Synthesis of large chelate rings with diphosphites built on a cyclodextrin scaffold. Unexpected formation of 1,2 -phenylene-capped $\boldsymbol{\alpha}$-cyclodextrins

Éric Engeldinger ${ }^{\text {a }}$, Dominique Armspach ${ }^{\text {a* }}$, Dominique Matt ${ }^{\text {a* }}$, Loïc Toupet ${ }^{\text {b }}$, Marcel Wesolek ${ }^{\text {c }}$
${ }^{\text {a }}$ Laboratoire de chimie inorganique moléculaire, UMR 7513 CNRS, université Louis-Pasteur, 1, rue Blaise-Pascal, 67008 Strasbourg cedex, France
${ }^{\text {b }}$ Groupe «Matière condensée et matériaux », UMR 6626 CNRS, université de Rennes-1, campus de Beaulieu, av. du General-Leclerc, 35042 Rennes cedex, France
${ }^{\text {c }}$ Laboratoire des métaux de transition et de catalyse, UMR 7513 CNRS, université Louis-Pasteur, 1, rue Blaise-Pascal, 67008 Strasbourg cedex, France

Received 6 February 2002; accepted 4 June 2002
In memory of John Osborn

Abstract

Two primary face difunctionalised α-cyclodextrins (α-CDs) bearing AC and AD-positioned triarylphosphite ligands have been synthesised and their ability to form large chelate rings has been evaluated. $6^{\mathrm{A}}, 6^{\mathrm{D}}-\mathrm{Bis}-O-\{2-[($ diphenoxyphosphino $)$ oxy]phenyl $\}-2^{\mathrm{A}}, 2^{\mathrm{B}}, 2^{\mathrm{C}} 2^{\mathrm{D}}, 2^{\mathrm{E}}, 2^{\mathrm{F}}, 3^{\mathrm{A}}, 3^{\mathrm{B}}, 3^{\mathrm{C}}, 3^{\mathrm{D}}, 3^{\mathrm{E}}, 3^{\mathrm{F}}, 6^{\mathrm{B}}, 6^{\mathrm{C}}, 6^{\mathrm{E}}, 6^{\mathrm{F}}$-hexadeca- O-methyl- α-cyclodextrin (L1) was prepared in three steps in 59% overall yield: (i) treatment of $6^{\mathrm{A}}, 6^{\mathrm{D}}$-di- O-(methylsulfonyl)- $2^{\mathrm{A}}, 2^{\mathrm{B}}, 2^{\mathrm{C}}, 2^{\mathrm{D}}, 2^{\mathrm{E}}, 2^{\mathrm{F}}, 3^{\mathrm{A}}, 3^{\mathrm{B}}, 3^{\mathrm{C}}, 3^{\mathrm{D}}, 3^{\mathrm{E}}, 3^{\mathrm{F}}, 6^{\mathrm{B}}, 6^{\mathrm{C}}, 6^{\mathrm{E}}, 6^{\mathrm{F}}$-hexadeca- O -methyl- α-cyclodextrin (1a) with sodium 2-(benzyloxy)phenolate, affording a mixture of the corresponding bisaryloxy substitution product 2a; (ii) cleavage of the benzyl groups of 2a with formation of bisphenol 6a; (iii) reaction of 2a with chlorodiphenylphosphite to afford L1. Diphosphite L2 was obtained in a similar manner using the AC dimesylate 1b (yield: 54\%). In step (i) of each synthesis, the unexpected formation of a catecholato-capped CD was observed as a result of benzyl loss under the used arylation conditions. The AD-bridged product was characterised by a single crystal X-ray diffraction study. In the solid state, the CD torus adopts the usual circular shape while four glucose rings, although not distorted, are considerably tilted towards the cavity axis. Both ligands, $\mathbf{L} 1$ and $\mathbf{L 2}$, when reacted with the cationic complexes AgBF_{4} or $\left[\mathrm{Rh}\right.$ (norbornadiene) $\left.(\mathrm{THF})_{2}\right] \mathrm{X}\left(\mathrm{X}=\mathrm{BF}_{4}, \mathrm{PF}_{6}\right)$, produced selectively chelate complexes having up to 29 -membered metallomacrocycles in high yields. Rhodium systems based on either $\mathbf{L} 1$ or $\mathbf{L} 2$ catalyse effectively the hyfroformylation of 1-octene (TOF up to $1200 \mathrm{~mol} \mathrm{~mol}^{-1}$ of $\mathrm{Rh} \mathrm{h}^{-1}$). Hydrogenation of dimethyl itaconate with a $\operatorname{Rh}(\mathrm{I}) / \mathbf{L} 2$ complex produced dimethyl $(R)-(+)-$ methylsuccinate with an EE as high as 83.6%. To cite this article: É. Engeldinger et al., C. R. Chimie 5 (2002) 359-372 © 2002 Académie des sciences / Éditions scientifiques et médicales Elsevier SAS metallo-cyclodextrins / bulky diphosphites / large chelate rings / rhodium / hydroformylation / hydrogenation / capped cyclodextrins

Abstract

Résumé - Deux α-cyclodextrines, substituées au niveau des positions $6^{\mathrm{A}} / 6^{\mathrm{D}}$ ou $6^{\mathrm{A}} / 6^{\mathrm{C}}$ par deux ligands $-\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}\right) \mathrm{P}(\mathrm{OPh})_{2}$, ont été synthétisées, avec un rendement global de l'ordre de 60%; leurs propriétés chélatantes ont été étudiées. Au cours de la synthèse, une cyclodextrine, dans laquelle deux unités glucose (A et D ou A et C) sont reliées par un fragment 1,2 -phénylène, a également été isolée. La structure à l'état solide a été déterminée pour l'espèce AD-pontée. La présence d'un pont court provoque le basculement de quatre cycles glucose vers l'axe de la cyclodextrine. En présence de complexes cationiques tels que AgBF_{4} ou $\left[\mathrm{Rh}(\right.$ norbornadiène $\left.)(\mathrm{THF})_{2}\right] \mathrm{X}\left(\mathrm{X}=\mathrm{BF}_{4}, \mathrm{PF}_{6}\right)$, les deux ligands conduisent exclusivement à des complexes chélates, caractérisés par la présence de métallomacrocycles à 24 ou 29 chaînons. Associés à du rhodium, les deux diphosphites forment des catalyseurs actifs en hydrogénation et en hydroformylation d'oléfines. L'hydrogénation de l'itaconate de diméthyle en présence d'un complexe $\operatorname{Rh}(\mathrm{I}) / \mathbf{L 2}$ fournit du $(R)-(+)$-methylsuccinate de diméthyle, avec un excès énantiomérique de $83,6 \%$. Pour citer cet article: É. Engeldinger et al., C. R. Chimie 5 (2002) 359-372 © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS métallo-cyclodextrines / diphosphites / chélatants encombrés / rhodium / hydroformylation / hydrogénation / cyclodextrines pontées

[^0]
1. Introduction

Chelate complexes obtained from diphosphanes where the phosphorus centres are separated by more than twenty bonds remain relatively uncommon [1-3]. Reaction of such large bidentate ligands with transition metal complexes often produces oligomeric material rather than chelate structures [4, 5]. As already noted by Ogino, the chemical literature contains many examples of supposed chelate complexes, but for many of them the ring structure has not been firmly established [6]. This concerns in particular ligands that contain more than three or four bonds between the coordination centres. A rational way to favour chelating over bridging behaviour consists in performing the complexation reaction at high dilution, but this requires the coordination steps to proceed quickly. Alternatively, preorganisation of the complexing units brought about by increasing the ligand backbone rigidity may result in better metal chelation. We have recently studied the coordinative behaviour of a series of large bidentate ligands built on bucket-shaped units, notably cyclodextrin and calixarene backbones. All these ligands consisted of two podands tethered at the same rim of a cone-shaped cavity. We found that such long chain diphosphines systematically lead to chelate complexes when opposed to cationic species bearing labile ligands, e.g. $\left[\mathrm{Rh}(\mathrm{COD})(\text { solvent })_{2}\right]^{+}$, $\left[\operatorname{PdMe}(\text { solvent })_{2}(\mathrm{COD})\right]^{+}, \quad\left[\mathrm{Ru}(p \text {-cymene })(\text { solvent })_{3}\right]^{2+}$, $\left[\mathrm{Au}(\text { solvent })_{2}\right]^{+}$, etc., whilst their reaction with neutral starting complexes containing poorer leaving groups (e.g. MeCN) usually affords oligomeric compounds [7, 8].

Although a number of studies have been carried out on P (III)-derivatised CDs, none deals with phosphite ligands [1, 9-17]. As part of our studies on cavityderived bidentates, we report here on the synthesis of diphosphites L1 and L2 (Fig. 1), both built on an α-cyclodextrin platform, and their ability to form catalytically active large chelate complexes with transition
metals. In the following, the letters 'a' and ' \mathbf{b} ' refer to AD - and AC -disubstituted CDs , respectively. A unique example of an $\alpha-C D$ capped with a short bridging fragment is also reported.

2. Results and discussion

2.1. Syntheses of ligands and complexes

The C_{2}-symmetrical ligand $\mathbf{L} 1$ was synthesised in three steps from the known dimesylate 1a (Fig. 2) [18]. Thus, reaction of 5 equiv of sodium 2-(benzyloxy)phenolate with $\mathbf{1}$ in DMF at $70^{\circ} \mathrm{C}$ afforded a mixture of three products among which we isolated the desired compound $\mathbf{2 a}$ in 65% yield. The presence of three doublets for the $\mathrm{H}-1$ protons (see experimental part) as well as eight singlets for the methyl groups in the ${ }^{1} \mathrm{H}$ NMR spectrum is consistent with a molecule having C_{2} symmetry, thus confirming substitution of both available mesylate groups. Partial loss of one benzyl group under these reaction conditions led to the formation of $\mathbf{3 a}(7 \%)$. Its ${ }^{1} \mathrm{H}$ NMR spectrum reveals the absence of symmetry and indicates clearly the presence of a phenolic proton. The ${ }^{1} \mathrm{H}$ NMR spectrum of the third species $4 \mathbf{a}$ (17\%) is also indicative of C_{2} symmetry. However, compared to $\mathbf{2 a}$, the $\mathrm{H}-1$ signals of $\mathbf{4 a}$ are much more spread out ($\Delta \delta=0.30 \mathrm{ppm}$ vs 0.11 ppm for 2a), indicating the presence of a distorted CD matrix (Fig. 3). As confirmed by a single crystal X-ray diffraction study (vide infra), the latter results from the capping of the CD platform with a short 1,2-phenylene unit, characterised by a four-proton $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system in the aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum. Only benzyl cleavage of the monosubstituted intermediate 5a (Fig. 4) and subsequent intramolecular substitution of the remaining mesylate group can explain the forma-

L1

L2

Fig. 1. Diphosphites L1 and L2.

Fig. 2. Synthesis of the C_{2}-symmetrical ligand $\mathbf{L} 1$ from the dimesylate 1a.
tion of such a capped derivative. In the solid state (Figs. 5 and 6), the $C(11)$ and $C(21)$ glucose units and their symmetrical counterparts are strongly tilted with respect to the plane constituted by the six O-4 atoms (tilt angles: $35.0(3)^{\circ}\left(\mathrm{C}(11)\right.$) and $31.8(3)^{\circ}(\mathrm{C}(21)$), vs $14.4(3)^{\circ}$ for the $\mathrm{C}(1)$ ring), so as to accommodate the capping unit (the tilt angle is defined by the dihedral

Fig. 3. Part of the ${ }^{1} \mathrm{HNMR}$ spectra $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{4 a}$ and $\mathbf{4 b}$ showing the dispersion of the anomeric $\mathrm{H}-1$ signals. The peak marked with an asterisk is due to residual $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
angle between the best plane defined by the six O-4 atoms and the plane defined by the C-1, C-4, O-4 and O-4' atoms of a particular glucose unit). Remarkably, in spite of the considerable strain imposed on the CD framework [19], all glucose units display the usual ${ }^{4} C_{1}$ conformation [20]. The 1,2-phenylene moiety, which adopts two possible orientations (occupancy

5a
Fig. 4. Compound 5a.
$1: 1$), is inclined by $\pm 39.5^{\circ}$ with respect to the CD axis. Note that the 2 D NMR ROESY spectrum contains cross-peaks, corresponding to through-space interactions between the phenylene and all OMe-6 protons. In keeping with the fact that the molecule has averaged C_{2}-symmetry, this observation indicates a fan-like motion of the phenylene ring above the $C D$ cavity in solution. The same capped species was obtained in moderate yield (ca 30%) when the dimesylate was reacted with disodium catecholate. However, in this case, some oligomeric material was formed. Treatment of $\mathbf{2 a}$ and $\mathbf{3 a}$ with H_{2} in the presence of Pd / C afforded the diphenol 6a quantitatively. The latter reacted smoothly with one equivalent of chlorodiphenylphosphite $\operatorname{ClP}(\mathrm{OPh})_{2}$ in the presence of NEt_{3} at $-40^{\circ} \mathrm{C}$ to give ligand L1, whose ${ }^{31} \mathrm{P}$ NMR spectrum consists of a singlet at 127.5 ppm , commen-

Fig. 5. View of the 1,2-phenylene-capped CD 4a along the C_{2} axis (the bridging unit lies in the backside). Only one orientation of the catecholate is shown. The included heptane molecule has been omitted for clarity.

