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In this essay we explore analogies between macroscopic patterns, which result from a 
sequence of phase transitions/instabilities starting from a homogeneous state, and similar 
phenomena in cosmology, where a sequence of phase transitions in the early universe is 
believed to have separated the fundamental forces from each other, and also shaped the 
structure and distribution of matter in the universe. We discuss three distinct aspects of 
this analogy: (i) Defects and topological charges in macroscopic patterns are analogous to 
spins and charges of quarks and leptons; (ii) Defects in generic 3+1 stripe patterns carry an 
energy density that accounts for phenomena that are currently attributed to dark matter; 
(iii) Space-time patterns of interacting nonlinear waves display behaviors reminiscent of 
quantum phenomena including inflation, entanglement and dark energy.

© 2019 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Dans cet article, nous explorons plusieurs analogies entre la formation de structures 
périodiques macroscopiques, qui résultent de la succession de transitions de phase 
ou d’instabilités, et certains phénomènes similaires en cosmologie, où une suite de 
transitions de phase dans l’univers primordial aurait donné lieu à la séparation des 
forces fondamentales et à la formation des structures. Nous considérons trois analogies 
différentes : (i) les défauts et charges topologiques dans les structures macroscopiques 
sont analogues aux spins et charges des quarks et des leptons ; (ii) les défauts dans 
les structures périodiques génériques (en dimensions 3 + 1) ont une densité d’énergie 
qui donne lieu à certains phénomènes attribués à la présence de matière noire ; (iii) 
les structures spatio-temporelles résultant de l’interaction d’ondes non linéaires ont 
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des comportements qui rappellent certains phénomènes quantiques, tels que l’inflation 
cosmique, l’enchevêtrement quantique et l’énergie noire.

© 2019 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Our aim in this essay is to introduce a new paradigm for thinking about the evolution of the universe. Building on 
previous work on patterns and pattern formation, we suggest a new theoretical construct modeling aspects of the universe 
on a wide range of scales, from the very small (Planck scales) to the very large (galactic scales). Our “toy models” display 
parallels to many of the challenges to and mysteries of current thinking in cosmology. We certainly do not claim that 
what we suggest resolves all the challenges to current theories. Rather, we present an alternative viewpoint with which to 
approach these challenges. While it may or may not have anything to do with the real universe, it nevertheless has several 
intriguing parallels.

We label our universe as a pattern universe as it basically sees the evolution of space-time, matter-energy, particles with 
charge and spin as natural and universal outcomes when, under changes in various stress parameters, systems undergo 
phase transitions from one pattern forming state to another. At each phase transition, a new pattern or macroscopic state is 
formed. For example, under a change of temperature difference between parallel, horizontal plates containing a layer of fluid, 
the purely conductive state (basically thermal noise with a temperature gradient) gives way to a state consisting of buoyancy 
driven cells which carry additional heat from one plate to another via convecting cells in an almost periodic structure with 
a preferred wavelength. The new macroscopic state is described by variables called order parameters which, in the case of 
the cited example, would be the slowly varying amplitude and phase of the underlying almost periodic pattern of convective 
rolls. The physics of the pre-transition stage are governed by one set of variables whereas in the post-transition they are 
governed by the dynamics of the new order parameters superposed on the preferred almost periodic structure. The two 
states may reflect very different scales and exhibit very different behaviors. The pattern universe we envision will undergo 
many such transitions, from a primordial state of fluctuations, a sea of waves, to a more ordered state governed by equations 
one might associate with Einstein’s equation of classical relativity whose properties such as the speed of information travel 
of macroscopic information can be very different from speeds at which the fluctuations of the pre-transition state may 
travel. Although the initial transitions will involve the Planck length and time scales, later transitions will reflect all the 
other instability driven transitions occurring at longer and longer length and time scales. The largest of these, which gives 
rise to the pattern which contains the energy which provides the pattern parallel of dark matter, is the gravity induced 
clustering instability generally attributed to Jeans.

What is important to note is that the relevant variables at each stage, the order parameters, which describe the behavior 
of each new emerging state, satisfy universal and canonical equations. These equations do not depend on all the microscopic 
details of the original unstable system but rather only on its underlying symmetries. We can thus, oftentimes, write down 
the corresponding order-parameter equations without a detailed analysis of the underlying microscopic models. As a conse-
quence, the nature of new laws at each new level of scale depends very little on details of the laws at earlier levels. This 
principle of universality is indeed a cornerstone for studying condensed-matter/pattern forming systems, and our goal in this 
essay is to explore possible applications of this principle to the universe.

Beyond a phase transition resulting in a new preferred state, the order parameter equations describe solutions cor-
responding to a mosaic of patches of periodic or quasiperiodic patterns reflecting the new preferred state separated by 
lower-dimensional defects. In our pattern universe model, defects carry energy, which translates into hidden mass, as well 
as topological indices which provide analogues of spin and charge. The order parameters capture the envelope or aver-
aged properties of the new state, both its smooth regions and its defects, and, as we shall see, exhibit many features and 
behaviors which parallel the manifestations of dark matter, energy and particle structures.

Faced by substantial observational evidence that the universe, or at least the portion of it we can experience, is flat 
(BOOMERanG [1] and WMAP [2]) and weakly accelerating in its expansion [3] and that the rotation of stars in galaxies and 
galaxies about clusters is not consistent with the detectable mass content (Rubin et al. [4]), current cosmological thinking 
has had no alternative but to posit the existence of dark energy and dark matter. Let us be clear. Neither designation explains 
anything. For the moment, they are simply descriptive place holders until the reasons for a new kind of pressure (dark 
energy) can be elucidated and a new kind of matter (dark matter), that only interacts with the observable universe via its 
gravitation, can be identified. The amounts of each required to reconcile with observations stagger the mind. Dark energy 
contains about 70% of the energy content of the universe. The remaining 30% consists of (roughly) 25% dark matter and 5% 
all other detectable matter. So 95% of all the stuff from which the universe is composed has origins we simply do not yet 
understand while the stuff we can understand, neutral and ionized matter, bricks, walls, you, me, the earth, the stars, is 
only 5% of what is out there. Therefore, new ideas as to the possible origins of mysterious dark energy and matter should 
be welcome.

What we suggest also has vast holes of ignorance but it has (in our view) one key advantage – it represents both dark 
matter and dark energy as manifestations of behaviors that we already know from studies of macroscopic pattern formation. 
It also has the merit that the building blocks of observable matter, namely quarks and leptons with fractional charge and 
spin, have pattern analogues.
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As one might expect, this paradigm has many things in common with current thinking. The pattern universe starts out 
as a sea of fluctuations with very high values of some stress parameter such as temperature. Nonlinear interactions in this 
sea spread its energy throughout a spectrum of scales and the relative speeds of modes of different sizes can be arbitrarily 
fast. The speed of light may limit travel through space but the space-time manifold itself can expand in any way it wants. 
One might liken the rapid expansion as to that experienced by a turbulent ball or by wave turbulent eddies in classical 
systems. In this sea, the dominant scales are of the order of the Planck length. As the stress parameter, temperature, lowers, 
a series of phase transitions takes place, each one highlighting a set of new structures which emerge as energy minimizers 
in the new state. They bring about but need not end with analogues of gravity and other forces but may involve patterns 
on patterns with scales up to and including galactic scales. The order parameters of each new state are the envelopes of 
the most excited modes and modes which are called soft or Goldstone modes, which reflect some symmetry of the original 
system and which are neutral at the phase transition.

