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This article presents a correction method for a better resolution of the problem of 
estimating and predicting pollution, governed by Burgers’ equations. The originality of the 
method consists in the introduction of an error function into the system’s equations of 
state to model uncertainty in the model. The initial conditions and diffusion coefficients, 
present in the equations for pollution and concentration, and also those in the model 
error equations, are estimated by solving a data assimilation problem. The efficiency of 
the correction method is compared with that produced by the traditional method without 
introduction of an error function.
Three test cases are presented in this study in order to compare the performances of the 
proposed methods. In the first two tests, the reference is the analytical solution and the 
last test is formulated as part of the “twin experiment”.
The numerical results obtained confirm the important role of the model error equation for 
improving the prediction capability of the system, in terms of both accuracy and speed of 
convergence.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Cet article présente une méthode de correction permettant de mieux résoudre le problème 
de l’estimation et de la prédiction de la pollution décrit par les équations de Burgers. 
L’originalité de la méthode consiste en l’introduction d’une fonction d’erreur dans le 
modèle d’état du système pour modéliser l’incertitude du modèle initial. Les conditions 
initiales et les coefficients de diffusion, présents dans les équations de pollution et de 
concentration, ainsi que ceux des équations d’erreur du modèle, sont estimés en résolvant 
un problème d’assimilation de données. L’efficacité de la méthode de correction est 
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comparée à celle offerte par la méthode traditionnelle sans introduction d’une fonction 
d’erreur.
Trois cas de tests sont présentés dans cette étude pour comparer les performances des 
méthodes utilisées. Dans les deux premiers tests, la référence est la solution analytique, 
et le dernier test est formulé dans le cadre de « l’expérience jumelle ». Les résultats 
numériques obtenus confirment le rôle important de l’équation d’erreur du modèle dans 
l’amélioration de la capacité de prédiction du système, en termes de précision et de 
rapidité de convergence de la méthode de correction.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

One of the greatest problems that the world is facing today is that of water pollution. A major scientific challenge is 
the ability to predict the evolution of an episode of pollution. To achieve this goal, we need to mix several sources of 
information like

– the mathematical model based on the equation of conservation;
– observations in situ or remote measurements;
– statistics on the field;
– images.

The numerical model, obtained from a set of mathematical equations, allows us to retrieve the principal structures of the 
flow. As there always exist differences between the model used and the physical process under consideration, observations 
constitute an essential source of information to correctly estimate the system’s state and, as a consequence, to produce a 
better forecast. Combining the model with observations can be done, in an optimal way, by data assimilation algorithms. For 
the most recent progress in data assimilation in meteorology, oceanography and hydrology, see [14]. In particular, Variational 
Data Assimilation (VDA) is based on the idea of finding an optimal system trajectory, not in the functional space, but in the 
space of the initial state under the condition of a perfect model. Taking into account the model error in the VDA is one 
of the important steps in broadening the horizons of its application and in improving its performance. In this context, the 
questions of the propagation of error and of its impact on the final analysis are of importance and are studied in [4–6]. The 
following errors are typical in the study of DA problems:

– model errors (see [2]). Geophysical flows are governed by nonlinear laws and there exist interactions between the 
spatial and temporal scales. Namely,
– numerical models require a truncation in both temporal and spatial scales and, consequently, a parameterization of 

the interactions with smallest scales (turbulence). These interactions are not explicit and need to be parameterized,
– empirical laws are introduced into the model,
– an other source of errors is due to the uncertainty in the specification of the model coefficients;

– observation errors (see [16]): they could be issued from errors in measurements, sampling errors... In many situations, 
the state variables are not observed directly and are estimated as a solution to some inverse problems.

Let us mention that, in many situations, the model and observation errors are dependent, which makes the estimation 
problem more complex.

It is important to emphasize that, in its traditional framework, the VDA is formulated as a strong constraint optimization 
problem, i.e. an optimization problem subject to (s.t.) the perfect dynamical system – the system without model error 
(ME). In this situation, only the initial system state is considered as a control vector (and, maybe, along with some system 
parameters). In this work, in addition to the initial state, the ME will be introduced as the unknown to be estimated. 
In fact, in practice, in numerical weather prediction in meteorology or oceanography, the numerical model used is never 
perfect, hence the introduction of the ME is beneficial for improving the forecasting capacity of the DA systems. And as it 
becomes clear from the numerical experiments to follow, a proper introduction of the ME equation will allow us to decrease 
considerably the estimation error. A brief outline on how the ME function (MEF) can be introduced in the VDA will be given 
in the Appendix.

In this paper, the hydraulic and pollution equations (originated from Burgers’ equation) are used to compute the trans-
port of pollution substances. It can be done if the initial values for the model are known and the model parameters are 
adequately specified. Since the parameters or initial values are not known (or very badly known), their approximations are 
used instead. One of simple procedures for approximating these values is to average the quantities produced by running 
the numerical model over a long time period. As these estimates are often approximate and if the model parameters are 
inadequately specified, the resulting solution is usually poorly estimated.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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The objective of this paper is to show that there exists a possibility to improve considerably a solution to the pollution 
problem by introducing MEF into the model equation and solving the corresponding VDA s.t. the initial conditions and the 
diffusion coefficients as control variables (θ ) [17]. Seeking an optimal solution for this problem is based on the optimal 
control theory [11], [12].

The following problems will be addressed in sections 2–4:

– solve the VDA problem over the interval [t1, t2], i.e. minimizing the objective function E s.t. the control vector θ (it is 
supposed that we are given a set of measurements in the interval [t1, t2]);

– carry out a comparison study between the estimation error of the produced solution and those of the two other stan-
dard solutions, which will be presented in detail to show the effectiveness of the VDA-based solution.

2. Mathematical formulation of the problem

In this section, we formulate the two estimation problems.

2.1. Estimation problem with the error function (EF) Eu for Burgers’ equation

Let U = U (x, t) be the solution to Burgers’ equation, with EF Eu ,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
+ U

∂U

∂x
= ν

∂2U

∂x2
+ Gu·Eu, x ∈ [L0, L] and t ∈ (t1, t2]

U = U in(t) on x = L0

∂U

∂x
= 0 or U = fu on x = L

U (t1) = U0

(1)

The evolution of the pollutant concentration C = C(x, t) is modeled by a one-dimensional advection diffusion equation 
with EF EC :⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂C

∂t
+ U

∂C

∂x
= η

∂2C

∂x2
+ GC ·EC , x ∈ [L0, L] and t ∈ (t1, t2]

C = C in on x = L0

∂C

∂x
= 0 or C = fc on x = L

C(t1) = C0, x ∈ [L0, L]

(2)

Here the diffusion coefficients η ∈ Y p and ν ∈ Y p , where Y p is the space of parameters, are supposed to be constants; 
Eu ∈ ℘u , EC ∈ ℘C , u ∈ Xu , C ∈ XC with ℘u , ℘C , Xu and XC are the Hilbert spaces; fu(t) ∈ Xu and fc(t) ∈ XC are functions 
of time t U0 ∈ Xu and C0 ∈ XC are the initial conditions.