Fig. 6. Side-view of $\mathbf{4 a}$ (sticks).
surate with the expected C_{2} symmetry. In L1, 27 bonds separate the two phosphorus atoms.

The bis(triaryl)phosphite regioisomer $\mathbf{L 2}$ was synthesised from the known tris(4-tert-butylphenyl)methyl AC-disubstituted CD derivative 7b. Thus, removal of the protecting groups was achieved with aqueous HBF_{4} in MeCN to give diol 8b, which was then converted to dimesylate $\mathbf{1 b}$ using MsCl in pyridine in the presence of 4-(dimethylamino)pyridine (DMAP) (Fig. 7). As for 1a, treatment of $\mathbf{1 b}$ with 5 equiv of sodium 2-(benzyloxy)phenolate produced a mixture of four products, amongst which the desired disubstituted product 2b was isolated in 57% yield. Again, bridging of two primary positions with a catechol unit was found to take place and the capped species $\mathbf{4 b}$ was isolated in 18% yield. As for $\mathbf{4 a}$, the large dispersion of the $\mathrm{H}-1$ signals ($\Delta \delta=0.37 \mathrm{ppm}$ vs 0.11 ppm for 2b) in the ${ }^{1} \mathrm{H}$ NMR spectrum indicates the presence of a distorted CD torus (Fig. 3). However, as revealed by 2 D ROESY experiments, the phenylene protons are in close proximity to only three of the four OMe-6 protons, suggesting that the phenylene plane is tilted towards the cavity centre and does not swing in this case about the $\mathrm{O}-6^{\mathrm{A}}-\mathrm{O}-6^{\mathrm{C}}$ axis. Again, two inseparable species whose ${ }^{1} \mathrm{H}$ NMR spectra are consistent (see experimental part) with products resulting from cleavage of one benzyl group from 2b were also obtained in very low yield. Catalytic hydrogenation of 2b afforded diphenol 6b quantitatively, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of which show remarkable asymmetry. The latter may result from the presence of hydrogen bonding between the two hydroxy groups and the CD matrix, which helps rigidifying the overall structure. Compound $\mathbf{6 b}$ reacted smoothly with 2 equiv of $\mathrm{ClP}(\mathrm{OPh})_{2}$ to give ligand L2. Surprisingly, both phosphorus atoms appear as magnetically equivalent ($\delta 127.5 \mathrm{ppm}$) in the ${ }^{31} \mathrm{P}$ NMR spectrum.
The bimetallic complexes 9a and 9b (Fig. 8) were readily obtained in high yields by reacting $\left.\left[o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right) \mathrm{PdCl}\right]_{2}$ with the corresponding diphosphite. Both complexes are characterised by a singlet at ca 104.5 ppm in the ${ }^{31} \mathrm{P}$ NMR spectrum. Note that for $9 \mathbf{9 b}$ complexation does not result in the differentiation of the two formally non-equivalent phosphorus atoms. Coordination of both phosphorusbinding sites was confirmed by the presence of ${ }^{4} J(\mathrm{PH})$ coupling constants $(3.3 \mathrm{~Hz}[2 \times]$ in $9 \mathbf{a}$ and 3.3 and 4.9 Hz in $9 \mathbf{b}$) between NMe protons and the transbonded phosphorus atom. The ${ }^{1} \mathrm{H}$ NMR spectra of both 9a and 9b show that the two methyl groups carried by each nitrogen atom are magnetically nonequivalent, in accord with the chirality of these molecules.

When either $\mathbf{L} 1$ or $\mathbf{L} 2$ was treated with 1 equiv AgBF_{4}, the exclusive formation of the chelates

7b
${ }^{\mathrm{S}} \mathrm{Tr}=$ tris(4-tert-butylphenyl)methyl

2b

6b

L2

Fig. 7. Chemical route from 7b to $\mathbf{L} \mathbf{2}$.

10a/10b was observed (Fig. 8). The capping of the CD cavity with an Ag^{+}cation was confirmed by FAB-MS spectrometry. Both complexes produce an intense peak at 1921.3, corresponding to the molecular ion $\left(\mathrm{M}^{+}-\mathrm{BF}_{4}\right)$. As expected, in the ${ }^{31} \mathrm{P}$ NMR spectrum of C_{2}-symmetrical 10a, the phosphorus atoms give rise to two doublets centred at 116.7 ppm $\left(J\left({ }^{107} \mathrm{AgP}\right)=1083 \mathrm{~Hz}, \quad J\left({ }^{109} \mathrm{AgP}\right)=1231 \mathrm{~Hz}\right)$, whereas they resonate as two ABX systems $\left(\mathrm{X}={ }^{107} \mathrm{Ag}\right.$ and ${ }^{109} \mathrm{Ag}, \quad \delta_{\mathrm{A}}=108.3$ and $\delta_{\mathrm{B}}=114.5 \mathrm{ppm}$, ${ }^{2} J\left(\mathrm{PP}^{\prime}\right)=256 \mathrm{~Hz}, J\left({ }^{107} \mathrm{AgP}^{\prime}\right)=977 \mathrm{~Hz}, J\left({ }^{109} \mathrm{AgP}{ }^{\prime}\right)$
$=1088 \mathrm{~Hz})$ in $\mathbf{1 0 b}$. The $J(\mathrm{AgP})$ values are rather large when compared to those of phosphine silver complexes, but this has also been observed recently for the $J(\mathrm{PtP})$ coupling constants of tris(aryl) phosphite platinum(II) complexes [21]. Unlike that of 10a, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 b}$ is somewhat broad, which suggests fluxional behaviour, possibly resulting from exchanging methoxy groups that compete for coordination to the silver cation. Similar dynamics have been observed recently in other silvercapped CDs [9]. Likewise, chelate complexes 11a/11b

9a

9b

11a

11b

Fig. 8. Compounds $9 \mathbf{a}, 9 \mathrm{~b}, 10 \mathrm{a}, 10 \mathrm{~b}, 11 \mathrm{a}$ and $11 \mathbf{c}$.
were obtained in high yields when the in situ formed cationic precursors $\left[\mathrm{Rh}(\mathrm{NBD})(\mathrm{THF})_{2}\right] \mathrm{PF}_{6}$ and $[\mathrm{Rh}$ $\left.(\mathrm{NBD})(\mathrm{THF})_{2}\right] \mathrm{BF}_{4}$ were reacted with one equivalent of $\mathbf{L 1}$ and $\mathbf{L 2}$, respectively. Once again, the FAB-MS spectra of $\mathbf{1 1 a} \mathbf{a} \mathbf{1 1 b}$ (Fig. 8) left no doubt on the monomeric nature of the complexes, showing intense peaks at 2007.7 and 2008.4 for the $\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}$(11a) and $\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$(11b) cations, respectively. Both ${ }^{31} \mathrm{P}$ NMR spectra display a single doublet centred at 110.5 ppm $(J(\mathrm{RhP})=264 \mathrm{~Hz}(\mathbf{1 1 a}), 259 \mathrm{~Hz}(\mathbf{1 1 b}))$. It is interesting to point out that again the phosphorus atoms of 11b give rise to an $A_{2} X$ pattern ($X=R h$), despite the complex lack of symmetry. This unexpected feature arises probably from the fact that the distance separating the phosphorus atoms from the chiral cavity is quite large in the absence of MeO-6 ether coordination. Furthermore, at room temperature, the ${ }^{1} \mathrm{H}$ NMR spectra of 11a and 11b are both broad, suggesting that these molecules are dynamic in solution. Recording the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1 a}$ at $60^{\circ} \mathrm{C}$ caused all signals to sharpen, but did not reduce their number. These findings suggest that the metal plane is tilted with respect to the CD axis and that the metalcontaining handle is subject to conformational changes. No indication for a metal plane describing a
pendulum motion about the P,P axis could be inferred from our observations. Finally, we observed that reaction of $\mathbf{L 1}$ or $\mathbf{L 2}$ with $\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4}$, which contains poorer leaving ligands, produces a mixture of monomeric and oligomeric species. Undoubtedly, the selective formation of chelate complexes using $[\mathrm{Rh}(\mathrm{N}-$ $\left.\mathrm{BD})(\mathrm{THF})_{2}\right]^{+}$originates from a combination of the following features: firstly, the use of starting cationic complexes bearing highly labile ligands promotes a fast coordination of both phosphorus centres. Secondly, the rigid CD core orientates the two phosphite substituents in the same direction and therefore maintains the two phosphorus centres in close proximity.

2.2. Catalytic properties of L1 and L2

Our catalytic attempts focused on the hydroformylation of 1 -octene and the hydrogenation of prochiral dimethyl itaconate, two commonly used reactions for testing P(III) ligands [22]. For the hydroformylation studies, the complexes were formed in situ according to standard literature procedures, using $\left[\mathrm{Rh}(\mathrm{CO})_{2}(\mathrm{acac})\right]$ as starting complex. Thus formation of complexes other than chelate ones cannot be excluded.

2.2.1. Hydroformylation

The catalytic performances of $\mathbf{L} 1$ and $\mathbf{L} 2$ are summarised in Table 1. Both rates and regioselectivities are comparable to those observed with the flexible and bulky diphosphite 12 (Fig. 9; $1 / b=2.2$, $\mathrm{TOF}=1550$, isomerisation 20%) but the percentage of isomerisation does not exceed 5% in our case [23]. Consistent with van Leeuwen's observations made for other diphosphites, the flexible nature of our chelating complexes probably accounts for the observed poor linear aldehyde selectivity. Interestingly, activity is doubled on going from L1 to L2 (entries 3 and 4), probably reflecting a larger steric hindrance about the metal centre in the $\mathbf{L} \mathbf{2}$ /rhodium system. This feature is likely to reduce the number of coordinated phosphorus atoms during the catalytic cycle, which in turn leads to less stable hence more reactive intermediate species. Raising the octene/rhodium ratio from 600 to 1200 produced a two-fold increase of the reaction rate. Such a substrate concentration dependency has also been observed by van Leeuwen when operating in low olefin concentration [22, 23]. No evidence was found for a supramolecular interaction between the CD cavity and the olefinic substrate under the used reaction conditions (solvent: toluene).

2.2.2. Hydrogenation

In our first experiments, the hydrogenation catalysts were formed in situ by reacting $\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4}$ with either $\mathbf{L} 1$ or $\mathbf{L} \mathbf{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution before adding the substrate. As described previously, under these conditions mixtures of monomeric and oligomeric compounds are formed. Both systems exhibit moderate activity (Table 2, entries 1 and 2). With EEs not

12
Fig. 9. Compound 12.
exceeding 17%, the observed enantioselectivities are rather disappointing. We then repeated the tests with the preformed chelate complexes 11a and 11b (entries 3 and 4). To our surprise, only 11b proved to be an active hydrogenation catalyst, whereas 11a showed very poor activity. In addition, 11b produces remarkable enantioselectivity (EE $83.6 \%, R$ isomer). Clearly, access to the metal centre is facilitated in the unsymmetrical AC-capped system, but remains below that of the less crowded oligomeric species formed when the catalysts are formed in situ. It is plausible that with complex 11b, the chiral cavity that is rigidly positioned near the metal centre favours entrapment and orientation of the olefinic substrate, so as to induce good enantioselectivity.

3. Conclusion

In this paper, we have shown that by grafting two phosphite ligands onto a methylated CD platform at either AC or AD positions, diphosphites with chelating properties can be obtained. Metallomacrocycles consisting of up to 29 membered-rings were produced

Table 1. Hydroformylation of 1-octene.

Entry	Ligand	L/Rh ratio	S/Rh ratio	\% Conv. ${ }^{\text {a }}$ (1 h)	Aldehyde selectivity (\%)	$1 / b$ ratio	TOF ${ }^{\text {b }}$
1	L1	5	600	69	93	1.8	300
2	L1	5	1200	56	91	1.9	550
3	L2	5	600	98	95	1.9	600
4	L2	5	1200	98	93	2.0	1200

Conditions: $T=80^{\circ} \mathrm{C} ; 6.62 \times 10^{-3} \mathrm{mmol}(1.7 \mathrm{mg})$ of $\left[\mathrm{Rh}(\mathrm{CO})_{2}(\mathrm{acac})\right]$ in toluene $(15 \mathrm{ml}) ; P_{\mathrm{H}_{2}}=P_{\mathrm{CO}}=10$ bar. ${ }^{\text {a }}$ The conversion was determined after 1 h reaction time. ${ }^{\mathrm{b}}\left(\mathrm{mol}_{\text {product }} \operatorname{mol}_{\left.\mathrm{Rh}^{-1} \mathrm{~h}^{-1}\right)}\right.$.

Table 2. Hydrogenation of dimethyl itaconate.

Entry	Catalyst	S/Rh ratio	\% Conv. $(24 \mathrm{~h})^{\mathrm{a}}$	EE	TOF $^{\mathrm{b}}$
1	$\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4} / \mathrm{L1}^{\mathrm{c}}$	500	58	10	13
2	$\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4} / \mathrm{L2}^{\mathrm{c}}$	500	47	17	10
3	$11 a^{\mathrm{d}}$	500	1	n. d. ${ }^{\mathrm{e}}$	0.2
4	$11 \mathrm{~b}^{\mathrm{d}}$	500	17	83.6	3.5

[^1] $24 \mathrm{~h}) .{ }^{\mathrm{c}}$ Diphosphite $/ \mathrm{Rh}=1 ; 2.76 \times 10^{-2} \mathrm{mmol}$ of $\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4} \cdot{ }^{\mathrm{d}} 2.42 \times 10^{-2} \mathrm{mmol}$ of complex. ${ }^{\mathrm{e}}$ Not determined.
as the sole products when the preorganised diphosphites were reacted with transition metal cations bearing labile ligands. The interesting hydrogenation properties displayed by complex 11b illustrate the potential of unsymmetrically capped CDs as enantioselective catalysts.