In pattern theories, we know that the linear parts of these envelope equations reflect the dispersion relation which 
obtains to describe the onset of new modes emerging as instabilities of the former state. They have universal character. 
For example, in a convection pattern dominated by stripes of a particular orientation, the order parameter might be the 
envelope of the most unstable mode and its nearby wavenumbers, and the soft mode (relevant in convecting fluids with 
moderate to small Prandtl numbers) might reflect the pressure (which can change by a constant without changing the 
equations) or vertical vorticity (in the absence of viscosity). The resulting partial differential equations are basically Taylor 
series expansions to the lowest nontrivial order in the (complex valued) envelope function W , its spatial and temporal 
derivatives, and, at least near onset, products of the amplitude with the difference between the stress parameter and its 
critical value. They may also contain forcing terms, originally called geometric imperfections by Koiter, which nowadays are 
more commonly referred to as imperfect or continuous bifurcations. These pre-existing biases can smooth a phase transition 
by prematurely forcing the mode that is about to become unstable.

It is very important to stress again that the order parameter equations are canonical and universal, expressing symme-
tries in the state about to be destabilized. Vastly different microscopic systems sharing symmetries will have very similar 
equations for their order parameters. Only in the choices of coefficients are the details of the microscopic system remem-
bered.

As the difference between the stress parameter and its critical value grows, the amplitude of the envelope usually 
becomes slaved to gradients of its phase gradient, so that the order parameter equations become a description of how the 
phase of the pattern evolves, coupled with any soft mode effects. The slaving of the amplitude has extremely important and 
relevant consequences. When the order parameter is a complex variable, W = A exp(iψ), as it is near the phase transition 
when both the amplitude A and the phase ψ are active order parameters, the phase gradient can be determined uniquely 
from a knowledge of W or its underlying microscopic variable w . It is therefore a vector field. However, far from equilibrium, 
when the relation between the original field and the order parameter is w = f (ψ; A), with f a 2π periodic function in ψ , 
where the amplitudes A are slaved to phase gradients, then the phase gradient can only be determined by the original field 
w up to sign. Therefore, whereas in the former case, the wave-vector or phase gradient order parameter is single valued, 
in the latter case it is double valued. Namely, far from equilibrium the phase gradient order parameter is a director field, 
such as that commonly and necessarily used in the description of liquid crystals. This fact greatly changes the topological 
character of the allowed defects. For example, for director fields the point defects in two dimensions are disclinations (X
and V ) with topological indices (see Appendix A, Fig. A.2) of ± 1

2 with fractional spin character. For vector fields, they consist 
of composites of disclinations, such as targets (X X), vortices (X X in a different configuration), saddles (V V ), handles (V X) 
and dislocations (V V X X), all of which have integer spins. In the picture we discuss, spin 1

2 particles are associated with 
director fields, whereas integer spin defects such as point masses will occur as composites and defects in vector fields. For 
composites, the circulation, namely 

∫
k · dx, k = ∇ψ is well defined in addition to the topological indices, called twists, 

which give rise to half integer spins.
Current cosmology theories tend to think of and talk about the evolution of the universe in terms of preferred energy 

states assuming thereby that the dynamics is governed by a gradient or Hamiltonian flow with an associated free energy 
or Lagrangian/Hamiltonian. While, for the most part, we also adopt that viewpoint, we are cognizant that very few flows 
in nature are gradient flows. Indeed, for most parameter ranges in convecting fluids, the observed states do not minimize 
an energy functional at all with the consequences that, while relatively ordered, they display patterns with continuous and 
chaotic time dependence and patch/defect structures that do not necessarily coarsen. A good example is the spiral defect 
chaos consisting of contiguous spirals in convecting flows at moderate Prandl numbers. Therefore, while we will find it 
convenient to think of the patterns which evolve in pattern universes as arising from minimum energy states, we will 
also keep it firmly in mind that the governing equations for the phase dynamics may or may not arise from energetic 
considerations.

In Appendix A, we introduce in two and three dimensional systems the energy functional governing the phase of the 
pattern. Our goal here is to exhibit pattern analogues of quarks and leptons. The energy functional consists of two terms, 
one arising from the first (by analogy with elasticity we call it the strain energy) fundamental two form of the phase surface 
ψ , namely the metric form, and the second, after times long compared with the horizontal diffusion time, arising from the 
second fundamental or curvature two form. In each case, the combinations of the metric and curvature tensor which appear 
are invariant under Euclidean coordinate transformations. As the pattern evolves on the horizontal diffusion time-scale, the 
time it takes for macroscopic information to travel across the pattern, the first term which is initially dominant relaxes 
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to a state where almost everywhere the pattern has a preferred structure (for the purposes of this discussion, stripe-like, 
although it can also be hexagonal, or even quasi-periodic) and a preferred wavelength 2π/k0. Deviations from the preferred 
wavenumber k0 occur along defects and in these regions the curvature part of the energy, which by this stage has canon-
ical form only depending on the curvature tensor, balances the strain part. The curvature energy consists of terms in its 
integrand proportional to the mean curvature and all the sectional Gaussian curvatures. The latter however integrate out to 
boundary terms and are then determined by whatever topology is imposed by the far field. For example, in the region of 
the concave disclination, shown in Fig. A.2a of Appendix A, the Gaussian curvature ψxxψyy − ψ2

xy integral is given by 1
2 k2

0

times the twist of the director field on a contour surrounding the point defect.2 The topologies imposed carry information 
of pattern charges, spins and masses.

In a very real sense, then, everything in pattern universes is geometry, and in particular the sectional Gaussian curvatures 
of the phase surface generated at each phase transition. In situations where flows are gradient, energy minimization is 
achieved by the juxtaposition of two equations, the variation of the energy with respect to the phase and the variation 
with respect to the Lagrange multiplier describing the constraint which equates the sectional Gaussian curvatures to the 
twists due to boundary or far distance conditions. In many cases where the Gaussian curvatures condense onto points 
(we will describe the general case later), the variation with respect to the phase gives an equation of fourth order which 
can be “solved” by adding an extra term to the self-dual solution. The extra term then is determined by an equation 
whose forcing is provided by the nonzero Gaussian curvatures. When they are condensed onto points, this term acts as a 
Dirac delta function which modifies the self-dual solution along defect surfaces, curves and points. In regions where the 
Gaussian curvature is zero, the self-dual solution, in which the integrands involving mean curvature and strain energy are 
equal, obtains. For example in two dimensions, namely when the phase surface is a two dimensional surface embedded in 
three space, if the shape of the phase surface is planar or cone-like, then the Gaussian curvature is zero and the self-dual 
balance obtains. In the two dimensional point defects shown in Fig. A.2, the Gaussian curvature is zero except at the point 
defect itself. In the three dimensional loop defects shown in Fig. A.1, the sectional Gaussian curvatures are confined to 
the backbones. The topological indices, the analogues of charge and spin, are measures of the total amounts of sectional 
Gaussian curvatures which the loops circumscribe. The loop disclinations which we call pattern quarks and leptons are 
analogous to the more familiar vector field loops with vortex cores seen in fluids (smoke rings) and in organic tissue where 
they are often called scroll waves.