Let us introduce the Hilbert spaces YC = L2(XC , t1, t2), YU = L2(Xu, t1, t2) with ‖ . ‖Yu = (., .)1/2
Yu

and ‖ . ‖YC = (., .)1/2
YC

. 
The operators Gu : YU → YUobs , GC : YC → YCobs are linearly bounded. Here Uobs and Cobs are the measurement values of U
and C satisfying Uobs = Hu U , Cobs = HC C . In the experiments in the next sections, it is assumed that we observe U , C at 
several spatial points. The operators Gu, GC are defined simply as Gu = H∗

u Hu , GC = H∗
c Hc , where H∗

u , HC ∗ are the adjoint 
operators for Hu and HC .

We assume that EF, Eu , and EC are satisfying the following equations:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ Eu

∂t
= ∂

∂x

(
Ku(x)

∂ Eu

∂x

)
, x ∈ [L0, L] and t ∈ (t1, t2]

Eu = 0 on x = L0

Eu = 0 on x = L

Eu(t1) = V u

(3)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ EC

∂t
= ∂

∂x

(
KC (x)

∂ EC

∂x

)
, x ∈ [L0, L] and t ∈ (t1, t2]

EC = 0 on x = L0

EC = 0 on x = L

EC (t1) = V C

(4)

Here Ku � 0 ∈ Y p , KC � 0 ∈ Y p are the diffusion coefficients, V u ∈ ℘u , V C ∈ ℘C are the initial condition values of 
Eqs. (3)–(4), respectively. Their values will be defined by solving the following optimization problem.
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Let θ denote a vector consisting of all variables U0, C0, V u , V C , ν , η, Ku , KC . Introduce the objective function

J (θ) = 1

2
‖ Gu U − Uobs ‖2

YUobs
+1

2
‖ GC C − Cobs ‖2

YCobs
+1

2
‖ U0 − Ū0 ‖2

L2(XU ) +1

2
‖ C0 − C̄0 ‖2

L2(XC )

+ 1

2
‖ ν − ν0 ‖2 +1

2
‖ η − η0 ‖2 +1

2

t2∫
t1

‖ Eu ‖2
L2(℘u) dt + 1

2

t2∫
t1

‖ EC ‖2
L2(℘C ) dt + 1

2
‖ V u − V u,0 ‖2

L2(℘u)

+ 1

2
‖ V C − V C,0 ‖2

L2(℘C ) +1

2
‖ Ku − Ku,0 ‖2

Y p
+1

2
‖ KC − KC,0 ‖2

Y p
. (5)

Here Ū0, C̄0, ν0, η0, V u,0, V C,0, Ku,0, KC,0 are a priori given.
The VDA, considered here, consists in minimizing J (θ) (5) s.t. (1)–(4), where θ is a control vector, i.e.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
+ U

∂U

∂x
= ν

∂2U

∂x2
+ Gu ·Eu x ∈ [L0, L] and t ∈ (t1, t2]

∂C

∂t
+ U

∂C

∂x
= η

∂2C

∂x2
+ GC ·EC x ∈ [L0, L] and t ∈ (t1, t2]

∂ Eu

∂t
= ∂

∂x

(
Ku(x)

∂ Eu

∂x

)
x ∈ [L0, L] and t ∈ (t1, t2]

∂ EC

∂t
= ∂

∂x

(
KC (x)

∂ EC

∂x

)
x ∈ [L0, L] and t ∈ (t1, t2]

U = U in on x = L0

C = C in on x = L0

∂C

∂x
= 0 or C = fc on x = L

∂U

∂x
= 0 or U = fu on x = L

Eu = 0 on x = L0

Eu = 0 on x = L

EC = 0 on x = L0

EC = 0 on x = L

U (t1) = U0

C(t1) = C0

Eu(t1) = V u

EC (t1) = V C

J (θ∗) = Arg min
θ

J (θ)

(6)

To solve the optimality system, we need to compute the gradient of the cost function J with respect to the control 
variables U0, C0, ν , η, V u , V C , Ku , KC . For this purpose, we consider a direction (u, c, ̃ν, η̃, vu, vc, ku, kc), in which we will 
compute the Gateaux derivatives.

Let us introduce the adjoint variables Pu , P C , Q u , Q C , which are the solutions to the systems describing the adjoint 
model (cf., [13]),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ Pu

∂t
= −U

∂ Pu

∂x
− ν

∂2 Pu

∂x2
+ P C

∂C

∂x
+ Gᵀ

u · (Gu U − Uobs) , x ∈ [L0, L], t ∈ [t1, t2)

Pu = 0 on x = L0

ν
∂ Pu

∂x
+ U Pu = 0 if

∂U

∂x
= 0 on x = L

Pu = 0 if U = fu on x = L

P (t ) = 0

(7)
u 2
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ P C

∂t
= −∂U P C

∂x
− η

∂2 P C

∂x2
+ Gᵀ

C · (GC C − Cobs) x ∈ [L0, L] and t ∈ [t1, t2)

P C = 0 on x = L0

η
∂ P C

∂x
+ U P C = 0 if

∂C

∂x
= 0 on x = L

P C = 0 if C = fc on x = L

P C (t2) = 0

(8)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ Q u

∂t
= ∂

∂x

(
Ku(x)

∂ Q u

∂x

)
− Gᵀ

u ·Pu + Eu x ∈ [L0, L] and t ∈ [t1, t2)

Q u = 0 on x = L0

Q u = 0 on x = L

Q u(t2) = 0

(9)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ Q C

∂t
= ∂

∂x

(
KC (x)

∂ Q C

∂x

)
− Gᵀ

C ·P C + EC x ∈ [L0, L] and t ∈ [t1, t2)

Q C = 0 on x = L0

Q C = 0 on x = L

Q C (t2) = 0

(10)

From this we deduce the gradient of the cost function J (5), which is:

∇ J (U0, C0, ν,η, V u, V C , Ku, KC ) =
(

J ′
U0

, J ′
C0

, J ′
ν, J ′

η, J ′
V u

, J ′
V C

, J ′
Ku

, J ′
KC

)
(11)

where:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J ′
U0

= U0 − Ū0 − Pu(t1)

J ′
C0

= C0 − C̄0 − P C (t1)

J ′
ν = ν − ν0 + 1

L − L0

t2∫
t1

(
∂U

∂x
,
∂ Pu

∂x

)
dt

J ′
η = η − η0 + 1

L − L0

t2∫
t1

(
∂C

∂x
,
∂ P C

∂x

)
dt

J ′
V u

= V u − V u,0 − Q u(t1)

J ′
V C

= V C − V C,0 − Q C (t1)

J ′
Ku

= Ku − Ku,0 +
t2∫

t1

∂ Eu

∂x

∂ Q u

∂x
dt

J ′
KC

= KC − KC,0 +
t2∫

t1

∂ EC

∂x

∂ Q C

∂x
dt

(12)

Using ∇ J (U0, C0, ν, η, V u, V C , Ku, KC ), defined by the formula (11), the optimal value for θ∗ can be computed by solving 
the optimization problem (6) on the basis of the BFGS method (see [2], [10]). Eqs. (1)–(4) are solved by s.t. U0 = U∗

0 , C0 = C∗
0 , 

ν = ν∗ , η = η∗ , V u = V ∗
u , V C = V ∗

C , Ku = K ∗
u , KC = K ∗

C . These values will be used in the model to produce the forecast in 
section 3.