4. Experimental section

4.1. General procedures

All commercial reagents were used as supplied. All manipulations involving phosphines were performed in Schlenk-type flasks under argon. Solvents were dried by conventional methods and distilled immediately prior to use. Column chromatography was performed on silica gel 60 (particle size $40-63 \mu \mathrm{~m}$, 230240 mesh). CDCl_{3} was passed down a 5 cm -thick alumina column and stored under argon over molecular sieves ($4 \AA$). Routine ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded with FT Bruker AC200 and AC300 instruments at $25^{\circ} \mathrm{C}$, while $500-\mathrm{MHz}$ spectra were recorded on an ARX 500 Bruker instrument. ${ }^{1} \mathrm{H}$ NMR spectral data were referenced to residual protiated solvents (7.26 for CDCl_{3}), ${ }^{13} \mathrm{C}$ chemical shifts are reported relative to deuterated solvents $(77.0 \mathrm{ppm}$ for CDCl_{3}), and the ${ }^{31} \mathrm{P}$ NMR data are given relative to external $\mathrm{H}_{3} \mathrm{PO}_{4}$. All mass spectra were recorded on a ZAB HF VG Analytical spectrometer using m-nitrobenzyl alcohol as matrix. Cyclodextrins 1a [18] and 7b [24], chlorodiphenylphosphite [25, 26] and complexes $\quad\left[\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right) \mathrm{PdCl}\right]_{2} \quad[27], \quad[\mathrm{RhCl}$ $(\mathrm{NBD})]_{2}$ [28] and $\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4}$ [13] were synthesised according to literature procedures. DMBA stands for o-dimethylbenzylamine. The numbering of the atoms within a glucose unit is as follows:

Hydroformylation studies were performed in a stainless steel autoclave (100 ml) containing a glass beaker and a magnetic stirring bar. The beaker was charged with toluene solutions of both the diphosphite ligand and $\left[\mathrm{Rh}(\mathrm{CO})_{2}(\mathrm{acac})\right]$ (total volume 20 ml), followed by the internal standard (decane). The autoclave was flushed several times with $\mathrm{CO} / \mathrm{H}_{2}(1: 1$, v / v), then pressurized to 20 bar , and finally heated to $80^{\circ} \mathrm{C}$ for 1 h . After depressurising and cooling down to room temperature, the substrate (1-octene) was added, and the mixture was again pressurised and heated to reaction temperature. Samples were taken at different reaction times and analysed by GC.

Hydrogenation experiments were carried out in a Schlenk tube under ambient pressure and room temperature. Experiments using $\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4}$: the diphosphite ligand was dissolved in 15 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After addition of $\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4}$, the solution was saturated with H_{2} for 10 min , whereupon the substrate (dimethyl itaconate) was added. Samples were taken at different reaction times and analysed by GC. Enantiomeric excess was determined by ${ }^{1} \mathrm{H}$ NMR using an optically active shift reagent (tris [3-heptafluoropro-pylhydroxymethylene)-(+)-camphorato] europium (III) $\left((+)-\mathrm{Eu}(\mathrm{hfc})_{3}\right)^{*}$. ${\mathrm{A} \mathrm{CDCl}_{3} \text { solution of the organic sub- }}^{\text {s }}$ strate was prepared in an NMR tube and small amounts of the shift reagent were gradually added until a clean splitting of the peaks was achieved (ca 5% of shift reagent). Experiments using 11a or 11b: the complex was dissolved in 15 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solution was saturated with H_{2} for 10 min . Then dimethyl itaconate was added. The reaction was followed by GC. The enantiomeric excess was determined by GC using a chiral column.

4.2. Syntheses

4.2.1. Synthesis of $2^{A}, 2^{B}, 2^{C}, 2^{D}, 2^{E}, 2^{F}, 3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}, 3^{F}, 6^{B}$, $6^{D}, 6^{E}, 6^{F}$-hexadeca-O-methyl- α-cyclodextrin ($\mathbf{8 b}$)

Tetrafluoroboric acid $(34 \%, 24.1 \mathrm{ml})$ was added to a solution of $\mathbf{7 b}(12.000 \mathrm{~g}, 5.95 \mathrm{mmol})$ in MeCN (50 ml). The solution was stirred for 20 min at room temperature whereupon $\mathrm{Et}_{3} \mathrm{~N}(45 \mathrm{ml})$ was added. Addition of water $(1000 \mathrm{ml})$ caused ${ }^{\mathrm{s}} \mathrm{TrOH}$ to precipitate. The latter was filtered and the filtrate extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 300 \mathrm{ml})$. The organic extract was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 300 \mathrm{ml})$ before being dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to dryness. The residue was subjected to column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 88: 12\right.$,v/v) to afford $\mathbf{8 b}$ as a colourless solid $(6.04 \mathrm{~g}, 85 \%) . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$, $9: \quad 1, \quad \mathrm{v} / \mathrm{v})=0.32 ; \quad \mathbf{M p} \quad 162-164{ }^{\circ} \mathrm{C} ; \quad{ }^{1} \mathrm{H} \quad$ NMR $\left(200 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=3.29\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.30(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.39(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.41\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.75$ $\left(\mathrm{s}, 12 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.09-4.35(36 \mathrm{H}$, $\mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6), 5.01\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-2, \mathrm{H}-1}=3.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-1$), $5.04-5.08$ (overlapping signals, $3 \mathrm{H}, \mathrm{H}-1$), 5.11-5.12 (overlapping signals, $2 \mathrm{H}, \mathrm{H}-1$); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(50 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \quad \delta=57.76, \quad 57.82[\times 2]$, $57.92,58.81,58.87$ and $58.97[\times 4]\left(\mathrm{CH}_{3} \mathrm{O}-2, \mathrm{CH}_{3} \mathrm{O}-\right.$ $6), 61.50[\times 2]$ and $61.63[\times 4]\left(\mathrm{CH}_{3} \mathrm{O}-3\right), 62.15$, $62.20,71.30,71.39,71.46,71.62(\mathrm{C}-6), 71.10[\times 2]$, $71.17[\times 2], 72.33,72.54(\mathrm{C}-5), 81.23[\times 6], 81.72$, $81.95[\times 5], 82.11[\times 5], 82.24$ (C-2, C-3, C-4), 99.32, 99.52 and $99.75[\times 4]$ (C-1). Anal. calcd for $\mathrm{C}_{52} \mathrm{H}_{92} \mathrm{O}_{30} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}(1197.27+42.47):$ C $50.86, \mathrm{H}$ 7.56; found: C 50.63, H 7.93 .

4.2.2. Synthesis of $6^{A}, 6^{C}$-di-O-methylsulfonyl- $2^{A}, 2^{B}, 2^{C}, 2^{D}, 2^{E}$, $2^{F}, 3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}, 3^{F}, 6^{B}, 6^{D}, 6^{E}, 6^{F}$-hexadeca-O-methyl-$\alpha$-cyclodextrin (1b)

Methylsulfonyl chloride $(1.180 \mathrm{~g}, 10.29 \mathrm{mmol})$ was added to a solution of $\mathbf{8 b}(5.600 \mathrm{~g}, 4.68 \mathrm{mmol})$ and N, N-dimethylpyridine $(0.930 \mathrm{~g}, 7.58 \mathrm{mmol})$ in anhydrous pyridine $(80 \mathrm{ml})$. The reaction mixture was stirred overnight at room temperature whereupon brine $(150 \mathrm{ml})$ was added. The solution was then extracted with EtOAc $(4 \times 200 \mathrm{ml})$, and the organic phase washed respectively with $\mathrm{HCl} 2 \mathrm{M} \quad(2 \times 200 \mathrm{ml})$, $\mathrm{NaOH} 2 \mathrm{M}(200 \mathrm{ml})$, before being dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. Removal of the solvent in vacuo afforded pure 1b as a colourless solid. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9\right.$: $1, \mathrm{v} / \mathrm{v})=0.44$; Mp $113-115^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=2.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSO}_{2} \mathrm{CH}_{3}\right), 2.84(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OSO}_{2} \mathrm{CH}_{3}\right), 3.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.28\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.31\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.41(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.67$ (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.69\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.71(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.06-4.45(34 \mathrm{H}, \mathrm{H}-2$, $\mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6$), 4.76 (dd, ${ }^{3} J_{\mathrm{H}-5, \mathrm{H}-6 \mathrm{a}}=4.5 \mathrm{~Hz}$, $\left.{ }^{2} J_{\mathrm{H}-6 \mathrm{~b}, \mathrm{H}-6 \mathrm{a}}=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 4.92\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}}=\right.$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.96\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-2, \mathrm{H}-1}=3.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-1), \quad 5.00\left(2 \mathrm{~d}, \quad{ }^{3} J_{\mathrm{H}-2, \mathrm{H}-1}=3.7 \mathrm{~Hz}, \quad 2 \mathrm{H}, \quad \mathrm{H}-1\right)$, $5.02\left(\mathrm{~d}, \quad{ }^{3} J_{\mathrm{H}-2, \mathrm{H}-1}=3.9 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad \mathrm{H}-1\right), \quad 5.15$ (2d, $\left.\quad{ }^{3} J_{\mathrm{H}-2, \mathrm{H}-1}=3.4 \mathrm{~Hz}, \quad 2 \mathrm{H}, \quad \mathrm{H}-1\right) ; \quad{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=37.26$ and $37.48\left(\mathrm{OSO}_{2} \mathrm{CH}_{3}\right)$, $57.56,57.63,57.69,58.02,58.38,58.81[\times 2], 59.00$ $[\times 3]\left(\mathrm{CH}_{3} \mathrm{O}-2, \mathrm{CH}_{3} \mathrm{O}-6\right), 61.43,61.59[\times 3], 61.69$ and $61.76\left(\mathrm{CH}_{3} \mathrm{O}-3\right), 69.53,70.94,71.00[\times 2], 71.20$, 71.33 (C-5), $69.92[\times 3], 70.08,71.53,71.85$ (C-6), $80.84[\times 2], 80.95[\times 2], 81.03,81.16,81.33,81.49$, $81.75,81.88[\times 2], 81.98,82.11[\times 2], 82.24[\times 2]$, 82.31, 83.13 (C-2, C-3, C-4), 98.60, 98.90, 99.98, $100.21[\times 2]$ and $100.40(\mathrm{C}-1)$. Anal. calcd for $\mathrm{C}_{54} \mathrm{H}_{96} \mathrm{O}_{34} \mathrm{~S}_{2} \cdot 0.5 \mathrm{CHCl}_{3}(1353.45+59.69): \mathrm{C} 46.32, \mathrm{H}$ 6.88; found: C 46.28, H 7.08 .

4.2.3. Syntheses of $6^{A}, 6^{D}$-bis- O-(2-benzyloxyphenyl) $2^{A}, 2^{B}$, $2^{C}, 2^{D}, 2^{E}, 2^{F}, 3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}, 3^{F}, 6^{B}, 6^{C}, 6^{E}, 6^{F}$-hexadeca-O-methyl- α-cyclodextrin (2a) and $\boldsymbol{6}^{A}, \boldsymbol{6}^{C}$-bis-O-(2benzyloxyphenyl) $-2^{A}, 2^{B}, 2^{C}, 2^{D}, 2^{E}, 2^{F}, 3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}, 3^{F}$, $6^{B}, 6^{D}, 6^{E}, 6^{F}$ - hexadeca-O-methyl- α-cyclodextrin (2b)

$\mathrm{NaH}(60 \%, 0.170 \mathrm{~g}, 4.29 \mathrm{mmol})$ was added to a solution of 2-benzyloxyphenol $(0.860 \mathrm{~g}, 4.29 \mathrm{mmol}$, 0.98 ml) in DMF (25 ml). After 20 min , 1a (1.158 g , 0.86 mmol) was added. The solution was stirred overnight whereupon water (50 ml) was added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 100 \mathrm{ml})$, and the ether phase was subsequently washed with an aqueous 2 M NaOH solution (100 ml), dried over MgSO_{4} and filtered. Removal of the solvent in vacuo gave a colourless residue (1.832 g), which was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $20: 80 \rightarrow 0: 100, \mathrm{v} / \mathrm{v})$ to afford three fractions:

Fraction 1. $\quad 6^{\mathrm{A}}, 6^{\mathrm{D}}$-di- O-(2-benzyloxyphenyl)- $2^{\mathrm{A}}, 2^{\mathrm{B}}$, $2^{\mathrm{C}}, 2^{\mathrm{D}}, 2^{\mathrm{E}}, 2^{\mathrm{F}}, 3^{\mathrm{A}}, 3^{\mathrm{B}}, 3^{\mathrm{C}}, 3^{\mathrm{D}}, 3^{\mathrm{E}}, 3^{\mathrm{F}}, 6^{\mathrm{B}}, 6^{\mathrm{C}}, 6^{\mathrm{E}}, 6^{\mathrm{F}}$-hexadeca- $O-$ methyl- α-cyclodextrin (2a) $\quad(0.869 \mathrm{~g}, \quad 65 \%) . \quad R_{\mathrm{f}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 94: 6, \mathrm{v} / \mathrm{v}\right)=0.37$; Mp $100-102{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.23\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.31\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.37\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.47(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.51\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.63\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.66$ (s, $12 \mathrm{H}, \mathrm{OCH}_{3}$), 2.94-4.23 (32H, H-2, H-3, H-4, H-5, H-6 $\left.{ }^{\mathrm{B}, \mathrm{C}, \mathrm{E}, \mathrm{F}}\right), \quad 4.31 \quad\left(\mathrm{~d}, \quad{ }^{2} J_{\mathrm{H}-6 \mathrm{~b}, \mathrm{H}-6 \mathrm{a}}=10.1 \mathrm{~Hz}, \quad 2 \mathrm{H}\right.$, $\left.\mathrm{H}-6 \mathrm{a}^{\mathrm{A}, \mathrm{D}}\right), 4.57\left(\mathrm{dd},{ }^{3} \mathrm{~J}=3.2 \mathrm{~Hz},{ }^{2} J_{\mathrm{H}-6 \mathrm{~b}, \mathrm{H}-6 \mathrm{a}}=10.1 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, ~ \mathrm{H}-6 \mathrm{~b}^{\mathrm{A}, \mathrm{D}}\right), 5.02\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{H}-1^{\mathrm{A}, \mathrm{D}}\right), 5.08\left(\mathrm{t},{ }^{4} \mathrm{~J}=1.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.12(2 \mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-1^{\mathrm{B}, \mathrm{C}, \mathrm{E}, \mathrm{F}}\right), 6.84-6.99(8 \mathrm{H}$, catecholate H$), 7.24-7.44(10 \mathrm{H}$, benzyl arom. H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=57.52,57.92$, 57.95, 58.93, $59.10\left(\mathrm{CH}_{3} \mathrm{O}-2, \mathrm{CH}_{3} \mathrm{O}-6\right), 61.79,61.85$ $[\times 2]\left(\mathrm{CH}_{3} \mathrm{O}-3\right), 68.64\left(\mathrm{OCH} \mathrm{H}_{2} \mathrm{Ph}\right), 70.90\left(\mathrm{C}-6^{\mathrm{A}, \mathrm{D}}\right)$, $71.13,71.39[\times 2](\mathrm{C}-5), 71.49[\times 2]\left(\mathrm{C}-6^{\mathrm{B}, \mathrm{C}, \mathrm{E}, \mathrm{F}}\right), 81.29$ [×3], $82.14[\times 2], 82.27,82.50[\times 2], 82.90(\mathrm{C}-2, \mathrm{C}-3$, $\mathrm{C}-4), \quad 99.84\left(\mathrm{C}-1^{\mathrm{A}, \mathrm{D}}\right), \quad 100.20,100.27\left(\mathrm{C}-1^{\mathrm{B}, \mathrm{C}, \mathrm{E}, \mathrm{F}}\right)$, 114.86, 115.15, 121.41, 121.58 (catecholate CH), 126.8, 127.67, 128.50 (benzyl arom. CH), 137.58, 149.04, $149.41\left(\mathrm{C}_{i p s o}\right)$. Anal. calcd for $\mathrm{C}_{78} \mathrm{H}_{112} \mathrm{O}_{32}$ (1561,71): C 59.99, H 7.23; found: C 59.94, H 7.19.

Fraction 2.6 $6^{\text {A }}-O$-(2-benzyloxyphenyl), 6^{D} - O-(2-hydro-xyphenyl)- $2^{\mathrm{A}}, 2^{\mathrm{B}}, 2^{\mathrm{C}}, 2^{\mathrm{D}}, 2^{\mathrm{E}}, 2^{\mathrm{F}}, 3^{\mathrm{A}}, 3^{\mathrm{B}}, 3^{\mathrm{C}}, 3^{\mathrm{D}}, 3^{\mathrm{E}}, 3^{\mathrm{F}}, 6^{\mathrm{B}}, 6^{\mathrm{C}}, 6^{\mathrm{E}}$, 6^{F}-hexadeca- O-methyl- α-cyclodextrin (3a) $\quad(0.086 \mathrm{~g}$, $7 \%) . \quad R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 94: 6, ~ v / v\right)=0.23 ; \mathbf{M p}$ $123-126{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.19$ (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.48(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.50\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.66$ (s, $18 \mathrm{H}, \mathrm{OCH}_{3}$), 3.10-4.36 (35H, H-2, H-3, H-4, H-5, $\mathrm{H}-6^{\mathrm{B}, \mathrm{C}, \mathrm{E}, \mathrm{F}}, \mathrm{H}-6 \mathrm{a}^{\mathrm{A}}$ or D$), 4.51\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}-6 \mathrm{~b}, \mathrm{H}-5}=3.2 \mathrm{~Hz}\right.$, ${ }^{2} J_{\mathrm{H}-6 \mathrm{~b}, \mathrm{H}-6 \mathrm{a}}=10.1 \mathrm{~Hz}, \quad 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$ A or $\left.{ }^{\mathrm{D}}\right), 5.00(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 5.02\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=\right.$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.08\left(\mathrm{t},{ }^{4} \mathrm{~J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right)$, $5.05-5.11\left(4 \mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-1\right), 6.69(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}), 6.79-7.02(8 \mathrm{H}$, catecholate H$), 7.21-7.44$ (5H, arom. benzyl H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=57.56,57.86[\times 4], 58.12,58.74,58.81$, $58.94,59.23\left(\mathrm{CH}_{3} \mathrm{O}-2, \mathrm{CH}_{3} \mathrm{O}-6\right), 61.56,61.79[\times 5]$ $\left(\mathrm{CH}_{3} \mathrm{O}-3\right), 68.20\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 70.80,70.85,70.94[\times 3]$, $71.23[\times 3], 71.35,71.46,71.50,71.55(\mathrm{C}-5, \mathrm{C}-6)$, $81.26[\times 4], 81.39[\times 2], 82.02[\times 5], 82.15[\times 2]$, $82.24[\times 2], 82.38,82.70,82.97$ (C-2, C-3, C-4), $99.59, \quad 99.78[\times 2], 99.90,100.11,100.37(\mathrm{C}-1)$, $114.60,115.06,115.25,115.78,120.04,121.32$ [$\times 2$], 122.76 (catecholate CH), 126.76, 127.51, 128.37 (benzyl CH), 137.54, 146.56, 146.95 [$\times 2$], $148.89\left(\mathrm{C}_{\text {ipso }}\right)$. Anal. calcd for $\mathrm{C}_{71} \mathrm{H}_{106} \mathrm{O}_{32}$ (1471.59): C 57.95, H 7.26; found: C 57.71, H 7.30 .

Fraction 3. $6^{\mathrm{A}}, 6^{\mathrm{D}}$-di- O-(1,2-phenylene) $-2^{\mathrm{A}}, 2^{\mathrm{B}}, 2^{\mathrm{C}}, 2^{\mathrm{D}}$, $2^{\mathrm{E}}, 2^{\mathrm{F}}, 3^{\mathrm{A}}, 3^{\mathrm{B}}, 3^{\mathrm{C}}, 3^{\mathrm{D}}, 3^{\mathrm{E}}, 3^{\mathrm{F}}, 6^{\mathrm{B}}, 6^{\mathrm{C}}, 6^{\mathrm{E}}, 6^{\mathrm{F}}$-hexadeca- O-methyl-α-cyclodextrin (4a) $\quad(0.183 \mathrm{~g}, \quad 17 \%) . \quad R_{\mathrm{f}} \quad\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$
$\mathrm{MeOH}, 94: 6, \mathrm{v} / \mathrm{v})=0.15$; Mp $127-130{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, assignment by ROESY and COSY; signals with unassigned multiplicity are overlapping with other signals): $\delta 2.90$ (d, $\left.{ }^{2} J_{\mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}}=11.4 \mathrm{~Hz}, \quad 2 \mathrm{H}, \quad \mathrm{H}-6 \mathrm{a}^{\mathrm{B}, \mathrm{E}}\right), \quad 3.12(\mathrm{dd}, \quad 2 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{H}-2, \mathrm{H}-1}=3.6 \mathrm{~Hz}, \mathrm{H}-2^{\mathrm{B}, \mathrm{E}}\right), 3.15\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}-2^{\mathrm{C}, \mathrm{F}}\right), 3.19$ $\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}-2^{\mathrm{A}, \mathrm{D}}\right), 3.20\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.30(\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{H}-4^{\mathrm{A}, \mathrm{D}}\right), 3.30\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.46\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.47\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.51\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{H}-3^{\mathrm{C}, \mathrm{F}}\right), 3.55(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.56\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{H}-3^{\mathrm{A}, \mathrm{D}}\right), 3.60\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}-4^{\mathrm{B}, \mathrm{E}}\right)$, 3.60 (dd, $2 \mathrm{H}, \mathrm{H}-5^{\mathrm{C}, \mathrm{F}}$), 3.60 (dd, $2 \mathrm{H}, \mathrm{H}-5^{\mathrm{B}, \mathrm{E}}$), 3.60 (s, $\left.6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.62\left(2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{C}, \mathrm{F}}\right), 3.67\left(2 \mathrm{H}, \mathrm{H}-3^{\mathrm{B}, \mathrm{E}}\right)$, $3.68\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.74\left(2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{C}, \mathrm{F}}\right), 3.75(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.78\left(2 \mathrm{H}, \quad \mathrm{H}-4^{\mathrm{C}, \mathrm{F}}\right), 3.89(\mathrm{dd}, \quad 2 \mathrm{H}$, $\left.{ }^{2} J_{\mathrm{H}-6 \mathrm{~b}, \mathrm{H}-6 \mathrm{a}}=11.4 \mathrm{~Hz}, \quad{ }^{3} J_{\mathrm{H}-6 \mathrm{~b}, \mathrm{H}-5}=2.3 \mathrm{~Hz}, \quad \mathrm{H}-6 \mathrm{~b}^{\mathrm{B}, \mathrm{E}}\right)$, $4.20\left(2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{A}, \mathrm{D}}\right), 4.24\left(\mathrm{~d} 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{A}, \mathrm{D}}\right), 4.33(\mathrm{dd}, 2 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{H}-5, \mathrm{H}-6 \mathrm{a}}=10.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-5, \mathrm{H}-4}=4.5 \mathrm{~Hz}, \mathrm{H}-5^{\mathrm{A}, \mathrm{D}}\right), 4.96$ $\left(\mathrm{d}, \quad{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.2 \mathrm{~Hz}, \quad 4 \mathrm{H}, \quad \mathrm{H}-1^{\mathrm{A}, \mathrm{D}}\right), 4.96 \quad(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.2 \mathrm{~Hz}, \quad 4 \mathrm{H}, \quad \mathrm{H}-1^{\mathrm{C}, \mathrm{F}}\right), \quad 5.23 \quad(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.6 \mathrm{~Hz}, \quad 2 \mathrm{H}, \quad \mathrm{H}-1^{\mathrm{B}, \mathrm{E}}\right), 6.83-6.94\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right.$ system, 4 H , arom. H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=57.58[\times 2], 58.93[\times 2], 59.67\left(\mathrm{CH}_{3} \mathrm{O}-2\right.$, $\left.\mathrm{CH}_{3} \mathrm{O}-6\right), 61.00,61.68,61.94\left(\mathrm{CH}_{3} \mathrm{O}-3\right), 69.39,70.45$, 71.39 (C-6), 71.03, 71.59, 72.37 (C-5), 79.56, 80.56, 80.92, $81.47[\times 2], 81.68,82.44,82.65[\times 2](\mathrm{C}-2$, C-3, C-4), 97.16, 98.46, 99.59 (C-1), 112.87, 120.35 (arom. CH), $148.59\left(\mathrm{C}_{i p s o}\right)$. Anal. calcd for $\mathrm{C}_{58} \mathrm{H}_{94} \mathrm{O}_{30} \cdot \mathrm{C}_{7} \mathrm{H}_{16} \quad(1271.35+100.20):$ C $56.92, \quad \mathrm{H}$ 8.08; found: C 56.78 , H 7.58 .

Alkylation of 2-benzyloxyphenol (0.740 g , $3.69 \mathrm{mmol}, 0.85 \mathrm{ml})$ with dimesylate $\mathbf{1 b}(1.000 \mathrm{~g}$, 0.739 mmol) according to the previously described procedure afforded two major compounds as well as small amounts of debenzylation products, which were not separated.