In Appendix B, we describe the pattern analogue of dark matter. When natural patterns first form, it is rare that a simple, 
energy minimizing planform covers the whole domain. While at the phase transition, certain symmetries are broken, for 
example the symmetry of translation in a field of convecting rolls, other symmetries remain. For example, in a horizontal 
layer of fluid heated from below with both translational and rotational symmetry, while the planform of parallel rolls is 
chosen with a preferred wavelength thereby breaking translational symmetry, the orientation of a patch of rolls depends on 
local biases such as boundary conditions or initial fluctuations in the system. As a result, natural patterns arise as patches 
of the preferred planform with an orientation chosen by local biases and these patches meet and meld along line and point 
defects. The patches will eventually coarsen but this process takes a very long time (which can be quantified). Moreover, 
eventual coarsening assumes that the system is governed by gradient dynamics but most systems we meet in nature are not 
gradient systems at all. In such cases, there is no requirement that defects eventually coalesce and disappear. Therefore, we 
can expect that the pattern universe will exhibit the same features, namely that it will contain lots of defects, either very 
long or infinitely long lived as it evolves. When we talked about pattern quarks and leptons, we learned about the character 
of these defects, their invariant indices (charges and spins) and how these indices are related to geometry and in particular 
the condensation of Gaussian curvature of the phase surface onto these same defects. But the defects also contain energy 
as the system is not in a total minimal energy state. What we demonstrate in Appendix B is that the energy contained in 
a class of integer spin defects, specifically targets, gives rise to an effective mass and corresponding force. This force will 
act in galaxies and clusters of galaxies as an additional component in the net gravitational force experienced by stars in a 
galaxy and galaxies in a cluster.

We will show that the manifestation of this force has an equivalent effect to that of the dark matter posited by traditional 
cosmology. Therefore, our contention is that, in a pattern universe, dark matter is simply a manifestation of the energy 
contained in pattern defects. Furthermore, it gives a result for the dependence of the rotation velocities of stars on radius 
which matches closely (as shown in Fig. B.1) what has been observed by Vera Rubin and colleagues. Namely, in the far field, 
the rotational velocities of stars in galaxies and galaxies around clusters tends to a constant.

In Appendix C, we discuss a pattern analogue for dark energy, that mysterious pressure force which increases as the mass 
density decreases. In our pattern universe, we think of the original microscopic state as involving fluctuations with time and 
space scales of Planck time and length. The first phase transition picks out what we call the gravity force and just as in the 
cases of pattern quarks and leptons and dark matter, its envelope phase equation reflects the sectional Gaussian curvature of 
the space-time manifold and has a form similar to Einstein’s equation. In the weak mass limit where the metric tensor gαβ

is a small perturbation gαβ = ηαβ + hαβ of the Minkowski metric ηαβ , the order parameter equation is a weakly nonlinear 
wave equation for hαβ . The mass density in our picture arises from both the bulk and the defects. The weakly nonlinear 

2 Caveat: we choose to call ψxxψyy − ψ2
xy the Gaussian curvature when in fact we should define the latter as this quantity divided by (1 + ψ2

x + ψ2
y )2

but it can easily be shown that this too can be written in divergence form and again integrates out to a multiple of the twist.
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terms arise from two sources, a self-interaction and the interaction between the wave and a Goldstone or soft mode. It is 
the soft mode which resembles the cosmological constant. It is not quite constant as it reflects some global average of the 
order parameter intensity. Our picture is that behaviors on all scales can be accommodated within a single theory although 
the behaviors at different scales will depend on the behaviors of the phase surfaces generated by successive transitions. The 
short scale stuff, the Planck scale “quantum” part, is represented by the underlying periodic pattern. Its envelope, depending 
on much longer space and time scales, carries information on the classical level. In later transitions leading to analogues of 
the strong, weak and electromagnetic forces, the envelope equations should not only capture the physics on classical scales 
but should also encode quantum behaviors on atomic and nuclear scales.

In pattern forming systems, the appearance of a wave equation is very natural for the post instability stage of a transition 
in which a subset of fluctuating modes become amplified as almost stationary states. The second time derivatives naturally 
arise because square of the growth rate σ goes from negative to positive at the phase transition and the mode with 
wave-vector k which maximizes the growth rate σ 2(k) is the preferred one.3 In other words, the transition is from waves to 
stationary growth. Again, the order parameter equation for this class of transitions has universal character independent of 
details of the microscopic state and only dependent on its symmetries. Therefore, the precise details of how physics works 
at the quantum levels does not greatly affect behaviors on classical time and length scales. However, the microscopic details 
are remembered by the coefficients in the universal envelope equations. They appear as functionals of parameters which 
appear in the microscopic state and express what might be called fine structure relations.

In Appendix C, we introduce a very simple model to illustrate how, close to onset, the order parameter equations for 
the envelope of the most unstable mode and a soft or Goldstone mode are wavelike with the soft mode parameter playing 
the role of a cosmological constant. Working from this model, we discuss several possible behaviors. First, we explain that 
in this picture, the cosmological constant is a field rather than a constant of fixed value. Second, we discuss how it can 
play a role of the pressure in an equivalent hydrodynamical description, a pressure which increases with decreasing density. 
Third, we note that its interaction with the wave field can be both passive or active in the sense that changes in the latter 
can produce large effects in the soft mode field. While the possibilities might be enticing, we stress that they are just 
that, possibilities, and vague ones at that. Their connections with any concrete behaviors of the real universe are highly 
speculative. Moreover, we have no suggestion as to why any transition in the universe’s evolution should have any soft 
mode at all or to which symmetry it might possibly correspond.

As we have repeatedly said in the early parts of this essay, our aim is not to claim a new theory but simply to introduce 
a new perspective through which lens the evolving universe might be viewed.
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Appendix A. Pattern quarks and leptons

The results we discuss here have already been extensively reported in several earlier publications [5–7] but some main 
details are worth including here because we want to consider them as part of a wider story. In the previous work, we had 
introduced three dimensional loop disclinations as extensions of two dimensional concave and convex point disclinations 
on closed loop backbones.