In the next subsection, the VDA problem is formulated for Burgers’ equation without error function.

2.2. The classical correction problem of Burgers’ equation

Assume that the one-dimension velocity U = U (x, t) verifies Burgers’ equation:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
+ U

∂U

∂x
= ν

∂2U

∂x2
x ∈ [L0, L] and t ∈ (t1, t2]

U = U in on x = L0

∂U

∂x
= 0 or U = fu on x = L

U (t ) = U

(13)
1 0
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The evolution of the pollutant concentration C = C(x, t) is modeled by a one-dimensional advection diffusion equation:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂C

∂t
+ U

∂C

∂x
= η

∂2C

∂x2
x ∈ [L0, L] and t ∈ (t1, t2]

C = C in on x = L0

∂C

∂x
= 0 or C = fc on x = L

C(t1) = C0

(14)

Let θ denote a vector consisting of the initial condition values U0, C0 and diffusion coefficients ν , η. The cost function is 
defined by:

J̃ (θ) = 1

2
‖ Gu U − Uobs ‖2

YUobs
+1

2
‖ GC C − Cobs ‖2

YCobs
+1

2
‖ U0 − Ū0 ‖2

L2(XU ) +1

2
‖ C0 − C̄0 ‖2

L2(XC )

+ 1

2
‖ ν − ν0 ‖2 +1

2
‖ η − η0 ‖2 (15)

where Ū0, C̄0, ν0, η0 are given.
As before, the VDA problem is formulated as the minimization of J̃ (θ) s.t. (13)–(14), i.e.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
+ U

∂U

∂x
= ν

∂2U

∂x2
x ∈ [L0, L] and t ∈ (t1, t2]

∂C

∂t
+ U

∂C

∂x
= η

∂2C

∂x2
x ∈ [L0, L] and t ∈ (t1, t2]

U = U in, on x = L0

C = C in, on x = L0

∂C

∂x
= 0 or C = fc on x = L

∂U

∂x
= 0 or U = fu on x = L

U (t1) = U0

C(t1) = C0

J̃ (θ∗) = Arg min
θ

J̃ (θ)

(16)

The gradient of cost function J̃ is now

∇ J̃ (U0, C0, ν,η) =
(

J̃ ′
U0

, J̃ ′
C0

, J̃ ′
ν, J̃ ′

η

)
(17)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J̃ ′
U0

= U0 − Ū0 − Pu(t1)

J̃ ′
C0

= C0 − C̄0 − P C (t1)

J̃ ′
ν = ν − ν0 + 1

L − L0

t2∫
t1

(
∂U

∂x
,
∂ Pu

∂x

)
dt

J̃ ′
η = η − η0 + 1

L − L0

t2∫
t1

(
∂C

∂x
,
∂ P C

∂x

)
dt

(18)

Here, Pu and P C are the solutions to Eqs. (7) and (8).
As before, the solution to the problem (16) is computed using the BFGS method (see [2], [10]). Eqs. (13)–(14) are solved 

by s.t. U0 = U∗
0 , C0 = C∗

0 , ν = ν∗ , η = η∗ . The optimal values of ν , η, U (t2), and C(t2) will be used in the model to produce 
the forecasts U , C for the forecasting time period [t2, t3].

3. Forecast problem

The forecast problem for the future time period [t2, t3] consists in solving the following system of equations s.t. the 
optimal values of ν , η and Û0 = U (t2), Ĉ0 = C(t2) (obtained in the previous section):
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
+ U

∂U

∂x
= ν

∂2U

∂x2
x ∈ [L0, L] and t ∈ (t2, t3]

∂C

∂t
+ U

∂C

∂x
= η

∂2C

∂x2
x ∈ [L0, L] and t ∈ (t2, t3]

U = U in, on x = L0

C = C in, on x = L0

∂C

∂x
= 0 or C = fc on x = L

∂U

∂x
= 0 or U = fu on x = L

U (t2) = Û0

C(t2) = Ĉ0

(19)

4. Numerical examples: test cases

In order to see the effect of the introduced EF Eu , EC , and the parameter estimation, three test cases will be 
considered:

– in the first test case, we consider Burgers’ equation for velocity with boundary condition and known analytical solution;
– in the second test case, we study the advection equation for concentration with boundary condition that has a known 

analytical solution;
– in the third test case, the problem presented in section 2 is tested in the framework of the twin experiment.

In all three test cases, the guess values of the initial conditions and of the diffusion coefficients are quite different from 
those used in the reference models.

4.1. Test case 1: Correction experiment for Burgers’ equation

For the time period [t1, t2], we introduce the classical Burgers’ equation:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
+ U

∂U

∂x
= ν

∂2U

∂x2
x ∈ [0,1] and t ∈ (t1, t2]

U = 0 on x = 0

U = 1

t
− π

t
tanh

( π
2ν t

)
on x = 1

U (t1) = U0

(20)

For the next time period [t2, t3], we consider the solution to the equation:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
+ U

∂U

∂x
= ν

∂2U

∂x2
x ∈ [0,1] and t ∈ (t2, t3]

U = 0 on x = 0

U = 1

t
− 1

t
− π

t
tanh

( π
2ν t

)
on x = 1

U (t2) = Û0

(21)

The following data set is used: t0 = 0.12 s, t1 = 0.241 s, t2 = 1.241 s, t3 = 2.041 s, �t = 0.0001 s. The measurements are 
taken at points : x = 0.2 m, x = 0.4 m, x = 0.9 m. The performances of the different solutions are tested at point x = 0.5 m.

Consider the four models below.

– 1. Reference model (RM). The function

U (x, t) = x

t
− 1

t
− π

t
tanh

( π x

2 ν̄ t

)
(22)

is the exact solution to the equation (see [1]):
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Fig. 1. Test case 1. Panels (a)–(c): the spatio-temporal AD P (velocity) between the three different runs MEF (a), MNEF (b), EM (c), and RM. It is seen that 
compared to EM, the VDA allows MNEF to reduce significantly the estimation error. The effect of the introduced EF is clearly visible, comparing (a) with 
(b) and (c). The spatial AD P (velocity) between Ū0 and Uobs(t1), representing the error in the initial condition, is displayed in panel (d).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
+ U

∂U

∂x
= ν̄

∂2U

∂x2
, x ∈ [0,1] and t ∈ (t1, t3]

U = 0 on x = 0

U = 1

t
− π

t
tanh

( π
2 ν̄ t

)
on x = 1

U (t1, x) = x

t1
− π

t1
tanh

(
π x

2 ν̄ t1

)
(23)

The solution Uobs, obtained by solving (22) for the time period [t1, t3] s.t. ν̄ = 1 m2/s, is referred to as a RM solution (or 
reference solution).