Fraction 1. $\quad 6^{\mathrm{A}}, 6^{\mathrm{C}}$-di- O-(2-benzyloxyphenyl)- $2^{\mathrm{A}}, 2^{\mathrm{B}}$, $2^{\mathrm{C}}, 2^{\mathrm{D}}, 2^{\mathrm{E}}, 2^{\mathrm{F}}, 3^{\mathrm{A}}, 3^{\mathrm{B}}, 3^{\mathrm{C}}, 3^{\mathrm{D}}, 3^{\mathrm{E}}, 3^{\mathrm{F}}, 6^{\mathrm{B}}, 6^{\mathrm{D}}, 6^{\mathrm{E}}, 6^{\mathrm{F}}$-hexadeca- O -methyl- α-cyclodextrin (2b) $\quad(0.650 \mathrm{~g}, \quad 57 \%) . \quad R_{\mathrm{f}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 94: 6, \mathrm{v} / \mathrm{v}\right)=0.36 ;$ Mp $111-113{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.37(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.49\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.51$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.64(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.66\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.08-4.54(36 \mathrm{H}, \mathrm{H}-2$, H-3, H-4, H-5, H-6), 5.01-5.10 (10H, H-1, $\mathrm{OCH}_{2} \mathrm{Ph}$), 6.82-6.96 $(8 \mathrm{H}$, catecholate H$), 7.26-7.44(10 \mathrm{H}$, arom. benzyl H$) ; \quad{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR $\left(50 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)$: $\delta=57.40[\times 2], 57.76[\times 2], 57.82[\times 2], 58.81[\times 2]$, $58.94[\times 2]\left(\mathrm{CH}_{3} \mathrm{O}-2, \mathrm{CH}_{3} \mathrm{O}-6\right), 61.59[\times 2], 61.66$ $[\times 4]\left(\mathrm{CH}_{3} \mathrm{O}-3\right), 68.41[\times 2]\left(\mathrm{OCH} \mathrm{H}_{2} \mathrm{Ph}\right), 70.67[\times 2]$ $\left(\mathrm{C}-6^{\mathrm{A}, \mathrm{C}}\right), 70.84[\times 2], 71.13[\times 4](\mathrm{C}-5), 71.20[\times 2]$, $71.33[\times 2]\left(\mathrm{C}-6^{\mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{F}}\right), 81.16[\times 4], 81.95[\times 2]$, $82.08[\times 4], 82.24[\times 4], 82.34[\times 2], 82.42[\times 2](\mathrm{C}-2$, $\mathrm{C}-3, \quad \mathrm{C}-4), \quad 99.75 \quad[\times 2] \quad\left(\mathrm{C}-1^{\mathrm{A}, \mathrm{C}}\right), 100.08 \quad[\times 4]$, $\left(\mathrm{C}-1^{\mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{F}}\right), 114.60[\times 2], 114.96[\times 2], 121.22[\times 2]$,
$121.35[\times 2]$ (catecholate CH), $126.73[\times 2], 127.48$ $[\times 2], 128.33[\times 2]($ benzyl CH), $137.41[\times 2], 148.83$ $[\times 2], 149.25[\times 2]\left(\mathrm{C}_{i p s o}\right)$ (the ${ }^{13} \mathrm{C}$ NMR spectrum shows an apparent C_{2} symmetry). Anal. calcd for $\mathrm{C}_{78} \mathrm{H}_{112} \mathrm{O}_{32}$ (1561.71): C 59.99, H 7.23; found: C 59.79, H 7.28.

Fraction 2. $6^{\mathrm{A}}, 6^{\mathrm{C}}$-di- O-(1,2-phenylene) $-2^{\mathrm{A}}, 2^{\mathrm{B}}, 2^{\mathrm{C}}, 2^{\mathrm{D}}$, $2^{\mathrm{E}}, 2^{\mathrm{F}}, 3^{\mathrm{A}}, 3^{\mathrm{B}}, 3^{\mathrm{C}}, 3^{\mathrm{D}}, 3^{\mathrm{E}}, 3^{\mathrm{F}}, 6^{\mathrm{B}}, 6^{\mathrm{D}}, 6^{\mathrm{E}}, 6^{\mathrm{F}}$-hexadeca- O-methyl-α-cyclodextrin (4b) ($0.183 \mathrm{~g}, \quad 18 \%$). $\quad R_{\mathrm{f}} \quad\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{MeOH}, 94: 6, \mathrm{v} / \mathrm{v})=0.25$; Mp $124-126{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.20(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.48\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.49(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.60$ $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.67(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.11-4.41 ($36 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6), 4.97$ (d, $\left.{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.7 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad \mathrm{H}-1\right), 5.00\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}\right.$ $=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.05\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=2.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{H}-1), 5.06\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 5.08(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right) 5.33\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.7 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-1), 6.81-7.00\left(4 \mathrm{H}\right.$, arom. H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=57.39,57.45,57.62,58.29$, $58.46[\times 2], \quad 58.58, \quad 58.83 \quad[\times 2], \quad 59.54 \quad\left(\mathrm{CH}_{3} \mathrm{O}-2\right.$, $\left.\mathrm{CH}_{3} \mathrm{O}-6\right) 60.75,61.24,61.39[\times 2], 61.63,61.78$ $\left(\mathrm{CH}_{3} \mathrm{O}-3\right), 68.01,68.81,71.24,71.62,73.09[\times 2]$ (C-6), $70.68[\times 3], 70.82,70.99[\times 2](\mathrm{C}-5), 79.03$, $79.89,80.37,80.82,81.05[\times 3], 81.36[\times 3], 81.62$, $81.75,81.87,82.03,82.25[\times 2], 82.51,82.75$ (C-2, C-3, C-4), $94.71,97.58,98.82,98.87,99.52,99.99$ (C-1), 112.83, 118.98, 120.46, 123.03 (arom. CH), 148.00, $151.13\left(\mathrm{C}_{i p s o}\right)$. Anal.calcd for $\mathrm{C}_{58} \mathrm{H}_{94} \mathrm{O}_{30}$ (1271.35): C 54.80, H 7.45; found: C 55.01, H 7.55.

4.2.4. Syntheses of $6^{A}, 6^{D}$-bis- O-(2-hydroxyphenyl) $2^{A}, 2^{B}$, $2^{C}, 2^{D}, 2^{E}, 2^{F}, 3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}, 3^{F}, 6^{B}, 6^{C}, 6^{E}, 6^{F}-$ hexadeca-O-methyl- α-cyclodextrin (6a) and $6^{A}, 6^{C}$-bis-O-(2-hy droxyphenyl) $-2^{A}, 2^{B}, 2^{C}, 2^{D}, 2^{E}, 2^{F}, 3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}, 3^{F}, 6^{B}$, $6^{D}, 6^{E}, 6^{F}$-hexadeca-O-methyl- α-cyclodextrin (6 b)

$\mathrm{Pd} / \mathrm{C}(10 \%, 0.100 \mathrm{~g})$ was added to a solution of $\mathbf{2 a}$ $(0.869 \mathrm{~g})$ in $\mathrm{EtOH}(100 \mathrm{ml})$. The mixture was stirred for 48 h under H_{2} (1 atm.) before being filtered over celite. Evaporation of the filtrate in vacuo yielded pure $6 \mathbf{a}(0.717 \mathrm{~g}, 94 \%)$. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 94: 6\right.$, $\mathrm{v} / \mathrm{v})=0.24 ; \quad \mathbf{M p} \quad 136-139{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=3.23\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.30\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.49\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.51\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.52(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.65\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.67\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.13-4.45 (36H, H-2, H-3, H-4, H-5, H-6), 5.02 (d, $\left.{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.2 \mathrm{~Hz}, \quad 2 \mathrm{H}, \quad \mathrm{H}-1\right), \quad 5.08 \quad\left(\mathrm{~d}, \quad{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}\right.$ $=3.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 5.10\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{H}-1), 6.60(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 6.73-7.02(8 \mathrm{H}$, arom. H$)$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=57.92[\times 2]$, $58.26,58.87,59.03\left(\mathrm{CH}_{3} \mathrm{O}-2, \mathrm{CH}_{3} \mathrm{O}-6\right), 61.77,61.90$ $[\times 2]\left(\mathrm{CH}_{3} \mathrm{O}-3\right), 70.93,71.40[\times 2](\mathrm{C}-6), 71.59[\times 3]$ (C-5), 81.23, 81.33, 81.40, $81.92[\times 2], 82.24[\times 2]$,
82.44, 82.67 (C-2, C-3, C-4), 99.77 [$\times 2], 100.48$ (C-1), 115.53, 115.84, 120.09, 122.88 (arom. CH), 146.66, $147.05\left(\mathrm{C}_{i p s o}\right)$. Anal. calcd for $\mathrm{C}_{64} \mathrm{H}_{100} \mathrm{O}_{32}$ (1381.46): C 55.64, H 7.30; found: C 55.63, H 7.05.

Hydrogenolysis of $\mathbf{2 b}(0.650 \mathrm{~g}, 0.42 \mathrm{mmol})$ was carried out according to the above procedure to afford $\mathbf{6 b}$ as a colourless solid $(0.540 \mathrm{~g}, 94 \%) . \quad R_{\mathrm{f}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 94: 6, \mathrm{v} / \mathrm{v}\right)=0.28 ; \mathbf{M p} 102-104^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \delta=3.14(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.33$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.48(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.50\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.63$ $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.64\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.66(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.19-4.46(36 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6)$, $5.01\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.8 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad \mathrm{H}-1\right), \quad 5.02(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.8 \mathrm{~Hz}, \quad 1 \mathrm{H}, \mathrm{H}-1\right), 5.04\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=\right.$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 5.08 (3 overlapping d, $3 \mathrm{H}, \mathrm{H}-1$), 6.61 (br s, $1 \mathrm{H}, \mathrm{OH}$), 6.67 (br s, $1 \mathrm{H}, \mathrm{OH}$), 6.74-7.02 (8 H , arom. H); $\mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $57.75[\times 3], 57.84,58.01[\times 2], 58.75,58.87[\times 2]$, $59.03\left(\mathrm{CH}_{3} \mathrm{O}-2, \mathrm{CH}_{3} \mathrm{O}-6\right), 61.65[\times 5], 61.83\left(\mathrm{CH}_{3} \mathrm{O}-\right.$ 3), 70.56, $70.83[\times 4], 71.30(\mathrm{C}-6), 71.07,71.35[\times 4]$, 71.73 (C-5), 81.20 [×4], 81.32, 81.49, 81.75, 81.89, $82.05[\times 2], 82.11[\times 3], 82.22,82.49[\times 2], 82.66$, 83.10 (C-2, C-3, C-4), 99.38, 99.72, 99.82 [$\times 2$], $100.21[\times 2](\mathrm{C}-1), 115.16,115.62[\times 2], 115.89$, 119.85, 120.02, 122.57, 122.80 (arom. CH), 146.47, 146.61, $146.86[\times 2] \quad\left(\mathrm{C}_{\text {ipso }}\right)$. Anal. calcd for $\mathrm{C}_{64} \mathrm{H}_{100} \mathrm{O}_{32}$ (1381.46): C 55.64, H 7.30; found: C 55.41, H 7.24.

oxy]phenyll- $2^{A}, 2^{B}, 2^{C}, 2^{D}, 2^{E}, 2^{F}, 3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}, 3^{F}, 6^{B}, 6^{C}$, $6^{E}, 6^{F}$-hexadeca-O-methyl- α-cyclodextrin (L1) and 6^{A}, 6^{C}-bis- O - $\left\{2-\left[(\right.\right.$ diphenoxyphosphino)oxy]phenyl $\}-2^{A}, 2^{B}$, $2^{C}, 2^{D}, 2^{E}, 2^{F}, 3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}, 3^{F}, 6^{B}, 6^{D}, 6^{E}, 6^{F}$-hexadeca-O-methyl- α-cyclodextrin (L2)

Chlorodiphenylphosphite $\quad(0.220 \mathrm{~g}, \quad 0.89 \mathrm{mmol}$, 0.18 ml) was added to a stirred solution of $\mathbf{6 a}$ $(0.500 \mathrm{~g}, 0.36 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ at $-40^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 min at $-40^{\circ} \mathrm{C}$ whereupon triethylamine $\quad(0.18 \mathrm{ml}, \quad 0.90 \mathrm{mmol}$, 1 equiv) was added. After 1 h , addition of pentane $(200 \mathrm{ml})$ caused the triethylammonium salt to precipitate. The latter was filtered off and the filtrate was evaporated to dryness under vacuum. The residue was washed with boiling hexane $(10 \mathrm{ml})$. The hot suspension was then cooled down to $0^{\circ} \mathrm{C}$ and allowed to settle whereupon the hexane phase was discarded. The colourless residue was found to be pure $\mathbf{L 1}(0.630 \mathrm{~g}$, $96 \%) . \quad R_{\mathrm{f}} \quad\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, \quad 94: 6, \quad \mathrm{v} / \mathrm{v}\right)=0.31 ; \mathbf{M p}$ $83-86{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=3.34$ (s, $\left.6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.35\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.38\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.39\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.48\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.62(\mathrm{~s}, 6 \mathrm{H}$,
$\left.\mathrm{OCH}_{3}\right), 3.65\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.01-4.19(34 \mathrm{H}, \mathrm{H}-2$, Н-3, Н-4, Н-5, Н-6a, H-6b $\left.{ }^{\text {B,C,E,F }}\right), 4.90$ (d, ${ }^{2} J_{\text {H-6a,H-6b }}$ $\left.=11.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{A}, \mathrm{D}}\right), 4.93\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.0 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{H}-1), 5.02\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1\right), 5.10$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1\right), 6.84-7.40(28 \mathrm{H}$, arom. H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 57.27, $57.89[\times 2]\left(\mathrm{CH}_{3} \mathrm{O}-2\right), 58.94,59.13\left(\mathrm{CH}_{3} \mathrm{O}-6\right)$, $61.72[\times 3]\left(\mathrm{CH}_{3} \mathrm{O}-3\right), 67.95\left(\mathrm{C}-6^{\mathrm{A}, \mathrm{D}}\right), 70.84,71.26$, 71.39 (C-5), 71.62, 72.15 (C-6 $\left.{ }^{\text {B,C,E,F }}\right), 81.10,81.23$ $[\times 2], 81.65,81.82,81.92,82.28,82.47,82.97$ (C-2, $\mathrm{C}-3, \mathrm{C}-4), 99.42\left(\mathrm{C}-1^{\mathrm{A}, \mathrm{D}}\right), 100.24,100.47\left(\mathrm{C}-1^{\mathrm{B}, \mathrm{C}, \mathrm{E}, \mathrm{F}}\right)$, 113.98 ($\mathrm{s}, \mathrm{C}_{\text {para }}$), $120.80\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=6.6 \mathrm{~Hz}, \mathrm{C}_{\text {ortho }}\right)$, $121.37[\times 2]\left(\mathrm{d},{ }^{4} J_{\mathrm{C}, \mathrm{P}}=4.9 \mathrm{~Hz}, \mathrm{C}_{\text {meta }}\right), 122.45(\mathrm{~d}$, $\left.{ }^{4} J_{\mathrm{C}, \mathrm{P}}=4.9 \mathrm{~Hz}, \mathrm{C}_{\text {meta }}\right), 124.02[\times 2]\left(\mathrm{d},{ }^{4} J_{\mathrm{C}, \mathrm{P}}=4.9 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{\text {para }}\right), 124.63\left(\mathrm{~s}, \mathrm{C}_{\text {meta }}\right), 129.47[\times 2]\left(\mathrm{d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=\right.$ $\left.8.2 \mathrm{~Hz}, \mathrm{C}_{\text {ortho }}\right), 141.22\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz}, \mathrm{C}_{i p s o}\right)$, $150.23\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz}, \mathrm{C}_{i p s o}\right), 151.48\left(\mathrm{~s}, \mathrm{C}_{i p s o}\right)$, $151.81\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz}, \quad \mathrm{C}_{\text {ipso }}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ ($121.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=127.5$ (s). Anal. calcd for $\mathrm{C}_{88} \mathrm{H}_{118} \mathrm{O}_{36} \mathrm{P}_{2}$ (1813.81): C 58.27, H 6.56; found: C 58.32, H 6.36; MS (FAB): m/z (\%): 1813.6 (50) $[M+H]^{+}$.