Associated with such objects were two topological indices which we termed spin and charge and since the indices 
turned out to be integer multiples of 1, 1/2 and 1/3 we called them pattern quarks and leptons. We briefly summarize some 
background. We begin with a simple example of a two space dimension microscopic field evolving under the dynamics

wt = R w − (∇2 + 1)2 w − w3 = − δE

δw
(1)

for the real valued scalar field w(x, y, t), where R is the stress parameter. More complicated equations with the same 
symmetries will yield similar averaged properties. We seek slowly modulated solutions

w = f (ψ; {A}, R) + corrections + . . . , f is 2π periodic in ψ (2)

where the amplitudes {A} are slaved to the phase gradient k = ∇ψ , a director field. By averaging (1) over the period 2π, or 
by finding the solvability condition for the higher order corrections in w , we obtain the phase diffusion equation,

3 If the growth rate has a simple zero at the phase transition, the usual Ginzburg–Landau or complex Ginzburg–Landau equation obtains.
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Fig. A.1. Loop defects. z is the coordinate along the “backbone” and the pattern is periodic in z.

〈w2
ψ 〉∂ψ

∂t
= − δ

δψ

{∫
1

4
〈w4〉

∣∣∣∣
1

k2
+ ε2〈w2

ψ 〉
(
(∇x · k)2 − 2(ψxxψyy − ψ2

xy)
)

dx dy

}
(3)

In the early stages of the relaxation, in convection terms the horizontal diffusion time, the first or strain term in the average 
energy F dominates but as it does the wavenumber k almost everywhere approaches its preferred value k0, in this context 
equal to 1. Only on defect lines and points will it significantly differ and in these regions it is balanced by the curvature 
energy.

At first sight, it may seem superfluous to include the Jacobian (determinant of the Hessian) term in the integrand of the 
curvature energy as it has divergence form and can therefore be replaced by a boundary line integral

J = ψxxψyy − ψ2
xy, 2

∫



J (x, y)dx dy =
∮
C

k2 dφ (4)

where k = (k cos φ, k sinφ) and C is a counterclockwise contour on the double cover of the plane. Moreover, the variation of 
F with respect to the phase ψ is zero. Nevertheless, it is very important because the relation (4) manifests the influences of 
singularities in the phase field within the integration domain and represents as a consequence a constraint of the director 
field. For the two-dimensional patterns shown in Fig. A.2 of a concave and a convex disclination, the twists are −2π and 
+2π, respectively, which, when divided by the double cover angle 4π, are ∓ 1

2 respectively. The angular separations of 
2π/3 in the concave disclination (Fig. A.2(a)) are a consequence of energy minimization. By similar arguments, in a three 
dimensional pattern with pattern singularities loop concave and convex disclinations as shown in Fig. A.1, there is a second 
class of twists or topological invariants representing the director field twist around contours twisting around the loop 
backbones. It is relatively easy to see these are integer multiples of 1/3 and 1.

Therefore, the constraints on the phase surface imposed by the natures of the pattern singularities involve an additional 
equation to the variation of F with respect to ψ , which involves a relation between the mean curvature and the deviation 
of the pattern wavenumber from its preferred value. The two equations are compatible. The first is an integral constraint 
reflecting the nontrivial topology of the director field within the integration domain. The second describes the structure of 
the field in the neighborhood of defects.

There are two conclusions we want to stress. The first is that, without any a priori imposition of symmetries on the 
original microscopic field w other than translational and rotational invariance, there nevertheless appear, entirely naturally 
without any imposition of U (1), SU (2), SU (3) and SU (5) symmetries, objects with topological invariants which are integer 
multiples of the fractions 1

2 and 1
3 .

The second is that we can interpret the integral constraint on the Jacobian J (or Gaussian curvature) of the phase surface 
as being a constraint on the sectional Ricci curvatures of the manifold obtained by embedding out phase surface ψ(x, y)

or ψ(x, y, z) in the three or four dimensional space x, y, s or x, y, z, s with the standard Euclidean metric dx2 + . . . + ds2 =
(1 + ψ2

x ) dx2 + . . . Namely, the integral constraint is the integration of the Ricci tensor or “Einstein’s equation” over the 
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Fig. A.2. Point defects in 2D patterns.

domain. It might also be written J = ρ(x, . . .) where ρ is some density. In our case here, of course, with the pattern 
structures shown in Figs. A.1 and A.2, the density ρ is a distribution. Indeed, this is entirely what we expect. As we have 
said, the relaxation of the pattern to its lowest energy state comes in two stages. The first occurs on the horizontal diffusion 
time scale (proportional to 1/ε2 where ε is the ratio of pattern wavelength to the total pattern size containing many 
wavelengths) and in that stage the wavenumber almost everywhere takes on its preferred value. If that is true, then almost 
everywhere f 2 + g2 = k2

0 where ∇ψ = ( f , g). It is easy to show that the Jacobian J = fx g y − f y gx is also zero. Therefore, 
we expect J to be distributed on defects, although not necessarily always on points as in Fig. A.2.

Indeed, if one takes a slightly more complicated geometry such as that of a semicircle domain with “heated” boundary 
conditions, namely the wave-vector k is perpendicular to the boundary, then a curve of wave-vector discontinuity forms in 
its interior. The usual line defect with a sudden but smooth wave-vector transition in a boundary layer is unstable because 
the constant phase contours intersect the curve defect at too sharp an angle and the final state is that of a dense set of 
dislocation like points along this contour. However, outside of this contour, the wavenumber k attains its preferred value. 
For a discussion of the instability that leads to concave-convex disclination creation from a smooth vector field, see [7]. That 
source also describes how, near critical values of the stress parameter, such objects can spontaneously collide and restore 
the vector field nature of the wave-vector field.

Far from onset, therefore, we suggest that the minimization of the energy leads to a phase surface where the boundary 
layer structures satisfy δE/δψ = 0 and whose Jacobian J is concentrated, namely it is nonzero only on a set of small 
measure. In this case, as we have shown in [8], we can split the fourth order equation for the phase into a pair of second 
order equations by setting the mean curvature, the surviving integrand of the curvature energy, equal to the strain energy 
integrand plus a correction. The correction then obeys a very similar second order equation with a forcing term proportional 
to the Jacobian J , which we can take to be given based on the kinds of singularities we expect the pattern to have.

Before we leave this appendix, however, we list several some of the outstanding challenges connected with point and 
loop disclinations. For examples: can we show that the interaction forces between such objects confirm their interpretations 
as charges? What is the nature of their composites? Do loop disclinations form knot like structures or do they, like smoke 
rings, tend to merge separate loops into a single one?

Appendix B. Patterns inspired model for dark matter

We begin by offering the idea that a pattern universe has an extra energy which could explain the effects which have led 
to the suggestion from cosmologists [9,10] that, in addition to visible matter, there exists a significant source of gravitation 
whose mass is many times that of visible matter [11,12]. Important findings which led to a widespread acceptance of this 
conclusion are the studies of Rubin, Ford and Thonnard [4,13] on the rotational speeds of stars in galaxies. The simple model 
in which the force experienced by the star executing a circular orbit at radius r about the galactic center due to some large 
center mass M of the galaxy is balanced by the star’s centrifugal force leads to a conclusion that the rotational velocity v
should decay with increasing distance r. This is contradicted by observations that consistently demonstrate that the galactic 
rotation curves flatten out and the orbital velocity of distant stars is roughly constant. This is illustrated, for example, in 
Fig. B.1 generated from rotation velocity data for the galaxy NGC 3198 (van Albada et al. [14]).

