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Piezoelectric bimorph actuators are used in a variety of applications, including micro po-
sitioning, vibration control, and micro robotics. The nature of the aforementioned appli-
cations calls for the dynamic characteristics identification of actuator at the embodiment 
design stage. For decades, many linear models have been presented to describe the dy-
namic behavior of this type of actuators; however, in many situations, such as resonant 
actuation, the piezoelectric actuators exhibit a softening nonlinear behavior; hence, an 
accurate dynamic model is demanded to properly predict the nonlinearity. In this study, 
first, the nonlinear stress–strain relationship of a piezoelectric material at high frequen-
cies is modified. Then, based on the obtained constitutive equations and Euler–Bernoulli 
beam theory, a continuous nonlinear dynamic model for a piezoelectric bending actuator 
is presented. Next, the method of multiple scales is used to solve the discretized nonlinear 
differential equations. Finally, the results are compared with the ones obtained experimen-
tally and nonlinear parameters are identified considering frequency response and phase 
response simultaneously. Also, in order to evaluate the accuracy of the proposed model, it 
is tested out of the identification range as well.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Demand for smart structures, such as piezoelectric ceramics, has attracted the attention of researchers for many years. 
These smart materials are mostly used as various type of position, force and mass sensors [1–3] and also energy harvesters 
[4,5]. In addition, piezoelectric actuators (PEAs) have been used in micro-manipulation [6,7], medical equipment [8,9] and 
position control applications [10,11].

Many researches targeted the linear dynamic modeling of piezoelectric actuators and sensors [12–15]. They believe that 
linear constitutive equations are sufficiently accurate for actuators that are experiencing weak electrical fields or small-
amplitude strains. Accordingly, linear dynamic models are suggested for energy harvesting by piezoelectric cantilevers [13,
14]. In this regard, Hosseini and Hamedi presented an analytical model for linear piezoelectric energy harvesters; the gov-
erning equations were solved by resorting to the distributed parameter method. The authors then validated the model with 
the experimental data as well [16]. Raju and Umpathy also proposed a linear model for tapered piezoelectric beam with 
cavity. They obtained the natural frequencies and corresponding mode shapes of a piezoelectric energy harvester based on 
the Euler–Bernoulli beam theory, which were finally solved by Bessel functions [17].
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Fig. 1. Illustration of a series type bimorph actuator connected to a power supply.

Indeed, piezoelectric actuators show nonlinear behavior by increasing the electric field or working frequency. By in-
creasing the input voltage, hysteresis nonlinear behavior will appear between input voltage and actuator position. Several 
conventional methods, such as Preisach, Prandtl Ishlinskii, Bouc Wen, etc., have been proposed to modify the dynamic model 
at high voltages [15,18,19].

However, piezoelectric actuators may exhibit nonlinear behaviors around the natural frequencies even for low ampli-
tude input voltages. At these frequencies, conventional linear constitutive equations cannot express the actuator behavior 
accurately. In fact, material nonlinearities should be taken into account by proposing appropriate nonlinear constitutive 
equations. Because the nonlinear constitutive equations depend significantly on dimensions, electrical input amplitude, strain 
magnitude, etc., for a certain actuator, these equations should be obtained empirically.

Stanton et al. investigated the nonlinear energy harvesting of piezoelectric cantilevered beam comprehensively [20]. 
Based on energy methods, they suggested a dynamic model whose unknown nonlinear parameters were determined when 
the base of the piezoelectric beam is excited near its resonance. At the end, the authors reported that the linear damping 
model cannot describe the behavior of a piezoelectric cantilevered beam at high frequencies. As an alternative, a quadratic 
fluid damping was proposed to model the energy dissipation at high frequencies. Stanton et al. also tried to predict the 
nonlinear non-conservative behavior of piezoelectric energy harvesters with a proof mass at the tip of beam [21]. The 
authors proposed a deflection-dependent damping model for the system [21]. Recently, Erturk and Leadenham studied a 
nonlinear model for piezoelectric bimorph cantilevered beam. The authors investigated the piezo beam behavior under 
electrical and mechanical excitations for different applications such as energy harvesting, sensing and actuating [22]. In 
addition, Erturk and Tan investigated the nonlinear elastodynamics of piezoelectric macro-fiber composites with integrated 
electrodes for resonant actuation. In order to eliminate nonlinear fluid damping effects, they used an in vacuo actuation 
scenario under a broad range of voltage levels. A mathematical model is obtained using the harmonic balance method [23].