Ligand L2 was prepared in 99% yield $(0.700 \mathrm{~g})$ as a colourless solid according to the above procedure from chlorodiphenylphosphite $(0.247 \mathrm{~g}, \quad 0.98 \mathrm{mmol}$, $0.20 \mathrm{ml}) \quad$ and $\quad 6 \mathbf{b} \quad(0.540 \mathrm{~g}, \quad 0.39 \mathrm{mmol}) . \quad R_{\mathrm{f}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 94: 6, \mathrm{v} / \mathrm{v}\right)=0.38 ; \mathbf{M p} 61-63{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.34(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.34\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right) 3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.41$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.49(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.62$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.64(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 2.98-4.18(34 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6 \mathrm{a}$, $\left.\mathrm{H}-6 \mathrm{~b}^{\mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{F}}\right), 4.75\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}}=10.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{H}-6 \mathrm{~b}^{\mathrm{A} \text { or } \mathrm{C}}\right), \quad 4.80\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}}=10.7 \mathrm{~Hz}, \quad 2 \mathrm{H}\right.$, $\mathrm{H}-6 \mathrm{~b}^{\mathrm{C}}$ or A $), 4.85\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.91$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 5.01\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}\right.$ $=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.05\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-1), 5.07\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 5.08(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 6.84-7.35(28 \mathrm{H}$, arom. $\mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=57.27$ $[\times 2], 57.82[\times 4]\left(\mathrm{CH}_{3} \mathrm{O}-2\right), 58.81,58.91,59.00[\times 2]$ $\left(\mathrm{CH}_{3} \mathrm{O}-6\right), \quad 61.66 \quad[\times 6] \quad\left(\mathrm{CH}_{3} \mathrm{O}-3\right), 67.85 \quad[\times 2]$ $\left(\mathrm{C}-6^{\mathrm{A}, \mathrm{C}}\right), 70.51[\times 2], 70.67[\times 2], 71.30[\times 2](\mathrm{C}-5)$, $71.50[\times 2], 71.92[\times 2]\left(\mathrm{C}-6^{\mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{F}}\right), 81.16[\times 8]$, $81.62[\times 2], 81.85[\times 2], 82.18[\times 2], 82.34,82.57$ $[\times 2], 82.83(\mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-4), 99.42\left(\mathrm{C}-1^{\mathrm{A}, \mathrm{C}}\right), 100.11$ $[\times 2], 100.27[\times 2]\left(\mathrm{C}-1^{\mathrm{B}, \mathrm{C}, \mathrm{E}, \mathrm{F}}\right), 113.81[\times 2]\left(\mathrm{s}, \mathrm{C}_{\text {para }}\right)$, $120.74[\times 2]\left(\mathrm{d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=8.2 \mathrm{~Hz}, \mathrm{C}_{\text {ortho }}\right), 121.26[\times 4]$ $\left(\mathrm{d},{ }^{4} J_{\mathrm{C}, \mathrm{P}}=6.6 \mathrm{~Hz}, \mathrm{C}_{\text {meta }}\right), 122.38 \quad[\times 2]\left(\mathrm{d},{ }^{4} J_{\mathrm{C}, \mathrm{P}}=\right.$ $\left.4.9 \mathrm{~Hz}, \mathrm{C}_{\text {meta }}\right), 123.98[\times 4]\left(\mathrm{d},{ }^{4} J_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz}, \mathrm{C}_{\text {para }}\right)$, $124.56[\times 2]\left(\mathrm{s}, \mathrm{C}_{\text {meta }}\right), 129.42[\times 4]\left(\mathrm{d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=\right.$ $\left.9.9 \mathrm{~Hz}, \mathrm{C}_{\text {ortho }}\right), 141.19[\times 2]\left(\mathrm{d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz}, \mathrm{C}_{i p s o}\right)$, $150.13[\times 2]\left(\mathrm{s}, \mathrm{C}_{i p s o}\right), 151.44[\times 2]\left(\mathrm{s}, \mathrm{C}_{i p s o}\right), 151.74$
$[\times 2] \quad\left(\mathrm{d}, \quad{ }^{2} J_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz}, \quad \mathrm{C}_{i p s o}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ $\left(121.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=127.5[\times 2]$ (s). Anal. calcd for $\mathrm{C}_{88} \mathrm{H}_{118} \mathrm{O}_{36} \mathrm{P}_{2}$ (1813.81): C 58.27, H 6.56; found: C 58.32 , H 6.36 .

> 4.2.6. Syntheses of $P, P^{\prime}-\left(6^{A}, 6^{D}-d i-O-\{2-[(d i p h e n o x y p h o s-~\right.$ phino)oxylphenyl $-2^{A}, 2^{B}, 2^{C}, 2^{D}, 2^{E}, 2^{F}, 3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}$, $3^{F}, \boldsymbol{6}^{B}, 6^{C}, \boldsymbol{\sigma}^{E}, \mathbf{6}^{F}$-hexadeca-O-methyl- α-cyclodextrin)-bis [chloro(o-dimethylaminobenzyl)palladium(II)] (9a) and $P, P^{\prime}-\left(\sigma^{4}, \sigma^{c}\right.$-di-O-[2-[(diphenoxyphosphino)oxy]phenyl]$2^{A}, 2^{B}, 2^{C}, 2^{D}, 2^{E}, 2^{F}, 3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}, 3^{F}, \boldsymbol{6}^{B}, 6^{D}, \boldsymbol{6}^{E}, 6^{F}$-hexadeca-O-methyl- α-cyclodextrin)-bis[chloro(o-dimethylaminobenzylpalladium(II)] (9b)
$\left[\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right) \mathrm{PdCl}\right]_{2} \quad(0.030 \mathrm{~g}, \quad 0.055 \mathrm{mmol})$ was added to a solution of $\mathbf{L} 1(0.100 \mathrm{~g}, 0.055 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$. After 20 min , the product was precipitated by addition of pentane (250 ml) and then collected on Celite. The precipitate was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 ml), and upon filtration, the organic solution was evaporated to dryness in vacuo to afford pure 9 a as a yellow powder $(0.073 \mathrm{~g}, 56 \%) . R_{\mathrm{f}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 94: 6, \mathrm{v} / \mathrm{v}\right)=0.40$; Mp $123-125^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.61(\mathrm{~d}, \quad 6 \mathrm{H}$, $\left.{ }^{4} J_{\mathrm{H}, \mathrm{P}}=3.9 \mathrm{~Hz}, \mathrm{NCH}_{3}\right), 2.63\left(\mathrm{~d}, 6 \mathrm{H},{ }^{4} J_{\mathrm{H}, \mathrm{P}}=4.2 \mathrm{~Hz}\right.$, NCH_{3}), $3.30\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.33\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.35\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.47\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.60(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.63\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.84-4.15(38 \mathrm{H}, \mathrm{H}-2$, H-3, H-4, H-5, H-6a, H-6b ${ }^{\text {B,C,E.F, }} \mathrm{CH}_{2} \mathrm{Ph}$), 4.86 (d, $\left.{ }^{2} J_{\mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}}=9.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{A}, \mathrm{D}}\right), 5.01\left(2 \mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}\right.$ $\left.=2.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-1^{\mathrm{B}, \mathrm{C}, \mathrm{E}, \mathrm{F}}\right), 5.13\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.2 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{H}-1^{\mathrm{A}, \mathrm{D}}$), 6.83-7.72 (36H, arom. H$) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=50.00\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz}\right.$, $\left.\mathrm{NCH}_{3}\right), 50.15\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz}, \mathrm{NCH}_{3}\right), 57.40,57.86$ $[\times 2]\left(\mathrm{CH}_{3} \mathrm{O}-2\right), 58.91,59.17\left(\mathrm{CH}_{3} \mathrm{O}-6\right), 61.53,61.66$, $61.72\left(\mathrm{CH}_{3} \mathrm{O}-3\right), 67.69\left(\mathrm{C}-6^{\mathrm{A}, \mathrm{D}}\right), 70.90,71.17,71.39$ (C-5), 71.59, $72.21\left(\mathrm{C}-6^{\mathrm{B}, \mathrm{C}, \mathrm{E}, \mathrm{F}}\right), 72.68\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 81.23$ [$\times 3$] , 81.65, 81.75, 81.79, 82.21, 82.28, 82.93 (C-2, C-3, C-4), $99.39\left(\mathrm{C}-1^{\mathrm{A}, \mathrm{D}}\right), 100.14,100.44\left(\mathrm{C}-1^{\mathrm{B}, \mathrm{C}, \mathrm{E}, \mathrm{F}}\right)$, 114.04 (s, $\mathrm{C}_{\text {para }}$), 120.67 (s, DMBA), 121.21 (d, ${ }^{4} J_{\mathrm{C}, \mathrm{P}}$ $\left.=4.9 \mathrm{~Hz}, \mathrm{C}_{\text {meta }}\right), 121.95\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.6 \mathrm{~Hz}, \mathrm{DMBA}\right)$, 122.41 ($\mathrm{s}_{\text {orrho }}$), 124.57 ($\mathrm{s}, \mathrm{C}_{\text {meta }}$), 124.80 ($\mathrm{s}, \mathrm{C}_{\text {para }}$), 125.23 ($\mathrm{s}, \mathrm{C}_{\text {meta }}$), 125.92 (d, ${ }^{4} J_{\mathrm{C}, \mathrm{P}}=6.6 \mathrm{~Hz}$, DMBA), $129.29 \quad\left(\mathrm{~d}, \quad{ }^{3} J_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz}, \quad \mathrm{C}_{\text {ortho }}\right), \quad 136.92 \quad$ (d, ${ }^{3} J_{\mathrm{C}, \mathrm{P}}=11.5 \mathrm{~Hz}$, DMBA $), 140.81\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=4.9 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{\text {ipso }}\right), 147.62\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz}, \mathrm{C}_{\text {ipso }}\right), 149.83[\times 2]$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=4.9 \mathrm{~Hz}, \mathrm{C}_{i p s o}\right), 151.06\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz}\right.$, $\mathrm{C}_{\text {ipso }}$), 151.22 ($\mathrm{s}, \mathrm{C}_{\text {ipso }}$) ; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121.5 MHz , CDCl_{3}): $\quad \delta=104.5$ (s). Anal. calcd for $\mathrm{C}_{106} \mathrm{H}_{142} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{36} \mathrm{P}_{2} \mathrm{Pd}_{2}$ (2365.96): C 53.81, H 6.05 ; found: C 54.07, H 6.07.