Turning the argument around by balancing GM/r2 with v2/r with v constant, gives a mass M of v2r/G which is more 
mass than the galaxy would seem to contain. Dark matter was invented to resolve this discrepancy [11,12]. For example, 
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Fig. B.1. The rotation curve for NGC 3198. r is the distance from the galactic center and v(r) is the rotation speed. The data is from van Albada et al. [14].

the data in Fig. B.1 can be explained by a spherical distribution of dark matter in the galactic halo [14]. Unfortunately, 
to date, the source of this extra mass has not yet been definitively identified.4 Also, there are countervailing view points. 
Milgrom [15] and others have argued that the observations should be interpreted as the need to modify Newton’s third law 
at small accelerations; others, most notably Don Saari, have argued that the simple balance in terms of a net mass M is not 
appropriate and that one must take account of forces between individual stars, and this may negate the need for adding 
any other matter.

Our starting point is the regularized Cross–Newell equation (3). Because the relaxation dynamics will drive the preferred 
wavenumber k close to k0, here unity, we can write the dynamics as a gradient flow for the effective (averaged) energy

E =
∫ [(

|∇ψ |2 − 1
)2 + ε2

(
∇2ψ

)2
]

dx dy (5)

We can write down a Lorentz-invariant generalization of the pattern Lagrangian (5) by analogy as

LP = ρ0c2
∫ {

(|∇ψ |2 − c−2ψ2
t − 1)2 + k−2

0 (ψ − c−2ψtt)
2
}

d3x dt (6)

where ρ0c2 is the effective “energy density” of the phase field and k0 is its preferred wavenumber is an inverse length.
Although we do not have a concrete identification of the nature of the field w nor the mechanism which leads to the 

local periodic structure w = f (ψ), ∇ψ = k, nor what sets the preferred wavenumber k0, we observe that (6) gives the 
natural Lorentz-invariant generalization of the universal averaged energy for nearly periodic stripe patterns (5), and is thus 
expected to describe the macroscopic behavior arising from a variety of microscopic models. The integral is set up with 
extra normalizing factors of k0 so that Ē has the dimensions of action, i.e. energy integrated in time.

The Euler–Lagrange equation for the Lagrangian in (6) is the 4th-order nonlinear wave equation

( − c−2∂tt)
2ψ − 2ηαβ∂α

{
(|∇ψ |2 − c−2ψ2

t − k2
0)∂βψ

}
= 0

on Minkowski spacetime with coordinate (x0 = ct, x1 = x, x2 = y, x3 = z), (inverse) metric ηαβ and signature (− + + +). 
We seek stationary spherical target solutions ψ = ψ(r) which both reflect the galactic halo and are “localized”, so that 
wavenumber mismatch |∇ψ | − k0 vanishes as r → ∞. For radial solutions ψ = ψ(r) = ψ(

√
x2 + y2 + z2), we have(

∂rr + 2

r
∂r

)2

ψ(r) − 2

r2
∂r

{
r2(ψ ′(r)(ψ ′(r)2 − k2

0))
}

= 0 (7)

It is immediately obvious that ψ(r) = k0r is a solution, although this solution is not smooth at the origin. Nonetheless, we 
expect ψ(r) = k0r gives the correct far field behavior. Linearizing about this solution, ψ(r) = k0r + α(k0r)β , we get

αkβ

0 β(β + 1)
(
β2 − 3β − 4k2

0r2 + 2
)

r4
= 0

so that the far-field corrections correspond to β = 0, a constant shift in ψ and β = −1 corresponding to a correction 
of the form α/(k0r). Equation (7) is 4th order, so there are two other solutions, one diverging exponentially as r → ∞. 
Consequently we get one boundary conditions by requiring that ψ ′ should stay bounded as r → ∞. At the origin regularity 

4 One interesting candidate, “dressed neutrinos”, is put forward in this volume by our friend and colleague Yves Pomeau.
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of the solution requires ψ ′(0) = ψ ′′′(0) = 0. We are also free to pick ψ(0) and this gives us a full complement of boundary 
conditions. Expanding ψ =∑ ck(k0r)2k in even powers of k0r and substituting in (7) shows that c0 is undetermined and the 
higher coefficients satisfy algebraic relations such that if c2 is specified, then all the higher order coefficients are determined. 
The condition that ψ ′ should remain bounded as r → ∞ will now determine c2.

While we can, in principle, determine the full stationary target pattern solution, e.g., by numerically solving (7), our 
interest is in the far field behavior of the stationary solution. From the preceding discussion we have

ψ ≈
{

k0r + ψ0 + α
k0r + α2

2k3
0r3 + O ((k0r)−5) r → ∞

c0 + c2(k0r)2 − c2
10 (k0r)4 + O ((k0r)6) r → 0

(8)

Again, we emphasize that, the only freedom left is an overall constant shift so that ψ − c0, α and c2 can be determined in 
principle, although we do not need their precise values for our purposes.

For negative α, the far-field wavenumber will be within the Busse balloon (the stable range of wavenumbers for the 
non-regularized Cross–Newell equation). Using the Ostrogradski formalism [16] we can compute the Hamiltonian (or equiv-
alently the mass) density5 corresponding to the Lagrangian (6) for the stationary solution (8). In the far field, R � k−1

0 , the 
equivalent mass MP(R) in the pattern field ψ is

MP(R) = 32πρ0(1 − α)R

k2
0

+ small corrections (9)

Matching the gravitational acceleration from this “effective mass” in the pattern field, added to the visible baryonic mass
MB(R), with the centripetal acceleration v2/R of a circular orbit gives

v2

R
= G(MB(R) + MP(R))

R2
=⇒ v(R) ≈

[
GMB(R)

R
+ 32Gπρ0(1 − α)

k2
0

]1/2

(10)

demonstrating the flattening of the rotation curve of a galaxy as R gets large assuming MB is bounded.
We will now sharpen this heuristic argument. The stress–energy momentum T αβ in the pattern field with Lagrangian 

LP is given by the Einstein–Hilbert prescription T αβ = 2√−g
δ L̃

δgαβ
where g = det[gαβ ] and L̃ is the appropriate extension 

of the Lagrangian LP in (6) to curved space-times [17]. The curved space Lagrangian can be obtained from the ‘minimal 
coupling’ assumption [17] as

L̃ = ρ0c2

k4
0

∫ {
(∇μψ∇μψ − k2

0)
2 + (∇μ∇μψ)2

}√−g d4x (11)

where the metric gαβ has signature (− + + +), ∇μ is the corresponding covariant derivative. To obtain the stress tensor 
in a (background) flat space time, it suffices to consider variations gαβ = ηαβ + tραβ and compute all the variations to first 
order in t . To this end, we record the following relations for the inverse metric gγ δ , the Christoffel symbols �σ

γ δ and the 
quantities that appear in the curved space Lagrangian L̃:

gγ δ = ηγ δ − t ηγαηδβραβ + O (t2)

�σ
γ δ = t

2
ησξ

[
∂ργ ξ

∂xδ
+ ∂ρδξ

∂xγ
− ∂ργ δ

∂xξ

]
+ O (t2)