A majority of the past studies are concerned about piezoelectric energy harvesters that are excited by the base vibration 
but, in the present work, the nonlinear behavior of a piezoelectric bimorph actuator is investigated; hence, it is excited 
by means of the applied voltage. In this regard, first, the nonlinear stress–strain relationship for piezoelectric materials at 
high frequencies, which was previously presented in [24], is effectively modified. Then, based on the obtained constitutive 
equations and Euler–Bernoulli beam theory, a nonlinear dynamic model for a piezoelectric bending actuator is presented. 
Then, the obtained nonlinear differential equations are solved by means of the method of multiple scales. In order to 
evaluate the suggested model, a set of experiments are conducted. Both frequency and phase responses are simultaneously 
considered to identify the dynamic nonlinear parameters. Moreover, in order to validate the accuracy of the proposed model, 
it is tested out of the identification range as well.

2. Nonlinear dynamic modeling

Fig. 1 depicts an actuator which is a symmetric bimorph cantilever with length l connected to a power supplier. The 
actuator is composed of an electrically inactive brass shim of density ρb with thickness tb, and symmetric piezoceramic 
laminates of density ρp and thickness tp. The cross section of the actuator is rectangular, and its width is Y .

2.1. Nonlinear constitutive equations

For a piezoelectric material, the conservative potential density can be expressed in terms of an electric enthalpy function. 
In order to describe the mechanical and electrical behaviors, and also, the electromechanical effects, this function consists of 
linear and nonlinear elastic, dielectric and coupling terms [20,21]. In order to model the nonlinear behavior, the conventional 
linear constitutive equations should be modified by nonlinear terms [25]. In this study, a nonlinear enthalpy function with 
the elastic nonlinearities up to fifth order is employed. Due to the low amplitude of the electric field near the natural 
frequency of the actuator, the nonlinear dielectric and coupling terms are presumed insignificant [21]. Also, because of the 
symmetry of the bimorph configuration, in the enthalpy function, the stiffness nonlinearities with odd power vanish. For a 
bending actuator that is actuated in the 31-mode, this function can be written in a reduced form as [26–29]

He = 1
cE

11 S2
1 − e31 E3 S1 − 1

εS
33 E2

3 + 1
c111 S4

1 + 1
c11111 S6

1 (1)

2 2 4 6
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where cE
11 is the elastic modulus at a constant electric field, S1 is the strain, c111 and c11111 are the nonlinear stiffness 

coefficients, e31 is the piezoelectric constant, E3 is the electric field and εS
33 is the permittivity at a constant strain. Regarding 

the electrical enthalpy density, the nonlinear constitutive relations are derived as

T1 = ∂ He

∂ S1
= cc

11 S1 + e31 E3 + c111 S3
1 + c11111 S5

1 (2)

and

D3 = −∂ He

∂ E3
= e31 E3 + εs

33 E3 (3)

2.2. Electrostatic energy expressions

The actuator understudy is modeled as an Euler–Bernoulli beam. Due to the small deflection of piezoelectric bending 
actuators, infinitesimal strain theory has been applied in which the following strain-displacement relation holds [20,21],

S1 = −z

(
∂2 w

∂x2

)
(4)

where w = w(x, t) is the transverse deflection of the actuator. The actuator is made of three layers, and hence, the total 
kinetic energy is the summation of the kinetic energy of each layer. Moreover, due to actuator small deflection, it is assumed 
that the longitudinal and rotational motions are negligible [20,30]; therefore, the total kinetic energy of actuator can be cast 
in the following format,

T =
3∑

i=1

∫
1

2
ρi

(
∂ w

∂t

)2

dV i (5)

T = 1

2
ρ Ae

l∫
0

(
∂ w

∂t

)2

dx (6)

where ρ Ae = Y (ρbtb + 2ρptp) is the mass per unit length of the actuator.
Moreover, the potential energy is stored in the actuator due to the bending strain energy of the brass substrate and the 

electrostatic enthalpy of the piezoceramic laminates. The potential strain energy within the brass substrate is linear and 
given by the following formulation,

Ub =
∫ ∫ ∫

1

2
cE

11.b S2
1 dV =

∫ ∫ ∫
−1

2
cE

11.b z2
(

∂2 w

∂x2

)2

dV (7)

where cE
11.b is the elastic modulus of brass substrate. Also, the potential energy of piezo laminates can be expressed as

