5\left(\mathrm{CH}_{2}=\underline{\mathrm{CH}}-\mathrm{CH}_{2}-\mathrm{O}\right)$, $116.9\left(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{O}\right), 98.7,98.4,98.1,98.0,97.9$, $97.8\left(6 \times \mathrm{C}_{1}\right), 61.2\left(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{O}\right)$.

Selected data for $\mathbf{4 \beta}$ (obtained as an inseparable mixture of isomers): MS (FAB): m / z (\%): 2910.2 (100) $\left[\mathrm{M}+\mathrm{Na}^{+}\right] ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 134.64, $134.57\left(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{O}\right), 116.8\left(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{O}\right)$, $98.83\left(1 \times \mathrm{C}_{1}\right), 98.73\left(2 \times \mathrm{C}_{1}\right), 98.69\left(2 \times \mathrm{C}_{1}\right), 98.64$, 98.57, $98.45,98.37,98.31,98.16,98.10,97.89,97.70$ $\left(9 \times \mathrm{C}_{1}\right), 61.45,61.38\left(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{O}\right)$.

Finally, the two 6A,6D-octamethylene bridged cyclodextrins 8α and $8 \boldsymbol{\beta}$ have been prepared as shown in Fig. 2. Selected data for $\mathbf{8 \alpha}:[\alpha]_{\mathrm{D}}{ }^{20}=+120(c=0.15$, $\mathrm{MeOH})$; MS (MALDI-TOF): m/z (\%): 1105.5 (100) $\left[\mathrm{M}+\mathrm{Na}^{+}\right] ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): 101.9, 101.5, $101.4\left(3 \times \mathrm{C}_{1}\right), 29.2,28.6,25.4$ $\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$. Selected data for 8及: $[\alpha]_{\mathrm{D}}{ }^{20}=+125(c=0.2, \mathrm{MeOH})$; MS (MALDI-TOF): $\mathrm{m} / \mathrm{z}(\%): 1267.2$ (100) $\left[\mathrm{M}+\mathrm{Na}^{+}\right] ;{ }^{13} \mathrm{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 102.7,102.5,102.4,102.1,102.0$, 102.9, 101.7 (7 $\times \mathrm{C}_{1}$), 29.6, 29.3, 28.7, 28.3, $25.8,25.5\left(2 \times \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}, 2 \times \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$, $2 \times \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}{ }_{2}$.

The capping of CDs had so far been achieved using tailor-made rigid aromatic disulfonylchlorides [4-16] It is clear that the direct availability of diols $\mathbf{1} \alpha$ and $\mathbf{1 \beta}$, combined with high regioselective mono- O-allylation and RCM methodology, provides a versatile entry to a family of oligomethylene-capped 6A,6D α - or β-cyclodextrins.

We have now studied the inclusion properties of p-nitro-phenolate (PNP) in $\mathbf{3}, \mathbf{6}$ and $\mathbf{8 \alpha} / \boldsymbol{\beta}$. PNP derivatives are known to include with the nitro group close to the narrower rim [17], and to be very sensitive to the bulk of the guest [18] The equilibrium constant is determined by UV-visible spectroscopy [19] in a phosphate buffer ($\mathrm{pH}=11 ; I=0.5$). The concentration of PNP is $5 \times 10^{-5} \mathrm{M}$ and, even at the highest concentration of CD $\left(5 \times 10^{-3} \mathrm{M}\right)$, all PNP is not bound. The values were therefore plotted according to the Hildebrand-Benesi [20] relation (equation (1)):

$$
\frac{C_{\mathrm{PNP}}}{\Delta A}=\frac{1}{C_{\mathrm{CD}} K \Delta \varepsilon}+\frac{1}{\Delta \varepsilon}
$$

with K the association constant of the CD-PNP complex, $\mathrm{C}_{\mathrm{PNP}}$ is the concentration in PNP $\left(5 \times 10^{-5} \mathrm{M}\right)$, C_{CD} is the concentration of $\mathrm{CD}\left(5 \times 10^{-3} \mathrm{M}\right.$; $2.5 \times 10^{-3} \mathrm{M} ; 1.25 \times 10^{-3} \mathrm{M} ; 5 \times 10^{-4} \mathrm{M}$; $\left.2.5 \times 10^{-4} \mathrm{M}\right), \Delta A=A-A_{0}$, where A_{0} is the absorption of the solution without CD , and A the absorption of the solution for a given concentration of CD , and $\Delta \varepsilon$ is the difference between the molar extinction coefficients for free and complexed PNP. The intercept of the linear plot $1 / \Delta A=f\left(1 / C_{\mathrm{CD}}\right)$ gives $1 / \Delta \varepsilon$, and the slope gives $1 / K \Delta \varepsilon$.