√−g = 1 + t

2
ηαβραβ + O (t2)

∇μψ∇μψ = ηγ δ∂γ ψ∂δψ − t ηγαηδβραβ∂γ ψ∂δψ + O (t2)

gγ δ∇γ ∇δψ = �ψ − t ηγαηδβραβ∂γ ∂δψ − t

2
ηγ δησξ

[
∂ργ ξ

∂xδ
+ ∂ρδξ

∂xγ
− ∂ργ δ

∂xξ

]
∂σ ψ + O (t2)

The Einstein–Hilbert stress tensor is now given by

d

dt
L̃

∣∣∣∣
t=0

= 1

2

∫
T αβραβ d4x + boundary terms

A straightforward but somewhat lengthy calculation now yields

5 It follows from Ostrogradski’s theorem that the Hamiltonian is not bounded from below. This is a serious concern, and our pattern states are necessarily 
unstable. We sidestep this issue by only considering stationary patterns in this work, but this issue needs to be revisited in a time dependent framework.
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T αβ = ρ0c2

k4
0

{
−4(ημν∂μψ∂νψ − k2

0)η
σαητβ∂σ ψ∂τψ − 4�ψ ησαητβ∂σ ∂τψ

+ 2(ηατ ηβσ + ηβτ ηασ − ηαβηστ )∂τ (�ψ ∂σ ψ)

+ ηαβ
[
(ημν∂μψ∂νψ − k2

0)
2 + (�ψ)2

]}
(12)

We can now express the energy density T αβ for the (stationary) phase field (8) with respect to a normalized basis 
{et, er, eθ , eφ} induced by (spatial) spherical polar coordinates (r, θ, φ).

We decompose the stress tensor into two pieces, Ts coming from the “stretching energy” with density (|∇ψ |2 −
c−2(∂tψ)2 − k2

0))
2 and Tb from the bending energy (� ψ)2. We compute these quantities for a stationary, radial solution 

ψ = ψ(r) to get

Ts ∼ ρ0c2

k4
0

⎛
⎜⎜⎝

τ1 0 0 0
0 τ2 0 0
0 0 −τ1 0
0 0 0 −τ1

⎞
⎟⎟⎠ , Tb ∼ ρ0c2

k4
0

⎛
⎜⎜⎝

τ3 0 0 0
0 τ4 0 0
0 0 −τ3 0
0 0 0 −τ3

⎞
⎟⎟⎠ (13)

where

τ1 = (ψ ′(r)2 − k2
0)

2

τ2 = (3ψ ′(r)2 + k2
0)(ψ

′(r)2 − k2
0)

τ3 = −ψ ′′(r)2 − 2ψ ′(r)
(
rψ ′′′(r) + 4ψ ′′(r)

)
r

τ4 = 8ψ ′(r)2

r2
+ ψ ′′(r)2 − 2ψ ′′′(r)ψ ′(r) (14)

We remark on the expected structure of Ts and Tb, viz. the off-diagonal stresses should be zero from time-reversal and 
spherical symmetries of the solution ψ , and further T 00 = −T θθ = −T φφ since the metric has signature (− + + +), and ψ is 
independent of t , θ and φ. Finally, the quantities τ1, τ2, τ3 and τ4 are constrained by the conservation of energy momentum 
∇μT μν = 0. A calculation shows that, as expected, these 4 conditions reduce to just one constraint on ψ(r), namely that ψ
should satisfy the Euler–Lagrange equation (7).

The stress tensor associated with the field ψ will act as source for the curvature of space-time. The far-field, r � k−1
0 , 

stress tensor is obtained from (8):

T = ρ0c2

k4
0

⎛
⎜⎜⎜⎜⎝

4α2−4α
r4 0 0 0

0 4α2−4α
r4 + 8k2

0−8αk2
0

r2 0 0

0 0 4α−4α2

r4 0

0 0 0 4α−4α2

r4

⎞
⎟⎟⎟⎟⎠+ O ((k0r)−6)

We consider a spherical galaxy6 consisting of (non-relativistic) baryonic matter (pressure is approximately zero) with 
stress tensor T 00 = ρB(r), T rr = T θθ = T φφ = P = 0 along with the stationary phase field ψ(r) from above. Assuming that 
the space-time is close to being flat, we can compute the galactic rotation curves in the Newtonian approximation [17]. In 
this approximation, the metric is of the form

g = −c2(1 + 2�(r))dt2 + (1 + 2�(r))dr2 + r2(dθ2 + sin2 θ dφ2) (15)

Computing the Einstein curvature tensor Gαβ (to lowest order in � and �) and relating it to the components of the stress 
tensor T αβ , we get the following three equations from the tt , rr and θθ or φφ components of Einstein’s equations [17]
Gαβ = 8πGT αβ/c4

∂r(r�(r))

r2
= 4πG

c2

(
ρB(r) − 4ρ0α(1 − α)

k4
0r4

)
+ O (r−6)

r�′(r) − �(r)

r2
= 32πG

c2
ρ0

[
(1 − α)

k2
0r2

− α(1 − α)

2k4
0r4

]
+ O (r−6)

6 For simplicity. A similar procedure can also be used for other mass distributions, e.g., disk galaxies.
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∂r(r�′(r) − �(r))

r
= 32πG

c2
ρ0

α(1 − α)

k4
0r4

+ O (r−6) (16)

The third equation is redundant as a consequence of the Bianchi identity ∇μGμν = 0 and the conservation of Energy-
Momentum ∇μT μν = 0. We can now solve this system to get

MB(r) =
r∫

0

4πρB(s)s2ds

�(r) = GMB(r)

c2r
+ 16πGρ0α(1 − α)

c2

[
1

k4
0r2

− 1

k2
0

]
+ O (r−4)

�(r) = − GMB(r)

c2r
+ 32πGρ0(1 − α)

c2k4
0

log(k0r) + O (r−2) (17)

In integrating the equation for �, we have made the (immaterial) choice of imposing �(r) = GMB(r)c−2r−1 at r = k−1
0 to 

set the value of the constant of integrations.
We are now in a position to determine the rotation curves. The velocity of a particle in a circular orbit in the “equatorial 

plane” θ = π/2 is given by

vα = dxα

dτ
= d

dτ
(t, r, θ,φ) =

(
1 − O

(
r2ω2

c2

)
,0,0,ω(r)

)
where ω(r) is its angular velocity and τ is proper time for this particle. Since such a particle is in geodesic motion, we have 

d
dτ vα + �α

βγ vβ vγ = 0. Computing the Christoffel symbols for the metric in (15) and substituting the expression for vα , we 
get

vφ(r) = rω(r) =
[

GMB(r)

r
+ 32πGρ0(1 − α)

k4
0

]1/2

(18)

Note that we have recovered the profile v =
√

v2
B + v2

D, where vB and vD are the orbital velocities inferred from the vis-

ible baryonic matter and a hypothesized dark matter with an isothermal profile ρD(r) ∼ r−2, respectively [18]. Also, this 
expression agrees with the heuristic formula (10).