Ue =
∫ ∫ ∫

He dV

=
∫ ∫ ∫ [

−1

2
cE

11.p z2
(

∂2 w

∂x2

)2

+ 1
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c11111z6
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− e31.i E3.i z

(
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∂x2
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2
εS

33.i E2
3.i

]
dV (8)

As a result, the total potential energy stored within the actuator is obtained as U = Ub + Ue, and upon integrating over the 
cross section, it yields:

U = 1

2
C Ie

l∫
0

(
∂2 w

∂x2

)2

dx −
∫ [
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(
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in which o and u denote the upper and lower side of each layer and the coefficients are defined as,

C Ie = cb Ib + cp Ip = cbY t3

12
+ 1

6
Y cE

11

[
4t3

p + 6t2
ptb + 3t2

btp

]
(10)

α = Y

160
c111

(
5t4

btp + 20t3
bt2

p + 40t2
bt3

p + 40tbt4
p + 16t5

p

)
(11)

β = Y

1344
c11111

(
7t6

btp + 42t5
bt2

p + 140t4
bt3

p + 280t3
bt4

p + 336t2
bt5

p + 224tbt6
p + 64t5

p

)
(12)

The first term in Eq. (9) represents the linear bending energy of substrate, and the terms which are proportional to α and 
β represent the nonlinear stress-strain behavior of the piezoceramic laminates.

2.3. Continuous nonlinear dynamic model

In order to drive the governing equations of the actuator, the Hamilton’s principle is employed. According to the Hamil-
ton’s principle the variation of the Lagrangian minus the non-conservative work attains a stationary value between two time 
instances, namely,

t1∫
t0

(δL − δW ) dt = 0 (13)

where δ denotes the variational derivative, and the Lagrangian function is defined as L = T − U ,

L = f (
∂ w

∂t
,
∂2 w

∂x2
, E3.i) (14)

Here, the non-conservative work term consists of the work done by the applied voltage and the dissipative frictional forces, 
namely,

W = −
l∫

0

μ

(
∂ w

∂t

)
w dx −

3∑
i=1

ti.o∫
ti.u

Y∫
0

l∫
0

σ

(
∂U

∂z

)
dx dy dz (15)

where μ is the coefficient of friction and σ is the surface charge density.
Also, a linear relation is assumed between the electric field and voltage as follows [20,21]:

E3 = V 3(x, t)

tp
(16)

in which

V 3 (x, t) = V (t) [H (x) − H(x − l)] (17)

where H (x) is the Heaviside function.
Substituting Eqs. (15)–(17) into Eq. (13), applying the calculus of variations, and using the integration by parts, the 

nonlinear equation of motion of the actuator is obtained as follows:

C Ie w ′′′′ +ρ Ae ẅ +μẇ + 12α
(

2w ′′w ′′′ 2 + w ′′′′w ′′ 2
)

+ 30β(6w ′′ 3 w ′′′ 2 + w ′′′′w ′′ 4) = −Mp V (t)
d

dx
δ(x − l) (18)

in which

Mp = Y e31
(
tp + tb

)
(19)

and δ (x) refers to the Dirac delta function, which has appeared due to the differentiation of the Heaviside function H (x)
with respect to x.

2.4. Distributed parameters model

In order to discretize the obtained continuous dynamic model, Galerkin’s method is utilized. For this purpose, the 
transverse deflection is approximated as a summation of eigenfunctions, which includes the multiplication of generalized 
displacements with the corresponding orthogonal basis functions, namely,
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w (x.t) =
n∑

i=0

ϕi (x)qi(t) (20)

In this study, the actuator is excited harmonically with a frequency near the fundamental natural frequency, and hence, the 
single mode assumption can be made. This simplification is proven to be sufficiently accurate in the case of steady-state 
oscillations [20,23]. Also, it should be noted that the foregoing assumption can be valid when there is not any internal 
resonance in the system. Nevertheless, the single mode assumption is not valid, and the internal resonance effect should 
be taken into account in the dynamic behavior analysis [29]. The corresponding single basis function is the first vibrational 
mode shape function of an Euler–Bernoulli undamped beam with fixed-free boundary conditions, namely,

ϕ1 (x) = η1ϕ1 (x)