– 2. Introduce an erroneous model (EM) (its EM solution is denoted by UEM), which is given by (20) s.t.
– ν = 1.5 m2/ s,
– U0 = Ū0 where Ū0 is defined by the following function:

Ū0 = 1

t1 − t0

t1∫
t0

[
x

t
− 1

t
− π

t
tanh

( π x

2ν t

)]
dt (24)

Introduce the Absolute Difference Percent (ADP) as a measure of the difference between two variables a and b

AD P (a, b) = |a − b| ∗ 100/|b|

To see how the initial conditions are different in EM and RM, in the Fig. 1 we show the spatial AD P (Ū0, Uobs(t1)) (i.e. 
on the interval x ∈ [0 : 1]). One sees that the maximum AD P level is higher than 70%. As to the diffusion coefficients ν
and ν̄ , they are also quite different (ν = 1.5 m2/s, ν̄ = 1 m2/s).
The difference AD P (UEM, Uobs) between the two solutions, produced by EM and RM, is displayed in Fig. 1c over the 
time period [t1, t2].
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Fig. 2. Test case 1. (a) The curves MEF, MNEF and EM show the AD P (velocity) between three runs MEF, MNEF, EM and RM at the test point. The values of 
EM are projected onto the right vertical axis. (b) Time averages of the curves in (a). (c) Spatial AD P (velocity) between three runs MEF, MNEF, EM, and RM 
for the time moment t = 0.35 s. (d) The curves MEF, MNEF and EM express the AD P (velocity) between MEF, MNEF, EM and RM at the test point for the 
forecasting time period [t2, t3]. The EM values are projected onto the right vertical axis.

To see how the error affects the forecast, we integrate (21) over the next time period [t2, t3] s.t. Û0 = UEM(t2). The 
AD P (U f

EM, Uobs) between the obtained forecast solution (denoted as U f
EM) and the RM solution (reference) at the test 

point is represented by the dashed red curve in Fig. 2d.
– 3. Introduce the MEF model (model, including EF Eu ): let us consider the system of equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
+ U

∂U

∂x
= ν

∂2U

∂x2
+ Gu ·Eu, x ∈ [0,1] and t ∈ (t1, t2]

∂ Eu

∂t
= ∂

∂x

(
Ku(x)

∂ Eu

∂x

)
, x ∈ [0,1] and t ∈ (t1, t2]

U = 0 on x = 0

U = 1

t
− π

t
tanh

( π
2ν t

)
on x = 1

U (t1) = U0

Eu = 0 on x = 0

Eu = 0 on x = 1

Eu(t1) = V u

(25)

We are interested in adjusting U0, V u , ν , and Ku in such a way to make the solution U as close as possible to the RM 
solution Uobs. For this purpose, we introduce the cost function:

Ĵ (U0, ν, V u, Ku) = 1

2
‖ Gu U − Uobs ‖2

YUobs
+1

2
‖ U0 − Ū0 ‖2

L2(XU ) +1

2
‖ ν − ν0 ‖2 +1

2

t2∫
t1

‖ Eu ‖2
L2(℘u) dt

+ 1

2
‖ V u − V u,0 ‖2

L2(℘u) +1

2
‖ Ku − Ku,0 ‖2

Y p
(26)

where Ū0, ν0, V u,0 and Ku,0 are given.
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Let us consider the problem of minimizing J1 s.t. the model as a constraint:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
+ U

∂U

∂x
= ν

∂2U

∂x2
+ Gu ·Eu x ∈ [0,1] and t ∈ (t1, t2]

∂ Eu

∂t
= ∂

∂x

(
Ku(x)

∂ Eu

∂x

)
x ∈ [0,1] and t ∈ (t1, t2]

U = 0 on x = 0

U = 1

t
− π

t
tanh

( π
2ν t

)
on x = 1

U (t1) = U0

Eu = 0 on x = 0

Eu = 0 on x = 1

Eu(t1) = V u

Ĵ (U∗
0, ν∗, V ∗

u , K ∗
u) = Arg min

U0,ν,V u ,Ku
Ĵ (U0, ν, V u, Ku)

(27)

The gradient of the cost function is

∇ Ĵ (U0, ν, V u, Ku) =
(

Ĵ ′
U0

, Ĵ ′
ν, Ĵ ′

V u
, Ĵ ′

Ku

)
(28)

where Ĵ ′
U0

, Ĵ ′
ν, Ĵ ′

V u
, and Ĵ ′

Ku
are defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĵ ′
U0

= U0 − Ū0 − P̄u(t1)

Ĵ ′
ν = ν − ν0 +

t2∫
t1

(
∂U

∂x
,
∂ P̄u

∂x

)
dt

Ĵ ′
V u

= V u − V u,0 − Q̄ u(t1)

Ĵ ′
Ku

= Ku − Ku,0 +
t2∫

t1

∂ Eu

∂x

∂ Q̄ u

∂x
dt

(29)

where P̄u and Q̄ u are the solutions to the system:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ P̄u

∂t
= −U

∂ P̄u

∂x
− ν

∂2 P̄u

∂x2
+ Gᵀ

u · (Gu U − Uobs) , x ∈ [0,1], t ∈ [t1, t2)

P̄u = 0 on x = 0

P̄u = 0 on x = 1

P̄u(t2) = 0

(30)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ Q̄ u

∂t
= ∂

∂x

(
Ku(x)

∂ Q̄ u

∂x

)
− Gᵀ

u · P̄u + Eu x ∈ [0,1] and t ∈ [t1, t2)

Q̄ u = 0 on x = 0

Q̄ u = 0 on x = 1

Q̄ u(t2) = 0

(31)

The problem (27) is solved by s.t. ν0 = 1.5 ̄ν = 1.5 m2/s, Ku,0 = 1 m2/s, with Ū0 defined by (24) and V u,0 chosen as

V u,0 =
{

Uobs(t1) − Ū0 on measurement points
0 on no-measurement points

(32)

We have applied the BFGS algorithm (see [2], [10]) to estimate the optimal parameters U∗
0 , ν∗ , V ∗

u , K ∗
u .

The optimal value for ν∗ is denoted by ν∗
MEF and is equal to ν∗

MEF = 1.001 m2/s.
Solving the system of Eqs. (25) s.t. U0 = U∗

0 , V u = V ∗
u , ν = ν∗

MEF and Ku = K ∗
u yields the solution (denoted as UMEF). The 

AD P (UMEF, Uobs), for the time period [t1, t2], is displayed in Fig. 1a.
We have produced the forecast solution U f

MEF for the next future time period [t2, t3] by solving the problem (21) s.t. 
ν = ν∗

MEF = 1.001 m2/s, Û0 = UMEF(t2). In Fig. 2d, the green curve represents the AD P (U f
MEF, Uobs) between the forecast 

solution of MEF and the RM solution at the test point.
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– 4. Let us examine the situation without inclusion of EF Eu in the model (denoted as MNEF).
As before, we try to adjust the initial condition U0 and the diffusion coefficient ν in the system of Eqs. (20) to produce 
a solution U as close as possible to the reference solution Uobs by solving the corresponding optimization problem. It 
is done by introducing the cost function:

J̄ (U0, ν) = 1

2
‖ Gu U − Uobs ‖2

YUobs
+1

2
‖ U0 − Ū0 ‖2

L2(XU ) +1

2
‖ ν − ν0 ‖2 (33)

where Ū0, ν0 are given.
Then the corresponding optimization problem is to minimize (33) s.t.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
+ U

∂U

∂x
= ν

∂2U

∂x2
x ∈ [0,1] and t ∈ (t1, t2]

U = 0 on x = 0

U = 1

t
− π

t
tanh

( π
2ν t

)
on x = 1

U (t1) = U0

J̄ (U∗
0, ν∗) = Arg min

U0,ν
J̄ (U0, ν)

(34)

The gradient of the cost function is

∇ J̄ (U0, ν) = (
J̄ ′

U0
, J̄ ′

ν

)
(35)

Here, J̄ ′
U0

and J̄ ′
ν are defined by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
J̄ ′

U0
= U0 − Ū0 − P̄u(t1)

J̄ ′
ν = ν − ν0 +

t2∫
t1

(
∂U

∂x
,
∂ P̄u

∂x

)
dt

(36)

where P̄u is the solution to the system of Eqs. (30).
The problem (34) is solved by s.t. ν0 = 1.5 ̄ν = 1.5 m2/ s and Ū0 defined by (24). The optimal values U∗

0 , ν∗ are obtained 
by applying the BFGS algorithm (see [2], [10]). For the further convenience, ν∗ is denoted as ν∗

MNEF.
Let UMNEF be the solution obtained by solving the system of Eqs. (20) (model without including EF) s.t. U0 = U∗

0 and 
ν = ν∗

MNEF. The Fig. 1b shows the AD P (UMNEF, Uobs) over the time period [t1, t2].
For the next time period [t2, t3], the problem (21) s.t. ν = ν∗

MNEF = 1.012 m2/s and Û0 = UMNEF(t2) is solved. Its solution 
(forecast) is denoted as U f

MNEF. The AD P (U f
MNEF, Uobs), at the test point, is presented by the dot blue curve in Fig. 2d.

Compared to the solutions produced by MNEF and MEF, the error in EM is much higher (see Figs. 1a–1c). The role of EF 
is clearly visible since the error in MEF (see Fig. 1a) is significantly lower than that in MNEF (see Fig. 1b).

In Figs. 2a and 2d, the AD P s in the three runs are displayed, but at the test point, and in Fig. 2c, the spatial AD P at 
t = 0.35 s is displayed. These figures give insight into how the solution in EM is degraded compared to those in MNEF and 
MEF.

The parameter estimation processes for the diffusion coefficient ν , based on the MEF and MNEF models, are shown in 
Fig. 3a. One sees here that the estimated diffusion coefficient ν , based on the MEF model, converges very quickly to the 
true value ν = 1 m2/s, whereas a long oscillation is required for the estimation process based on MNEF before convergence 
has been achieved. It means that the introduced EF well compensates an unmodeled error, existing in MNEF.

The estimated error field Eu and diffusion coefficient Ku are presented in Fig. 3b–c. From Fig. 3b it is seen that the error 
Eu decreases quickly as a function of time.

4.2. Test case 2: Experiment for advection equation

For the time period [t1, t2], let us introduce the classical Burgers advection problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C

∂t
+ a

∂C

∂x
= η

∂2C

∂x2
x ∈ [−0.5,0.5] and t ∈ (t1, t2]

C = erfc

(
−0.5 + a t

2
√

η t

)
on x = −0.5

C = erfc

(
0.5 − a t

2
√

η t

)
on x = 0.5

C(t ) = C

(37)
1 0
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Fig. 3. Test case 1. Panel (a) displays the diffusion coefficient ν , estimated based on the models MEF and MNEF. It can be seen that the model MEF permits 
to identify quickly the coefficient ν , whereas with the model MNEF (without using EF), a long oscillation is required before the convergence is achieved. 
Panels (b)–(c): velocity error Eu and diffusion coefficient Ku in the spatio-temporal plane.

In the same fashion as in Eq. (37), but for the time period [t2, t3], we will consider the forecast problem described by 
the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C

∂t
+ a

∂C

∂x
= η

∂2C

∂x2
x ∈ [−0.5,0.5] and t ∈ (t2, t3]

C = erfc

(
−0.5 + a t

2
√

η t

)
on x = −0.5

C = erfc

(
0.5 − a t

2
√

η t

)
on x = 0.5

C(t2) = Ĉ0

(38)

The following data are given: t0 = 0.01 s, t1 = 0.02 s, t2 = 1.024 s, t3 = 1.824, �t = 0.0001 s, a = 1 m/s. The measurements 
are given in three points with coordinates: x = −0.3 m, x = −0.1 m, x = 0.4 m. The test point is at x = 0.

We will consider the four models below.

– 1. Reference model (RM): The function

C(x, t) = erfc

(
x − a t

2
√

η̄ t

)
(39)

is the exact solution to the following equation system (see [3]):
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Fig. 4. Test case 2. Panels (a)–(c): spatio-temporal AD P (concentration) between MEF and RM (a), MNEF and RM (b), EM and RM (c). Panel (d): spatial AD P
between C̄0 and Cobs(t1).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C

∂t
+ a

∂C

∂x
= η̄

∂2C

∂x2
x ∈ [−0.5,0.5] and t ∈ [t1, t3]

C = erfc

(
−0.5 erfc

2
√

η̄ t

)
on x = −0.5

C = erfc

(
0.5 − a t

2
√

η̄ t

)
on x = 0.5

C(t1) = erfc

(
x − a t1

2
√

η̄ t1

)
(40)

Using the formula (39) and s.t. η̄ = 0.4 m2/s, we calculate the analytical solution to (40), which is called a RM solution
(denoted by Cobs).

– 2. The erroneous model (E M) (i.e. without correction).
In this model, the value of the diffusion coefficient η and the initial condition C0 are:
– η = 0.6 m2/s;
– C0 = C̄0, where C̄0 is defined by the following function:

C̄0 = 1

t1 − t0

t1∫
t0

erfc

(
x − a t

2
√

η t

)
dt (41)

The spatial AD P (C̄0, Cobs(t1)) is shown in Fig. 4d. One sees that the maximum percentage level is about 90%. There is 
a significant difference between η and value η̄.
The problem (37) is solved by s.t. η and C0. The obtained solution is denoted by CEM. The spatio-temporal 
AD P (CEM, Cobs), over the time period [t1, t2], is displayed in Fig. 4c. The maximum value of AD P is about 87%.
For the next time period [t2, t3], the problem (38) is solved by s.t. Ĉ0 = CEM(t2). For this time period, the 
AD P (C f

EM, Cobs) at the test point is presented by the dashed red curve in Fig. 5d.
– 3. Introduce the model, including EF Ec (denoted as M E F ).
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Let us consider the following system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C

∂t
+ a

∂C

∂x
= η

∂2C

∂x2
+ GC ·EC x ∈ [−0.5,0.5] and t ∈ (t1, t2]

∂ EC

∂t
= ∂

∂x

(
KC (x)