Complex 9b was prepared in 75% yield $(0.100 \mathrm{~g})$ according to the above procedure from $\mathbf{L 2}(0.103 \mathrm{~g}$, $0.057 \mathrm{mmol})$ and $\left[\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right) \mathrm{PdCl}\right]_{2}(0.031 \mathrm{~g}$, $0.057 \mathrm{mmol}) . \quad R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 94: 6, \mathrm{v} / \mathrm{v}\right)=0.30$; Mp $97-99{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$:
$\delta=2.60\left(\mathrm{~d}, 6 \mathrm{H},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=3.9 \mathrm{~Hz}, \mathrm{NCH}_{3}\right), 2.62(\mathrm{~d}, 6 \mathrm{H}$, $\left.{ }^{4} J_{\mathrm{H}, \mathrm{P}}=3.7 \mathrm{~Hz}, \mathrm{NCH}_{3}\right), 3.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.30(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.31\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.40(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.59$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.62(\mathrm{~s}, 6 \mathrm{H}$, OCH_{3}), $3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.65$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.94-4.17 ($38 \mathrm{H}, \mathrm{H}-2, \quad \mathrm{H}-3, \quad \mathrm{H}-4, \quad \mathrm{H}-5, \quad \mathrm{H}-6 \mathrm{a}$, $\mathrm{H}-6 \mathrm{~b}^{\mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{F}}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.73\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}}=10.6 \mathrm{~Hz}\right.$, ${ }^{3} J \mathrm{H}-6 \mathrm{a}, \mathrm{H}-5=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{A}}$ or ${ }^{\mathrm{C}}$), 4.79 (dd, ${ }^{2} J_{\mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}}=10.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}-6 \mathrm{a}, \mathrm{H}-5}=2.8 \mathrm{~Hz}, \quad 1 \mathrm{H}$, $\mathrm{H}-6 \mathrm{~b}^{\mathrm{C}}$ or ${ }^{\mathrm{A}}$), $4.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-1, \mathrm{H}-2}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right)$, $4.99\left(2 \mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 5.00(2 \mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 5.05\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=\right.$ $3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.11\left(2 \mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{H}-1), 6.85-6.91(8 \mathrm{H}$, arom. H$), 6.98-7.10(8 \mathrm{H}$, arom. H), $7.20-7.33(18 \mathrm{H}$, arom. H$), 7.63-7.72(2 \mathrm{H}$, arom. $\mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=49.98(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz}, \quad N \mathrm{CH}_{3}\right), \quad 50.14\left(\mathrm{~d}, \quad{ }^{3} J_{\mathrm{C}, \mathrm{P}}=4.9 \mathrm{~Hz}\right.$, $\left.N \mathrm{CH}_{3}\right), 57.40[\times 2], 57.79[\times 4]\left(\mathrm{CH}_{3} \mathrm{O}-2\right), 58.81$, $58.94,59.00,59.07\left(\mathrm{CH}_{3} \mathrm{O}-6\right), 61.50[\times 2], 61.65$, $61.69[\times 2], 61.76\left(\mathrm{CH}_{3} \mathrm{O}-3\right), 67.59\left(\mathrm{C}-6^{\mathrm{A}, \mathrm{C}}\right), 70.61$, 70.71, 71.26 (C-5), 71.39, 71.98 (C-6 ${ }^{\text {B,D,E.F }}$), 72.64 , $72.74\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 81.20[\times 2], 81.69[\times 2], 81.85,82.18$, $82.28,82.51,82.93(\mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-4), 99.45\left(\mathrm{C}-1^{\mathrm{A}, \mathrm{C}}\right)$, $100.08,100.31\left(\mathrm{C}-1^{\mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{F}}\right), 113.88[\times 2]\left(\mathrm{s}, \mathrm{C}_{\text {para }}\right)$, $120.63[\times 2] \quad(\mathrm{s}, \quad \mathrm{DMBA}), 121.17 \quad[\times 4]$ (d , $\left.{ }^{4} J_{\mathrm{C}, \mathrm{P}}=4.9 \mathrm{~Hz}, \mathrm{C}_{\text {meta }}\right), 122.03[\times 2]\left(\mathrm{d},{ }^{4} J_{\mathrm{C}, \mathrm{P}}=8.2 \mathrm{~Hz}\right.$, DMBA), $122.37[\times 2]\left(\mathrm{s} \mathrm{C}_{\text {ortho }}\right), 124.50[\times 2]$ (s , $\left.\mathrm{C}_{\text {meta }}\right), 124.80[\times 4]\left(\mathrm{d},{ }^{5} J_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz}, \mathrm{C}_{\text {para }}\right), 125.19$ $[\times 2] \quad\left(\mathrm{s}, \quad \mathrm{C}_{\text {meta }}\right), \quad 125.86 \quad[\times 2] \quad\left(\mathrm{d}, \quad{ }^{4} J_{\mathrm{C}, \mathrm{P}}=8.2 \mathrm{~Hz}\right.$, DMBA), $129.22[\times 4] \quad\left(\mathrm{d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz}, \quad \mathrm{C}_{\text {ortho }}\right)$, $136.88[\times 2]\left(\mathrm{d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=11.5 \mathrm{~Hz}\right.$, DMBA $), 140.77[\times 2]$ $\left(\mathrm{d}, \quad{ }^{2} J_{\mathrm{C}, \mathrm{P}}=4.9 \mathrm{~Hz}, \quad \mathrm{C}_{i p s o}\right), \quad 147.55 \quad[\times 2] \quad(\mathrm{d}$, $\left.{ }^{2} J_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz}, \mathrm{C}_{i p s o}\right), 149.72[\times 4]\left(\mathrm{d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=4.9 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{i p s o}\right), 151.02[\times 2]\left(\mathrm{d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz}, \mathrm{C}_{i p s o}\right), 151.18$ $[\times 2]\left(\mathrm{s}, \mathrm{C}_{i p s o}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=104.6 \quad[\times 2] \quad$ (s). Anal. calcd for $\mathrm{C}_{106} \mathrm{H}_{142} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{36} \mathrm{P}_{2} \mathrm{Pd}_{2}$ (2365.96): C 53.81, H 6.05 ; found: C 53.78, H 6.16.

4.2.7. Syntheses of $P, P^{3}-\left(\boldsymbol{\sigma}^{4}, \boldsymbol{\sigma}^{D}\right.$-bis-O-\{2-[(diphenoxyphos-

 phino)oxy]phenyll- $2^{A}, 2^{B}, 2^{C}, 2^{D}, 2^{E}, 2^{F}, 3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}, 3^{F}$, $6^{B}, 6^{C}, \sigma^{E}, 6^{F}$-hexadeca-O-methyl- $\alpha-$ cyclodextrin) silver (I) tetrafluoroborate (10a) and P,$P^{P}-\left(6^{4}, 6^{C}\right.$-bis-O-\{ $\{2-$ [(diphenoxyphosphino)oxy]phenyl $]-2^{A}, 2^{B}, 2^{C}, 2^{D}, 2^{E}, 2^{F}$, $3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}, 3^{F}, \boldsymbol{6}^{B}, \boldsymbol{6}^{D}, \boldsymbol{6}^{E}, \boldsymbol{6}^{F}$-hexadeca-O-methyl- α cyclodextrin)silver(I) tetrafluoroborate (10b)A solution of $\mathrm{AgBF}_{4}(0.011 \mathrm{~g}, 0.055 \mathrm{mmol})$ in THF $(20 \mathrm{ml})$ was added to a solution of $\mathbf{L 1}(0.100 \mathrm{~g}$, 0.055 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 ml) under vigorous stirring. After 20 min , the reaction mixture was concentrated to 5 ml and pentane (250 ml) was added to
precipitate the product, which was collected on celite. The precipitate was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$, and upon filtration, the organic solution was evaporated to dryness in vacuo to afford pure $\mathbf{1 0 a}$ as a colourless powder $(0.060 \mathrm{~g}, 55 \%) .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.16\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.37\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.41(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.42\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.44\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.59\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.61\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.86-4.67$ ($36 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6$), 4.92 (d, ${ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}$ $=2.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 5.02\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{H}-1), 5.07\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1\right), 6.90-7.46$ (28H, arom. H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=57.59,57.79$, $57.99\left(\mathrm{CH}_{3} \mathrm{O}-2\right)$, $60.28 \quad[\times 2]$ $\left(\mathrm{CH}_{3} \mathrm{O}-6\right), 61.53,61.63,61.65\left(\mathrm{CH}_{3} \mathrm{O}-3\right), 68.71$ $\left(\mathrm{C}-6^{\mathrm{A}, \mathrm{D}}\right), 69.69,70.67,71.26$ (C-5), 71.59, 71.85 $\left(\mathrm{C}-6^{\mathrm{B}, \mathrm{C}, \mathrm{E}, \mathrm{F}}\right), 80.77,81.29[\times 3], 82.02[\times 5](\mathrm{C}-2, \mathrm{C}-3$, $\mathrm{C}-4), 99.95[\times 2]\left(\mathrm{C}-1^{\mathrm{B}, \mathrm{C}, \mathrm{E}, \mathrm{F}}\right), 101.09\left(\mathrm{C}-1^{\mathrm{A}, \mathrm{D}}\right), 115.58$ $\left(\mathrm{s}, \mathrm{C}_{\text {para }}\right), 121.06\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=6.6 \mathrm{~Hz}, \mathrm{C}_{\text {ortho }}\right), 121.26$ $[\times 2]\left(\mathrm{d},{ }^{4} J_{\mathrm{C}, \mathrm{P}}=6.6 \mathrm{~Hz}, \mathrm{C}_{\text {meta }}\right), 122.60\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}, \mathrm{P}}=\right.$ $3.3 \mathrm{~Hz}, \mathrm{C}_{\text {meta }}$), $126.17[\times 2]\left(\mathrm{s}, \mathrm{C}_{\text {para }}\right), 127.32(\mathrm{~s}$, $\left.\mathrm{C}_{\text {meta }}\right), 130.40[\times 2]\left(\mathrm{d},{ }^{4} J_{\mathrm{C}, \mathrm{P}}=6.6 \mathrm{~Hz}, \mathrm{C}_{\text {ortho }}\right), 138.40$ $\left(\mathrm{s}, \mathrm{C}_{i p s o}\right), 149.74[\times 2]\left(\mathrm{d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz}, \mathrm{C}_{i p s o}\right)$, $150.04\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz}, \mathrm{C}_{i p s o}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ $\left(121.5 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \quad \delta=116.7 \quad\left[2 \mathrm{~d}, \quad{ }^{107} J_{\mathrm{Ag}, \mathrm{P}} \quad=\right.$ $1083 \mathrm{~Hz}, \quad{ }^{109} J_{\mathrm{Ag}, \mathrm{P}}=1231 \mathrm{~Hz}$. Anal. calcd for $\mathrm{C}_{88} \mathrm{H}_{118} \mathrm{AgBF}_{4} \mathrm{O}_{36} \mathrm{P}_{2} \cdot 1.5 \mathrm{CHCl}_{3}(2008.48+179.07): \mathrm{C}$ 49.14, H 5.51; found: C 49.05, H 5.38; MS (FAB): $\mathrm{m} / \mathrm{z}(\%): 1937.3$ (20) $\quad\left[M-B \mathrm{~F}_{4}+\mathrm{O}\right]^{+}, \quad 1921.3 \quad$ (100) $\left[M-B \mathrm{~F}_{4}\right]^{+}$.

Complex 10b was prepared in 81% yield $(0.090 \mathrm{~g})$ according to the above procedure from $\mathrm{L} 2(0.11 \mathrm{~g}$, $0.056 \mathrm{mmol})$ and $\mathrm{AgBF}_{4}(0.011 \mathrm{~g}, 0.056 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.40\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.43\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.47\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.56(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.60\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.62\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.63$ $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.64\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.86-4.25(36 \mathrm{H}$, H-2, H-3, H-4, H-5, H-6), 4.96 (br d, $1 \mathrm{H}, \mathrm{H}-1$), 4.99 ($2 \mathrm{~d},{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$), 5.04 (br d, $1 \mathrm{H}, \mathrm{H}-1$), 5.11 (br d, $1 \mathrm{H}, \mathrm{H}-1$), 5.20 (br d, $1 \mathrm{H}, \mathrm{H}-1$), $6.60-7.60$ (28 H , arom. H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=57.43[\times 2], 57.53[\times 2], 57.76[\times 2]\left(\mathrm{CH}_{3} \mathrm{O}-2\right)$, $58.91[\times 2], 59.04[\times 2]\left(\mathrm{CH}_{3} \mathrm{O}-6\right), 61.66[\times 2], 61.72$ $[\times 2], 61.79[\times 2]\left(\mathrm{CH}_{3} \mathrm{O}-3\right), 70.21[\times 2], 70.90[\times 4]$, $71.17[\times 2], 71.50[\times 2](\mathrm{C}-5, \mathrm{C}-6), 80.97[\times 2], 81.23$ $[\times 6], 82.02[\times 2], 82.10[\times 2], 82.28[\times 6](\mathrm{C}-2, \mathrm{C}-3$, C-4), 100.11 [×6] (C-1), 115.35-129.94 (arom. CH), $140.00-150.26 \quad\left(\mathrm{C}_{i p s o}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR} \quad(121.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=108.3$ and 114.5 (ABX, ${ }^{107} J_{\mathrm{Ag}, \mathrm{P}}=1095 \mathrm{~Hz},{ }^{109} J_{\mathrm{Ag}, \mathrm{P}}=1203 \mathrm{~Hz}$ and ${ }^{107} J_{\mathrm{Ag}, \mathrm{P}}$, $=977 \mathrm{~Hz},{ }^{109} J_{\mathrm{Ag}, \mathrm{P}^{\prime}}=1088 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{P}^{\prime}}=256 \mathrm{~Hz}, \mathrm{P}$ and P^{\prime}). Anal. calcd for $\mathrm{C}_{88} \mathrm{H}_{118} \mathrm{AgBF}_{4} \mathrm{O}_{36} \mathrm{P}_{2} \cdot 0.75$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}(2008.48+43.56):$ C 52.83, H 6.02; found: C 53.10, H 6.09; MS (FAB): $m / z(\%): 1937.3$ (20) $\left[M-B \mathrm{~F}_{4}+\mathrm{O}\right]^{+}, 1921.3$ (100) $\left[M-B \mathrm{~F}_{4}\right]^{+}$.