To use this formula to compute vφ we need one further ingredient, namely the quantity ρ0(1−α)

k4
0

. We can choose ρ0 and 
k0 to yield agreement with Verlinde’s work on emergent gravity [19], by requiring that

(i) At the cross-over length scale k−1
0 , the two terms in the square root match.

(ii) At the scale r ∼ k−1
0 , the accelerations satisfy k0 v2

B ∼ k0 v2
D ∼ a0 ∼ cH , where a0 is the natural acceleration scale in 

MoND [15] and H is Hubble’s constant [19].

Using the parameters for the Milky way MB ∼ 6 ×1010 M� and Hubble’s constant H ≈ 67.6 km/s/mpc, we obtain k−1
0 ≈ 3 kpc 

and vD ≈ 220 km/s, which are in the right ranges for the central bulge and the flat part of the rotation curve respectively. 
We also get the estimate ρ0(1 − α) ≈ 1.2 × 10−21 kg/m3, which is to within a few orders of magnitude of the cosmological 
constant �, suggesting, perhaps, a connection between the mechanisms that generate � and the mechanisms that generate 
“dark matter” in our model. This is one of the key predictions in recent work on emergent gravity [19].

We might therefore ask: Could dark matter simply be a manifestation of the elastic energy of a patterned structure 
which foliates the universe, and whose energy, reflecting the deviation of the local wavenumber from its preferred value, 
depends only on what we see as detectable (visible and black hole) matter?

We have no way of answering that question definitively. There is no doubt that, in the absence of any idea about the 
microscopic description of the early universe, these suggestions are purely conjectural and lack a means of verification. 
However, we have introduced a new paradigm and the new picture has the virtue that it is potentially consistent with 
observations [13]. Also, it avoids some of the small-scale inconsistencies between observations and the existing cosmological 
constant/cold dark matter (�CDM) paradigm [20,21], since there is a natural “core” radius k−1

0 in our model

Appendix C. Inflation, entanglement and dark energy in a pattern universe

In this section we investigate phenomena that arise on macroscopic scales as the parameters in a microscopic “quantum 
pattern equation” are varied. The key idea is that, starting with a microscopic description, a master equation which captures 
behaviors at all scales, the physics at successively larger scales is revealed, stage by stage, by averaging over the dominant 
scales at the previous level. Fields which vary on very long times and distances can behave very differently to fields which 
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have very short scale variations. Among the consequences is that there need be no contradiction between super-luminal 
spreading of the influences of short scale fluctuations, i.e. entanglements, while the communication of “information”, a 
coarse-grained, large scale notion is limited by the speed of light [22].

We will begin with the microscopic equation, closely related to the one we used in the previous section.

ρwtt + μwt = ∇2(D∇4 + P∇2 + a)w + b((∇w)2 + 2w∇2 w) − 4c1 w3 + 2c2(w(∇w)2 + w2∇2 w) (19)

We have applied an extra Laplacian operator to the RHS of (19) as we want to include the effects of a Goldstone or soft 
mode which will turn out to parallel the Einstein cosmological “constant” or quintessence. The stress parameter P here will 
essentially parallel the inverse temperature in cosmological models. Alternatively, we can take P fixed and let the stress 
parameter be a, which we will do here. Nonlinear effects are included in the quadratic and cubic terms. For simplicity, we 
choose the RHS of (19) to be the variational gradient of a functional E , the energy,

E = 1

2

∫ {
D(∇(∇2 w))2 − P (∇2 w)2 + (a + bw)(∇w)2 + c1 w4 + c2 w2(∇w)2

}
dx (20)

although, for most pattern behaviors, that restriction is not really necessary. Let us also think of the friction μ as being very 
small and, at least to start with, we take it to be zero.

For large a, equivalently small P , and for small amplitude values of the field w , the motion is wavelike, w ∼ exp(ik · x −
iωt), with dispersion relation,

ω2 = k2

(
D

(
k2 − P

2D

)2

+ a − P 2

4D

)
(21)

Thus, at the beginning, the w = 0 state is neutrally stable and small perturbations behave as a sea of waves. A field 
of weakly nonlinear, dispersive waves will interact, share energy via resonances, and that energy will more and more be 
spread to the smallest scales. This is basically a fundamental result of wave turbulence theory (see references [23,24]) and 
is consistent with the idea that the system can more effectively explore its phase space (increase entropy) by transferring 
energy to smaller and smaller scales. It is also known from wave turbulence theory that the smallest scales exhibit isotropy 
and homogeneity. The speed at which the spectral energy reaches the smallest scales depends of the competition between 
the relative strengths of the nonlinear terms and linear terms at large k. For situations with finite capacity such as fully 
developed hydrodynamic turbulence, the smallest scales are reached in finite time. For what are called infinite capacity 
situations, the time can be exponential. At small wavelengths, the energy spectrum is also isotropic. Because wave-packet 
speeds increase with increasing k, the size of an initial bubble of waves will rapidly expand either at an exponential or 
supra-exponential rate. An initial bubble containing a turbulent field of random waves spreads at inflationary rates and the 
small scale structures which dominate the outermost parts of this universe are isotropic.

As the size gets larger and larger, and the stress parameter P grows, there comes a stage when an instability or phase 
transition occurs and certain shapes and scales are preferentially amplified. If we examine the linear stability of the w = 0
solution by setting w ∼ exp(ik · x + σ t), we find, analogous to (21), that

σ 2 = −k2

(
D

(
k2 − P

2D

)2

+ a − P 2

4D

)
(22)

The growth rate first becomes zero when

a = ac = P 2

4D
, k2 = k2

c =
( a

D

)1/2
(23)

As a decreases so that a − P 2/4D becomes negative, the maximum amplification occurs for a < ac at scales k0 = kc =( ac
D

)1/4. Out of the random sea of, by now very weak nonlinear waves, a dominant periodic or quasi-periodic structure 
emerges. Rotational symmetry means of course that there are many competitors, namely all modes with wave-vectors with 
wavenumber kc and indeed their immediate neighbors. These modes compete for dominance via the nonlinear interactions 
and, eventually, a winner, or a set of possible winners depending on available symmetries, emerges. Often that winner can 
be a single mode, a pattern of stripes or rolls, with a wave-vector whose direction is arbitrary (and picked by local biases; 
i.e., symmetry breaking) but it can also be a combination of modes all with the same preferred wavenumber. Here, the 
mode is a stationary wave. Its group velocity, however, is finite.

Moreover, for conservative systems such as (19) in the absence of friction, there are potentially other players which are 
not amplified but which are not damped either. The most important of these is the zero or constant mode. It represents a 
symmetry of the system in which an arbitrary real number is added to w (analogous to the situation in a convecting fluid 
at small Prandtl numbers where the symmetry in the pressure field-the pressure only appears as a gradient-can drive large 
scale mean drift flows) is a Goldstone or soft mode and will play a very important role in the system’s dynamics and in 
its choice of a final state. In principle, we cannot neglect all the oscillatory modes either but we will argue here that once 
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the first phase transition is reached, a friction which is zero at k = 0 comes into play, and these other modes are damped. 
We will therefore seek to understand the evolution of the envelope A of the most excited wave under self-interactions and 
interactions with the Goldstone mode B .