∂ EC

∂x

)
x ∈ [−0.5,0.5] and t ∈ (t1, t2]

C = erfc

(
−0.5 erfc

2
√

η t

)
on x = −0.5

C = erfc

(
0.5 − a t

2
√

η t

)
on x = 0.5

EC = 0 on x = −0.5

EC = 0 on x = 0.5

C(t1) = C0

EC (t1) = V C

(42)

The problem is to adjust the initial condition C0, V C and the diffusion coefficients η, KC to produce a solution C that 
is as close as possible to the RM solution Cobs. For this purpose, let us introduce the cost function:


̄(C0, η, V C , KC ) = 1

2
‖ GC C − Cobs ‖2

YCobs
+1

2
‖ C0 − C̄0 ‖2

L2(XC ) +1

2
‖ η − η0 ‖2 +1

2

t2∫
t1

‖ EC ‖2
L2(℘C ) dt

+ 1

2
‖ V C − V C,0 ‖2

L2(℘C ) +1

2
‖ KC − KC,0 ‖2

Y p
(43)

Here the variables C̄0, η0, KC,0 and V C,0 are given a priori.
The optimization problem is to minimize the cost function (43) to find the optimal values ν∗ , K ∗

C , C∗
0 and V ∗

C s.t. the 
system of equations (42), i.e.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C

∂t
+ a

∂C

∂x
= η

∂2C

∂x2
+ GC ·EC x ∈ [−0.5,0.5] and t ∈ (t1, t2]

∂ EC

∂t
= ∂

∂x

(
KC (x)

∂ EC

∂x

)
x ∈ [−0.5,0.5] and t ∈ (t1, t2]

C = erfc

(
−0.5 erfc

2
√

η t

)
on x = −0.5

C = erfc

(
0.5 − a t

2
√

ηt

)
on x = 0.5

EC = 0 on x = −0.5

EC = 0 on x = 0.5

C(t1) = C0(x)

EC (t1) = V C


̄(C∗
0, η∗, V ∗

C , K ∗
C ) = Arg min

C0,η,V C ,KC

̄(C0, η, V C , KC )

(44)

The gradient of the cost function 
̄(C0, η, V C , KC ) is:

∇
̄(C0, η, V C , KC ) =
(

̄′

C0
, 
̄′

η, 
̄′
V C

, 
̄′
KC

)
(45)

where 
̄′
C0

, 
̄′
η, 
̄′

V C
and 
̄′

KC
are defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


̄′
C0

= C0 − C̄0 − P̂ C (t1)


̄′
η = η − η0 +

t2∫
t1

(
∂C

∂x
,
∂ P̂ C

∂x

)
dt


̄′
V C

= V C − V C,0 − Q̂ C (t1)


̄′
KC

= KC − KC,0 +
t2∫

∂ EC

∂x

∂ Q̂ C

∂x
dt

(46)
t1
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Fig. 5. Test case 2. Panel (a) shows the AD P (concentration) between MEF, MNEF, EM, and RM at the test point. Panel (b) displays the time average of the 
curves in (a). Let us mention that the ordinate values of MEF and MNEF are projected onto the left vertical axis, whereas for EM they are projected onto 
the right vertical axis. Panel (c) displays the spatial AD P (concentration) between MEF, MNEF, ME, and RM at time t = 0.06 s. Panel (d) is the same as panel 
(a), but for the forecasting time period [t2, t3]. The values of MEF and MNEF are projected on the left vertical axis and those of EM on the right vertical 
axis.

The variables P̂ C and Q̂ C are the solutions to the following system of equations:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ P̂ C

∂t
= −a

∂ P̂ C

∂x
− η

∂2 P̂ C

∂x2
+ Gᵀ

C · (GC C − Cobs) , x ∈ [−0.5,0.5], t ∈ [t1, t2)

P̂ C = 0 on x = −0.5

P̂ C = 0 on x = 0.5

P̂ C (t2) = 0

(47)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ Q̂ C

∂t
= ∂

∂x

(
KC (x)

∂ Q̂ C

∂x

)
− Gᵀ

C · P̂ C + EC x ∈ [−0.5,0.5] and t ∈ [t1, t2)

Q̂ C = 0 on x = −0.5

Q̂ C = 0 on x = 0.5

Q̂ C (t2) = 0

(48)

The problem (44) is solved by s.t. η0 = 1.5 η̄ = 0.6 m2/s, KC,0 = 1 m2/s, the parameter C̄0 is defined by (41), and V C,0

is chosen by

V C,0 =
{

Cobs(t1) − C̄0 on measurement points
0 on no-measurement points

(49)

Applying the BFGS method (see [2], [10]) with ∇
̄(C0, η, V C , KC ), defined by (45), yields the optimal values C∗
0 , η∗ , V ∗

C , 
K ∗

C .
The system of Eqs. (42) is solved next s.t. C0 = C∗

0 and η = η∗
MEF, V C = V ∗

C , KC = K ∗
C . The obtained solution is denoted 

by CMEF. For the time interval [t1, t2], the AD P (CMEF, Cobs) is shown in Fig. 4a. One sees that the maximum value is 
about 8.4%.
For the next time period [t2, t3], the problem (38) is solved by s.t. η = η∗

MEF = 0.4 m2/s and Ĉ0 = CMEF(t2). The solution 
is denoted by C f . For this time period, the AD P (C f , Cobs) is presented by the grid green curve of Fig. 5d.
MEF MEF
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– 4. The model, not including EF EC , is denoted by “MNEF”. Consider the problem (37). The optimization problem is to 
identify the initial condition C0 and the diffusion coefficient η to produce a solution C that is as close as possible to 
Cobs. For this purpose, we introduce the cost function:


(C0, η) =‖ GC C − Cobs ‖2
YCobs

+1

2
‖ C0 − C̄0 ‖2

L2(XC ) +1

2
‖ η − η0 ‖2 (50)

Here the values C̄0 and η0 are given.
Then the corresponding optimization problem is to find the optimal diffusion values ν∗ and the initial conditions C∗

0 of 
the system of equations (37) and is formulated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C

∂t
+ a

∂C

∂x
= η

∂2C

∂x2
x ∈ [−0.5,0.5] and t ∈ (t1, t2]

C = erfc

(
−0.5 erfc

2
√

η t

)
on x = −0.5

C = erfc

(
0.5 − a t

2
√

η t

)
on x = 0.5

C(t1) = C0


(C∗
0, η∗) = Arg min

C0,η

(C0, η)

(51)

The gradient of the cost function 
(C0, η) is:

∇
(C0, η) =
(

′

C0
,
′

η

)
(52)

Here, 
′
C0

, 
′
η are defined by the following formula:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

′

C0
= C0 − C̄0 − P̂ C (t1)


′
η = η − η0 +

t2∫
t1

(
∂C

∂x
,
∂ P̂ C

∂x

)
dt

(53)

where P̂ C is the solution of the system of Eqs. (47).
The problem (51) is solved with η0 = 1.5 η̄ = 0.6 m2/s and C̄0 defined by formula (41). Using ∇
(C0, η), defined by (52), 
we can find the optimal values C∗

0 , η∗ by solving the optimization problem (51) with the BFGS method (see [2], [10]). 
For further convenience, η∗ is denoted by η∗

MNEF. The system of Eqs. (37) is solved by s.t. C0 = C∗
0 and η = η∗

MNEF. The 
obtained solution is denoted by CMNEF. For the time period [t1, t2], the AD P (CMNEF, Cobs) is displayed in Fig. 4b. One 
sees that the maximum value of AD P is about 24%. For the next time period [t2, t3], we compute the forecast by solving 
(38) s.t. η = η∗

MNEF = 0.44 m2/s and Ĉ0 = CMNEF(t2). Its solution is denoted by C f
MNEF. The curve for AD P (C f

MNEF, Cobs)

is labelled as MNEF in Fig. 5d.