4.2.8. Syntheses of cis- $\boldsymbol{P}^{\prime} \mathrm{P}^{\prime}$ - $\boldsymbol{6}^{A}, \boldsymbol{6}^{\boldsymbol{D}}$-bis- $\mathrm{O}-\{2-[($ diphenoxyphosphino)oxy]pheny) $-2^{A}, 2^{B}, 2^{C}, 2^{D}, 2^{E}, 2^{F}, 3^{A}, 3^{B}, 3^{C}, 3^{D}$, $3^{E}, 3^{F}, 6^{B}, 6^{C}, 6^{E}, 6^{F}$-hexadeca-O-methyl- α-cyclodextrin)[(norbornadiene)rhodium(I)] hexafluorophosphate (11a) and cis- $P, P^{\prime}-\left(6^{A}, 6^{C}-b i s-O-\{2-[(d i p h e n o x y p h o s-~\right.$ phino)oxy]pheny) $-2^{A}, 2^{B}, 2^{C}, 2^{D}, 2^{E}, 2^{F}, 3^{A}, 3^{B}, 3^{C}, 3^{D}, 3^{E}$, $3^{F}, 6^{B}, 6^{D}, 6^{E}, 6^{F}$-hexadeca-O-methyl- α-cyclodextrin)[(norbornadiene)rhodium(I)] tetrafluoroborate (11b)

Powdered $\mathrm{TlPF}_{6}(0.022 \mathrm{~g}, 0.063 \mathrm{mmol})$ was added to a solution of $[\mathrm{RhCl}(\mathrm{NBD})]_{2}(0.013 \mathrm{~g}, 0.028 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(50: 50, \mathrm{v} / \mathrm{v}, 50 \mathrm{ml})$. After stirring the suspension vigorously for 15 min , the precipitate was collected on celite and the filtrate was directly added to a solution of $\mathbf{L 1}(0.106 \mathrm{~g}, 0.058 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 ml) under vigorous stirring. The reaction mixture was then stirred at room temperature for 20 min before being concentrated to 5 ml . Addition of pentane $(250 \mathrm{ml})$ caused the product to precipitate. The solid was then filtered over celite before being dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 ml). Upon filtration, the organic solution was evaporated to dryness in vacuo to afford pure 11a as an orange powder $(0.110 \mathrm{~g}, 90 \%) . \quad R_{\mathrm{f}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 94: 6, \mathrm{v} / \mathrm{v}\right)=0.10$; Mp $118{ }^{\circ} \mathrm{C} \mathrm{dec} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 54^{\circ} \mathrm{C}$): $\delta=3.21(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{3}\right)$, $3.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.37(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.49$ (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.61(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.64\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.67$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.95-5.04 ($50 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4$, $\mathrm{H}-5, \mathrm{H}-6, \mathrm{HC}=\mathrm{CH}$ and CH of NBD), 6.75-7.50 $(28 \mathrm{H}$, arom. H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=($ all signals are broad) $47.24\left(\mathrm{CH}_{2}\right.$ of NBD$), 57.66$ $\left(\mathrm{CH}_{3} \mathrm{O}-2\right)$, 58.71, $59.10\left(\mathrm{CH}_{3} \mathrm{O}-6\right), 61.72\left(\mathrm{CH}_{3} \mathrm{O}-3\right)$, $69.82(\mathrm{CH}$ of NBD), 71.13 (C-5, C-6), 81.29 $(\mathrm{HC}=\mathrm{CH}$ of NBD), 82.27 (C-2, C-3, C-4), 100.18 (C-1), 115.32, 119.29, 120.53, 126.10, 127.25, 129.68, 130.30 (arom. CH), 138.63, $150.53\left(\mathrm{C}_{i p s o}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-145$ (hept. PF_{6}), 110.5 (d, $J_{\mathrm{Rh}, \mathrm{P}}=264 \mathrm{~Hz}$). Anal. calcd for $\mathrm{C}_{95} \mathrm{H}_{126} \mathrm{~F}_{6} \mathrm{O}_{36} \mathrm{P}_{3} \mathrm{Rh} \cdot \mathrm{CHCl}_{3} \quad(2153.86+119.38): \quad \mathrm{C}$ 50.72, H 5.63; found: C 50.72, H 5.73; MS (FAB): $\mathrm{m} / \mathrm{z} \quad$ (\%): 2023.6 (37) $\left[M-P \mathrm{~F}_{6}+\mathrm{O}\right], \quad 2007.7$ (49) $\left[M-P \mathrm{~F}_{6}\right]^{+}, 1915.5$ (58) $\left[M-P \mathrm{~F}_{6}-\mathrm{NBD}\right]^{+}$.

Complex 11b was prepared in 83% yield $(0.120 \mathrm{~g})$ according to the above procedure from $\mathbf{L 2}(0.125 \mathrm{~g}$, 0.069 mmol) and the in situ prepared $\left[\mathrm{Rh}(\mathrm{THF})_{2}(\mathrm{NBD})\right] \mathrm{BF}_{4}$ obtained from treatment of $[\mathrm{RhCl}(\mathrm{NBD})]_{2} \quad(0.016 \mathrm{~g}, \quad 0.035 \mathrm{mmol})$ with AgBF_{4} $(0.013 \mathrm{~g}, \quad 0.067 \mathrm{mmol}) . \quad R_{\mathrm{f}} \quad\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, \quad 94: 6\right.$, $\mathrm{v} / \mathrm{v})=0.30$; Mp 155° dec. All ${ }^{1} \mathrm{H}$ signals are broad. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(50 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)$: all signals are broad, $\delta=57.46\left(\mathrm{CH}_{3} \mathrm{O}-2\right), 58.81\left(\mathrm{CH}_{3} \mathrm{O}-6\right), 61.63$ $\left(\mathrm{CH}_{3} \mathrm{O}-3\right), 70.71(\mathrm{C}-5, \mathrm{C}-6), 81.36,82.31(\mathrm{C}-2, \mathrm{C}-3$, $\mathrm{C}-4), 100.18$ (C-1), 115.35, 120.47, 126.07, 129.28, $129.55,130.27$ (arom. CH), 138.50, $150.43\left(\mathrm{C}_{i p s o}\right)$;
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR (121.5 MHz, CDCl_{3}): $\delta=110.5$ (d, $J_{\mathrm{Rh}, \mathrm{P}}=259 \mathrm{~Hz}$). Anal. calcd for $\mathrm{C}_{95} \mathrm{H}_{126} \mathrm{BF}_{4} \mathrm{O}_{36} \mathrm{Rh}$ (2096.64): C 54.42, H 6.06; found: C 54.21, H 6.10; MS (FAB): m / z (\%): 2024.4 (10) $\left[M-B \mathrm{~F}_{4}+\mathrm{O}\right]^{+}, 2008.4$ (18) $\left[M-B \mathrm{~F}_{4}\right]^{+}, 1915.3$ (40) $\left[M-B \mathrm{~F}_{4}-\mathrm{NBD}\right]^{+}$.

4.3. X-ray crystallography

Crystals of compound $\mathbf{4 a}$ suitable for diffraction study were obtained by slow diffusion of heptane into an EtOAc solution of the compound.

Crystal data. $\mathrm{C}_{58} \mathrm{H}_{94} \mathrm{O}_{30} \cdot \mathrm{C}_{7} \mathrm{H}_{16}, M=1371.52$, hexagonal, space group $P 6_{2} 22$, colourless crystals, $a=31.2588(2), c=15.0373(1) \AA, V=12724.6(1) \AA^{-3}$, $Z=6, \quad D_{x}=1.072 \mathrm{mg} \mathrm{m}^{-3}, \quad \mu=0.84 \mathrm{~cm}^{-1}$, $F(000)=4428$. Data were collected on a Nonius KappaCCD (graphite-monochromated $\mathrm{Mo} \mathrm{K} \alpha$ radiation $0.71073 \AA$) at 100 K .119971 reflections collected, 4864 with $I>2 \sigma(I)$. The structure was solved with SHELLXD [29], which revealed the non-hydrogen atoms of the structure. After anisotropic refinement of the cyclodextrin moiety, the bridging aromatic ring
appeared as having two well-defined orientations each of 50% occupancy. The presence of a disordered n-heptane chain in the cavity was also detected. The whole structure was refined with SHELLXL by the full-matrix least-squares techniques (use of $F^{2} ; x, y, z$, $\beta_{i j}$ for the cyclodextrin O and C atoms, $x, y, z, B_{\text {iso }}$ for the other non- H atoms and x, y, z in riding mode for H atoms; 391 variables, 4864 observations with $I>2.0 \sigma(I), \quad w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.2 P)^{2}\right] \quad$ where $P=\left[F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right] / 3$). Final results $R=0.122$, $w R=0.331$ and $S_{\mathrm{w}}=1.32$.

. Supplementary material

The supplementary material has been sent to the Cambridge Crystallographic Data centre, 12 Union Road, Cambridge CB2 1EZ, UK, as supplementary material No. 178633 and can be obtained by contacting the CCDC (quoting the article details and the corresponding SUP number).

Acknowledgements. É.E. thanks the 'Ministère de la Culture, de l'Enseignement supérieur et de la Recherche' of the Grand-Duchy of Luxembourg for a grant. We thank Johnson Matthey for a generous gift of rhodium trichloride and Wacker Chemie for a supply of α-cyclodextrin.

References

[1] D. Armspach, D. Matt, Chem. Commun. (1999) 1073.
[2] D.C. Smith, G.M. Gray, Inorg. Chem. 37 (1998) 1791.
[3] H.K.A.C. Coolen, P.W.N.M. van Leeuwen, R.J.M. Nolte, J. Org. Chem. 61 (1996) 4739.
[4] D.C. Smith, G.M. Gray, J. Chem. Soc. Dalton Trans. (2000) 677.
[5] B.L. Shaw, J. Organometal. Chem. 200 (1980) 307.
[6] H. Ogino, J. Coord. Chem. 15 (1987) 187.
[7] C. Jeunesse, C. Dieleman, S. Steyer, D. Matt, J. Chem. Soc. Dalton Trans. (2001) 881.
[8] C. Loeber, D. Matt, P. Briard, D. Grandjean, J. Chem. Soc. Dalton Trans. (1996) 513.
[9] E. Engeldinger, D. Armspach, D. Matt, Angew. Chem. Int. Ed. Engl. 40 (2001) 2526.
[10] C. Yang, Y.K. Cheung, J. Yao, Y.T. Wong, G. Jia, Organometallics 20 (2001) 424.
[11] M.T. Reetz, J. Rudolph, R. Goddard, Can. J. Chem. 79 (2001) 1806.
[12] C. Yang, Y.T. Wong, Z. Li, J.J. Krepinsky, G. Jia, Organometallics 20 (2001) 5220.
[13] R.M. Deshpande, A. Fukuoka, M. Ichikawa, Chem. Lett. (1999) 13.
[14] M.T. Reetz, C. Frömbgen, Synthesis 9 (1999) 1555.
[15] M. Reetz, Catal. Today 42 (1998) 399.
[16] M.T. Reetz, S.R. Waldvogel, Angew. Chem. Int. Ed. Engl. 36 (1997) 865.
[17] M.T. Reetz, J. Rudolph, Tetrahedron: Asymmetry 4 (1993) 2405.
[18] D. Armspach, D. Matt, Inorg. Chem. 40 (2001) 3505.
[19] L.J. Farrugia, ORTEP-3, v1.05, Department of Chemistry, University of Glasgow, 1999.
[20] K. Harata, Chem. Rev. 98 (1998) 1803.
[21] C.J. Cobley, P.G. Pringle, Inorg. Chim. Acta 265 (1997) 107.
[22] P.W.N.M. van Leeuwen, C. Claver, Rhodium catalysed hydroformylation, Kluwer, Dordrecht, 2000.
[23] A. van Rooy, P.C. Kamer, P.W.N.M. van Leeuwen, K. Goubitz, J. Fraanje, N. Veldman, A. Spek, Organometallics 15 (1996) 835.
[24] D. Armspach, D. Matt, Carbohydr. Res. 310 (1998) 129.
[25] W. Hewertson, B.C. Smith, R.A. Shaw, in: H.F. Holtzclaw Jr (Ed.), Inorganic Syntheses, vol. 8, McGraw-Hill, New York, 1966, pp. 68-71.
[26] J.P. Forsman, D. Lipkin, J. Am. Chem. Soc. 75 (1953) 3145.
[27] A.C. Cope, E.C. Friedrich, J. Am. Chem. Soc. 90 (1968) 909.
[28] E.W. Abel, M.A. Bennett, G. Wilkinson, J. Chem. Soc. A (1959) 3178.
[29] G.M. Sheldrick, SHELX-97, Program for the refinement of crystal structures, University of Göttingen, Germany, 1997.

[^0]: * Correspondence and reprints.

 E-mail address: dmatt@chimie.u-strasbg.fr (D. Matt).

[^1]: Conditions: $T=25^{\circ} \mathrm{C} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml}), P_{\mathrm{H}_{2}}=1$ bar. ${ }^{\mathrm{a}}$ The conversion was determined after 24 h reaction time. ${ }^{\mathrm{b}}\left(\mathrm{mol}_{\text {product }} \mathrm{mol}_{\mathrm{Rh}}{ }^{-1} \mathrm{~h}^{-1}\right.$ after