We insert the shape

w = Aeik0·x + cc + B + corrections, k0
2 =
√

ac

D
(24)

into (19) and allow, in order to account for the fact that wave-vectors nearby to the preferred mode also play a role, both 
the envelope A and the mean B be slowly varying functions of space and time. Standard analysis [25] leads to two equations 
for the evolution of both the envelope A and the mean B . They take the form of two nonlinear wave equations,

ρ
∂2 A

∂t2
− 4ac(k̂0 · ∇)2 A = −2bk2

0 AB + growth, saturation and higher derivatives on A, B (25)

ρ
∂2 B

∂t2
− ac∇2 B = −2bk2

0 A A∗ + growth, saturation and higher derivatives on A, B (26)

Here k̂0 is the unit vector in the direction of k0. The reason one does not get the familiar and canonical complex Ginzburg–
Landau equation [25] is that the frequency ω (alternatively the growth rate σ ) has a double zero at the onset value 
k2

0 =
√

ac
D . In fact, properly taking the limit, the two wave speeds, 2

√
ac and 

√
ac, are the respective (critical) group ve-

locities of the modes.
The equations (25) and (26) tell us how all information depending on the envelope of the amplified mode A and the 

dynamically important but neutral mode B propagate. We think of c = 2
√

ac as the “speed of light”.
We make two important points. First, while information associated with functionals of the original microscopic field w

can potentially travel at any speed (there is therefore nothing to contradict the phenomenon of “entanglement”), information 
which is a functional only of the envelope A which varies on long scales travels with a definite speed c determined by the 
microscopic parameters, in this case is 

√
2a.

Second, we regard the mean field B as being driven by the dc component proportional to A A∗ arising from the quadratic 
term. It is not, in any point by point manner, proportional to A A∗ but rather captures the integrated history of the envelope 
intensity. The equation (25) then parallels the Einstein equation (in the near flat universe approximation) which describes 
how the curvature of space-time is deformed by the presence of distributed mass. The term AB , again arising from the 
quadratic interaction in (19), plays exactly the role that the cosmological constant term would play in orthodox theory. 
Whereas the function B is not constant, it reflects some average over the state of the intensity of the amplified fluctuations. 
In a pattern universe, therefore, a Goldstone mode plays the role of a cosmological constant accelerating the expansion of 
the universe.

Although it may not be general, there is an interesting special case of equations (25), (26). The spatial gradient term in 
(25) is the scalar product of the vector group velocity of the most unstable wave and the gradient. It is well known that, 
in three wave systems, the condition of three wave resonance between long (here B) and short waves (here A) reduces to 
the statement that when the projection of the group velocity of the latter is equal to the phase velocity (here also its group 
velocity) of the former. This occurs when k̂0 is (1/2, ±√

3/2). In such circumstances the response of the “long” wave (here 
B) to the short wave envelope (here A) is very strong so that as the intensity of the short wave decreases, the strength of 
the “long” wave increases. If the “long” wave were to represent the cosmological constant, then it would get stronger as the 
gravity induced deviation from the Minkowski metric decreased, thus accelerating the expansion.

It is also worth thinking about the analogy with the dynamics of the complex Ginzburg–Landau equation and its purely 
dispersive first cousin, the nonlinear Schrodinger (NLS) equation, both similar to the order parameter equations of this 
model. In the case of the NLS, the equivalent hydrodynamic description obtained by setting ψ , the variable satisfying NLS, 
equal to √ρ exp(iφ). Up to an extra term called the quantum pressure, the two corresponding equations for ρ and v = ∇φ

are the Euler equations for the flow of a fluid with density ρ and a pressure proportional to either ∓ρ depending on 
whether the NLS (there is a corresponding condition for the CGL equation) is focusing or defocusing. In the focusing case, 
the pressure increases as ρ decreases, the key signature of the role of dark energy.

In summary, then, our picture is that, before the first phase transition, the field consists of a bubble of rapidly expand-
ing nonlinear waves. At the first phase transition, the microscopic field w develops a periodic structure. Even though all 
information about the behavior of the envelope A is contained in (19), its behavior is dominated by the pattern averaged 
equations and the physics associated with long scales. Subsequent phase transitions may introduce further separations of 
behaviors, each associated with an envelope of the field of the most excited mode at that transition. There is no reason that 
the scales of the later transitions should not lie between the “Planck” scale and the very long scales on which the equation 
for the envelope A obtains.

Now what happens as P , the stress, continues to increase (the temperature continues to decrease)? We know from 
previous analyses on pattern formation [26] that, while near onset the point defects have to have surrounding vector 
rather than director (spinor) fields, far from onset the amplitude of A is determined by the gradients of its phase and 
that phase can be double valued. In other words, near onset the order parameter A is complex. Both the amplitude and its 
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phase (its phase gradient is the vector k) are active order parameters, each obeying a dynamics governed by the solvability 
equation (25). For ease of visualization, let us consider the case of two space dimensions. In that case, the only point 
defects are composites of the concave and convex disclinations discussed in Appendix A. They are saddles, vortices, targets, 
dislocations. However, as P increases away from its critical onset value, the amplitude of the envelope becomes algebraically 
slaved to its phase gradient (and, because of rotational symmetry, on the modulus k of the wave-vector k). There is then 
only one real order parameter and the direction of the wave-vector k cannot be determined from the original microscopic 
field w and its gradient. This point was previously emphasized in Appendix A. It is at this stage that pattern quarks and 
pattern leptons can appear. They are unbound. Indeed, composites are generically unstable as was shown clearly in [26]. 
At the next phase transition, however, when the relevant order parameter again becomes complex, and therefore the phase 
gradient k is a vector, pattern quarks and leptons begin to merge to form bound states. In [26], we showed that, when we 
begin with a field containing isolated concave and convex disclinations, and then lower the stress P back towards it critical 
value Pc, the isolated disclinations disappear to be replaced by composites. This next transition might then be considered as 
the analogue of the separation of the grand unified theory into the strong and electroweak forces. An even later transition 
would parallel the separation of the weak and electromagnetic forces.

In summary, we have made a prima facie case that pattern or crystal universes can exhibit many features which have 
analogues to that vast array of behaviors observed in fundamental particle physics and cosmology, most of which, dark 
matter, dark energy, are as yet unexplained by orthodox theories. Our basic idea has been that the pattern universe is one 
containing structures at many scales, each set being determined by the preferred configurations arising at a set of discrete 
phase transitions. We have shown that objects with some of the same invariants as quarks and leptons arise naturally 
without any imposition of symmetries that might induce particular fractional values. We have shown that a universe foliated 
by phase surfaces can give rise to additional gravitational like forces which lead to star rotation speeds consistent with 
observations. We have explained how there can be a rapid expansion of the early pattern universe leading to an isotropic 
far field. We have suggested that the nature of the field which promotes an accelerated universe is related to the presence 
of Goldstone mode released at a phase transitions. In short, we have offered a new paradigm the ultimate value of which 
will only be known after further work.
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