We want to emphasize that all the figures in Fig. 5 confirm the important role played by the VDA algorithm as a tool for 
improving the resolution of the numerical model (compare the error levels in MNEF and in EM). Moreover, the introduction 
of EF into the model equation well compensates a discrepancy between the model and the true state of the system, which 
has a really positive impact on the decrease of the estimation error (compare the two curves MEF and MNEF).

The typical optimization processes for estimating the diffusion coefficient η, with and without EF, are shown in Fig. 6a. 
One sees that the correction process with EF (curve MEF) converges much more quickly compared with the case of MNEF. 
The estimated error field EC is presented in Fig. 6b. One sees here that there are strong changes located around the three 
measurement points.

4.3. Test case 3: simulation experiment for Burgers’ pollution model

In this section, we will consider the problems (1)–(4), (13), (14), (19) in which the boundary conditions on x = L are 
given as follows:⎧⎪⎨

⎪⎩
∂U

∂x
= 0 on x = L

∂C

∂x
= 0 on x = L

(54)

The flow is computed under the conditions L0 = 0, L = 1 m, time step �t = 0.0001 s, U in = 0.5 m/s, t1 = 0, t2 = 0.5 s, 
t3 = 3.5 s, C in = 5 mg/l. We will suppose that the measurements are available at three spatial points: x = 0.2 m, x = 0.4 m, 
x = 0.9 m. The performance is tested at the point (called a test point) x = 0.8 m.
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Fig. 6. Test case 2. Panel (a): the curves MEF and MNEF show the diffusion coefficient η, estimated based on the MEF and MNEF models, respectively. 
Panel (b): error for the concentration coefficient EC in the spatio-temporal plane. Panel (c): The diffusion coefficient KC in the spatio-temporal plane.

The experiment is performed in the framework of a “twin experiment” (see [7], [15]).

– 1. The reference model (RM).
For the time period [t1, t2], solve the Eqs. (13), (14) s.t. η = η̄ = 0.4 m2/s, ν = ν̄ = 1 m2/s and the initial condition 
Uobs(t1), Cobs(t1) (see the grid red curves in Fig. 7a and 7b). The solution is the couple (Uobs, Cobs) (considered as a 
reference). Next we compute the forecast for the time period [t2, t3] by solving (19) s.t. Û0 = Uobs(t2) and Ĉ0 = Cobs(t2).

– 2. The erroneous model (E M)

For the time period [t1, t2], the Eqs. (13), (14) are solved with diffusion coefficients ν = 1.5 ̄ν = 1.5 m2/s, η = 1.5 η̄ =
0.6 m2/s and the initial condition values U0 = Ū0, C0 = C̄0. Here Ū0, C̄0 are obtained by a “twin-experiment” (see [7]) 
and they are displayed in Figs. 7a, 7b. The AD P (Ū0, Uobs(t1)) and AD P (C̄0, Cobs(t1)) are presented in Figs. 7c and 7d, 
respectively. One sees there that the maximum percentage levels are about 12% and 10%, respectively. The rates between 
ν , η and ν̄ , η̄ are equal to 1.5.
The velocities and concentration of this model are denoted by UEM and CEM. The AD P (UEM, Uobs) and AD P (CEM, Cobs)

are shown in Figs. 10c and Fig. 11c, respectively. Next the forecast solution (U f
EM, C f

EM) is computed by solving the prob-
lem (19) s.t. the initial condition Û0 = UEM(t2) and Ĉ0 = CEM(t2) for the next time period [t2, t3]. The AD P (C f

EM, Cobs)

and AD P (U f
EM, Uobs) at the test point are presented by the dash red curves in Figs. 8d and 9d.

– 3. The model including EF Eu , EC (M E F ):
By the way shown in subsection 2.1, the optimization problem (6) with the boundary conditions (54) is solved by s.t. 
ν0 = 1.5 m2/s, η0 = 0.6 m2/s, Ku,0 = 1 m2/s, KC,0 = 1 m2/s, and Ū0, C̄0 (shown by the dash blue curves of Figs. 7a and 
7b), V u,0, V C,0 (defined by (32), (49)). The obtained optimal values are U∗

0 , C∗
0 , V ∗

u , V ∗
C , η∗ , ν∗ , K ∗

u , K ∗
C . For further use, 

we denote ν∗ , η∗ by ν∗
MEF and η∗

MEF, respectively. The system of Eqs. (1)–(4) is then solved by s.t. U0 = U∗
0 , C0 = C∗

0 , 
ν = ν∗

MEF and η = η∗
MEF, V u = V ∗

u , V C = V ∗
C , Ku = K ∗

u , KC = K ∗
C . The obtained solutions are denoted by UMEF, CMEF. The 

AD P (CMEF, Cobs), AD P (UMEF, Uobs) are shown in Figs. 10a and 11a, respectively. For the next time period t ∈ [t2, t3], 
the problem (19) is solved by s.t. η = η∗

MEF = 0.4 m2/s, ν = ν∗
MEF = 1.00001 m2/s and Û0 = U MEF(t2), Ĉ0 = CMEF(t2). Its 

solution is denoted by (U f
MEF, C

f
MEF). The curves for AD P (U f

MEF, Uobs), AD P (C f
MEF, Cobs) are presented by the grid green 

curves in Figs. 8d and 9d.
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Fig. 7. Test case 3. Panel (a): the initial true velocity Uobs(t1) used in RM and Ū0 the guess (velocity) used in EM. Panel (b): the initial true concentrations 
Cobs(t1) used in RM and C̄0 the guess for concentration used in EM. Panel (c): AD P between Ū0 and Uobs(t1). Panel (d): AD P between C̄0 and Cobs(t1).

Fig. 8. Test case 3. Panel (a): spatial AD P (concentration) between three runs MEF, MNEF, EM, and RM at the moment t = 0.232 s. The values of EM 
are projected onto the right vertical axis. Panel (b): the same as in (a), but at the test point and for the period [0.15 − 0.5 s]. Panel (c): time-average 
AD P (concentration) between MEF, MNEF, EM, and RM. The values of the curve EM are projected onto the right vertical axis. Panel (d): the same as in (b), 
but at the test point and for the time period [t2, t3].
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Fig. 9. Test case 3. Panel (a): the curves MEF, MNEF, and EM show AD P (velocity) between three runs MEF, MNEF, EM, and RM at the test point and 
at t = 0.0034 s. The values of the curve EM are projected onto the right vertical axis. Panel (b): the same curves as in (a) but over the time period 
t ∈ [0.15 s, 0.5 s]. Panel (c): time-averaged AD P (velocity) of the curves in (b) for the time period t ∈ [0.15 s, 0.5 s]. Panel (d): The same as in (b), but for 
the forecasting time period [t2, t3].