As reported in Table 1, the association constants for $\alpha-(\log K=3.24)$ and $\beta-\mathrm{CD}(\log K=2.80)$ are in agreement with the literature [21] There is no inclusion of PNP with the shortly capped-CDs $\mathbf{3} \boldsymbol{\alpha} / \boldsymbol{\beta}$. The $6 \mathrm{~A}, 6 \mathrm{D}$-hexamethylene capped-CDs $\mathbf{6} \boldsymbol{\alpha} / \boldsymbol{\beta}$ show moderate association constants ($\log K=2.83$ and 2.66 , respectively). Concerning the larger capped-CDs, $8 \boldsymbol{\alpha}$ shows an enhancement of its association constant ($\log K=3.95$).

It thus appears that AD-oligomethylenic capping is able to modulate the complexing properties of cyclodextrins.

Table 1
Association constants of PNP with AD-oligomethylene-capped-CDs $\mathbf{3 , 6}$ and $\mathbf{8 \alpha} / \boldsymbol{\beta}$. NB = no binding

	$\log K$
$\boldsymbol{\alpha}-\mathbf{C D}$	3.24
$\mathbf{3} \boldsymbol{\alpha}$	NB
$\mathbf{6} \boldsymbol{\alpha}$	2.83
$\mathbf{8} \boldsymbol{\alpha}$	3.95
	$\log K$
$\boldsymbol{\beta - C D}$	2.80
$\mathbf{3} \boldsymbol{\beta}$	NB
$\mathbf{6} \boldsymbol{\beta}$	2.66
$\mathbf{8} \boldsymbol{\beta}$	2.33

Acknowledgements

The authors would like to thank Dr J.-C. Blais (University Pierre et Marie Curie, Paris 6, France) for the MALDI-TOF mass spectra and Cyclolab (Hungary) for a generous supply of pure α and β-CD.

References

[1] A.J. Pearce, P. Sinaÿ, Angew. Chem. Int. Ed. Engl. 39 (2000) 3610.
[2] M. Khedmati-Moghaddam, M. Lange, M. Shizuma, W.A. König, New cyclodextrin derivatives and cyclodextrin analogues as stationary phases in enantioselective gas chromatography, 14th Int. Symp. on chirality, Hambourg (Germany), 8-12 September 2002.
[3] M. Junge, W.A. König, New cyclodextrin derivatives as chiral stationary phase in gas chromatography, 14th Int. Symp. on chirality, Hambourg (Germany), 8-12 September 2002.
[4] L.A. Paquette, J.D. Schloss, I. Efremov, F. Fabris, F. Gallou, J. Mendez-Andino, J. Yang, Org. Lett. 2 (2000) 1259.
[5] I. Tabushi, K. Shimokawa, N. Shimizu, H. Shirakata, K. Fujita, J. Am. Chem. Soc. 98 (1976) 7855.
[6] I. Tabushi, L.C. Yuan, J. Am. Chem. Soc. 103 (1981) 3574.
[7] I. Tabushi, L.C. Yuan, K. Shimokawa, K.I. Yokota, T. Mizutani, Y. Kuroda, Tetrahedron Lett. 22 (1981) 2273.
[8] I. Tabushi, Y. Kuroda, K.I. Yokota, L.C. Yuan, J. Am. Chem. Soc. 103 (1981) 711.
[9] I. Tabushi, T. Nabeshima, H. Kitaguchi, K. Yamamura, J. Am. Chem. Soc. 104 (1982) 2017.
[10] I. Tabushi, K. Yamamura, T. Nabeshima, J. Am. Chem. Soc. 106 (1984) 5267.
[11] K. Fujita, A. Matsunaga, T. Imoto, J. Am. Chem. Soc. 106 (1984) 5740.
[12] I. Tabushi, T. Nabeshima, J. Am. Chem. Soc. 107 (1985) 2638.
[13] R. Breslow, J.W. Canary, M. Varney, S.T. Waddell, D. Yang, J. Am. Chem. Soc. 112 (1990) 5212.
[14] K. Koga, K. Ishida, T. Yamada, D.Q. Yuan, K. Fujita, Tetrahedron Lett. 40 (1999) 923.
[15] K. Koga, D.Q. Yuan, K. Fujita, Tetrahedron Lett. 41 (2000) 6855.
[16] K. Teranishi, Tetrahedron Lett. 42 (2001) 5477.
[17] D.J. Wood, F.E. Hruska, W. Saenger, J. Am. Chem. Soc. 99 (1977) 1735.
[18] R.J. Bergeron, M.A. Channing, G.J. Gibeily, D.M. Pillor, J. Am. Chem. Soc. 99 (1977) 5146.
[19] F. Cramer, W. Saenger, H.Ch. Spatz, J. Am. Chem. Soc. 89 (1967) 14.
[20] H.A. Benesi, J.H. Hildebrand, J. Am. Chem. Soc. 71 (1949) 2703.
[21] R.J. Bergeron, D.M. Pillor, G. Gibeily, W. Roberts, Bioorg. Chem. 7 (1978) 263

[^0]: * Corresponding author.

 E-mail address: pierre.sinay @ens.fr (P. Sinaÿ).