Fig. 10. Test case 3. Panel (a): spatio-temporal AD P (concentration) between MEF and RM. Panel (b): the same as in (a), but between MNEF and RM. 
Panel (c): the same as in (a), but between EM and RM. Panel (d): convergence of the estimated diffusion coefficient η based on MEF and MNEF models.
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Fig. 11. Test case 3. Panels (a)–(c): the same as in Fig. 10, but for the AD P (velocity): c of the estimated diffusion coefficient ν based on the MEF and MNEF 
models.

In Figs. 12(a), 12(b) we show the spatio-temporal estimates for the velocity EF Eu and the concentration EF EC . As to 
the estimated diffusion coefficients Ku (c) and KC (d), their estimates are displayed in Figs. 12(c) and 12(d).

– 4. The model not including EF Eu , EC (MNEF).
As in subsection 2.2, the problem (16) with boundary conditions (54) is solved by s.t. (i) ν0 = 1.5 m2/s, η0 = 0.6 m2/s; 
(ii) Ū0 and C̄0 (see Figs. 7a, 7b). The obtained optimal parameters are U∗

0 , C∗
0 and ν∗ , η∗ . We denote by ν∗

MNEF and 
η∗

MNEF the optimal values ν∗ , η∗ . The system of Eqs. (13), (14) is solved by s.t. U0 = U∗
0 , C0 = C∗

0 , ν = ν∗
MNEF and η =

η∗
MNEF. Its solution is denoted by (UMNEF, CMNEF). The curves for AD P (CMNEF, Cobs), AD P (UMNEF, Uobs) are displayed in 

Figs. 10b, 11b respectively. For the next time period t ∈ [t2, t3], the problem (19) is solved by s.t. η = η∗
MNEF = 0.42 m2/s, 

ν = ν∗
MNEF = 1.01 m2/s and Û0 = UMNEF(t2), Ĉ0 = CMNEF(t2). Its solution is denoted by (U f

MNEF, C
f
MNEF). The dotted blue 

curves for AD P (C f
MNEF, C

f
obs), AD P (U f

MNEF, U
f
obs) on the test point are presented in Figs. 8d and 9d.

5. Conclusion

This paper presents the results of a comparative study on the impact of an error function on the estimation of a solution 
for the transport of pollution substances based on Burgers’ equation. The classical approach to improve the system solution 
based on the VDA method is to minimize the cost function by tuning the initial condition and the diffusion coefficient. The 
objective is the comparison of the performance of the classical approach with that based on the EF method. The originality 
of the EF approach resides in an introduction of the error functions (EFs) Eu , Ec into Burgers’ equations to compensate for 
the model error. A new variational problem is formulated on the basis of the extended system of equations with a new 
vector of control. To see the effect of the introduced EF on the improvement of the estimated solution, three test cases have 
been experimented, in which three models are systematically used: EM, MEF, and MNEF.

The numerical experiments show that:

– the AD P (U , Uobs), AD P (C, Cobs) of model MEF are much lower than the ones of the other models EM and MNEF;
– in the optimization processes, the diffusion coefficients ν and η of model MEF come much closer and faster to the 

proposed values than the ones of model MNEF.
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Fig. 12. Test case 3. Spatio-temporal estimates for: velocity EF Eu (a); concentration EF EC (b); diffusion coefficient Ku (c); diffusion coefficient KC (d).

It follows that the EF approach overperforms compared to the classical approach and leads to a better forecast of substance 
contents and water quality.

It must be mentioned that the proper choice of EF plays a major role in guaranteeing a good performance of the proposed 
EF approach. Finding a relatively general method for an appropriate choice of EFs for different dynamical systems is an 
important and not easy task, and is left for a future study.

Based on the successes of the presented method for solving the 1D problem, a study on a 2D water pollution is underway, 
and we do hope to report the results on a 2D problem in a near future.

In order to have a good correction method, in this paper the EFs Eu and EC , satisfying the systems of Eqs. (3)–(4), are 
introduced in Eqs. (1), (2). One natural question that arises then is to compare the impact of the introduced EF with the 
others to see its advantages, if they exist, over the other EF structures in solving DA problems.

Appendix
For the simplicity of the presentation, suppose that the true system is described by

φ∗(t + 1) = 	(φ∗(t)),φ∗(0) = u∗, t = 0, ..., T (55)

where 	(.) : Rn → Rn . The observation z(t) ∈ R p is given by

z(t + 1) = Hφ∗(t + 1) + v(t + 1), t = 0, ..., T (56)

where H : R p → Rn , v(t) represents the observation error.
Introduce the numerical model

φ(t + 1) = 	(φ(t)),φ(0) = u, t = 0, ..., T (57)

It is seen that the solution φ∗(t) is well defined up to the initial condition u. From (57), by expressing φ(t) as a function 
of φ(0), the classical VDA tries to seek θ := u from the optimization problem

û = arg minθ∈
 J (θ)
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J (θ) = 1

2
||θ − ub||2M−1 + 1

2

∑T
t=1

||z − Hφ(t)||2R−1 (58)

where ub represents the a priori knowledge of the initial state, R is the covariance matrix of v , M is the background error 
covariance matrix (ECM). Particularly important is the specification of the background ECM. For more details, see [8], [9], 
[18].

In practice, however, we do not know exactly 	 and instead of 	 we are given only F . The numerical model used for 
assimilation should be

x(t + 1) = F (x(t)), x(0) = ν, t = 0, ..., T (59)

where F (.) : Rn → Rn . To compensate for the error resulting from the difference between 	 and F (and other sources of 
error like numerical error, discretization error...), instead of (59), we introduce the new model

x(t + 1) = F (x(t)) + f (t), x(0) = μ, t = 0, ..., T (60)

where f (t) represents the model error (ME). Thus, by assuming f �= 0, there is an interest to consider f as an unknown to 
be estimated. For example, one can assume that f is a solution to some equation, i.e.

f (t + 1) = �( f (t)), t ∈ (0, T ), f (0) = ψ (61)

A corresponding cost function is introduced for the extended system written for the extended state (xᵀ(t), f ᵀ(t))ᵀ and 
with θ := (uᵀ, ψᵀ)ᵀ as a control vector.

Comment A1. MEs are coming from different sources, some of which constant, others periodic or flow dependent. ME 
may also come from discretization, numerical errors... The simplest approximation is to consider the ME as constant. We 
have then � = I – the identity matrix. Equation (59) s.t. � �= I corresponds to the situation when the ME follows a prede-
fined time dependency. Markov chains, Fourier series expansions or neuron networks, etc., are other potential choices.

Comment A2.
One important question concerns the choice of the background vector θb = ub. Its choice depends on a priori knowledge 

we have on the initial system state φ(0) and of ME (ensemble mean, climatology...).
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