ϕ1 (x) = [cos (γ1x) − cosh(γ1x)] − cos (γ1l) + cosh (γ1l)

sin (γ1l) + sinh (γ1l)
[sin (γ1x) − sinh (γ1x)] (21)

where

γ1 = 1.8751 (22)

ω1 = γ 2
1

√
C Ie

ρ Ae
(23)

η1 = 1√∫ l
0 ρ Aeϕ

2
1 (x) dx

(24)

Moreover, the orthogonality conditions between the base functions can be written as follows:

l∫
0

ρ Aeϕm (x)ϕn (x) dx = δmn (25)

l∫
0

ϕm (x)
∂2

∂x2

(
(C Ie)

∂2ϕn (x)

∂x2

)
dx = ω2

mδmn (26)

where ωm is the mth undamped natural frequency and δmn is the Kronecker delta function. By substituting Eq. (20) into 
Eq. (18), multiplying by ϕn (x) and integrating over the actuator length, the nonlinear ordinary differential equation of 
motion near the fundamental frequency is obtained as

q̈i + 2ξiωi q̇i + ω2
i qi + k1q3 + k2q5 = −Mp V (t)

l∫
0

ϕ j(x)
dδ

dx
(x − l) (27)

whose coefficients are defined in the sequel,

k1 = 12α

l∫
0

ϕ
[
ϕ′′ 2ϕ′′′′ + 2ϕ′′ϕ′′′ 2

]
dx (28)

k2 = 30β

l∫
0

ϕ
[

6ϕ′′ 3ϕ′′′ 2 + ϕ′′ 4ϕ′′′′] dx (29)

Based on the following identity equation,

c∫
a

δ(n) (x − b) f (x) dx = (−1)n f (n) (b) a ≤ b ≤ c (30)

Equation (27) can be reformulated into the following format,

q̈ + 2ξωnq̇ + ω2
nq + k1q3 + k2q5 = mpi V (t) (31)
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where

mpi = −Mp
∂ϕi(x)

∂x

∣∣∣∣
x=l

(32)

According to the literature, a piezoelectric bending actuator that is driven by a weak electric field exhibits nonlinear damping 
behavior [20,21,30]; therefore, a nonlinear damping model should be considered. In this study, a nonlinear damping model 
that was first introduced by Stanton et al. in [21] is incorporated. This model is defined as

D = μ + μ1q2 (33)

As a result, the nonlinear differential equation of motion for the actuator under study becomes

q̈ + (μ + μ1q2)q̇ + ω2
nq + k1q3 + k2q5 = mpi V (t) (34)

where

μ = 2ξωn (35)

3. Dynamic response analysis

In this section, the nonlinear equation of motion of the actuator, i.e. Eq. (34), is solved analytically by means of a 
perturbation based method called multiple scales [31]. In this method, in order to describe a weak nonlinear behavior, 
displacement is expanded into the summation of the terms that are proportional to a small expansion parameter denoted 
by ε and the corresponding independent time scales,

q (t) =
1∑

k=0

εkxk (T0.T1) = x0 + εx1 (36)

The parameter ε is, in fact, a bookkeeping parameter that will be set to unity at the end of the analysis. Therefore, instead 
of determining q as a function of t , the variable q is determined as a function of different time scales, namely, T0, T1, T2 . . .

These time scales are defined as

T0 = t T1 = εt T2 = ε2t T3 = ε3t . . . (37)

This guarantees that the dependence of q on t and ε occurs at different scales. To this end, the independent variable in 
Eq. (34) can be changed via the chain rule, namely,

d

dt
= ∂

∂T0
+ ε

∂

∂T1
+ · · · = D0 + εD1 + . . .

d2

dt2
= ∂2

∂T 2
0

+ 2ε
∂2

∂T0∂T1
+ · · · = D2

0 + 2εD0 D1 + . . . (38)

Also, all nonlinear terms and the harmonic force are balanced to include the first-order correction, namely,

μi = εμi

ki = εki

V (t) = εVa (t) (39)

By substitution of Eq. (39) into Eq. (34) and equating the coefficient of ε0 and ε, one obtains the following equations,

D2
0q0 + ω2

nq0 = 0 (40)

D2
0q1 + ω2

nq1 = −2D0 D1q1 −
(
μ + μ1q2

0

)
D0q0 − k1q3

0 − kq5
0 + Va (t) (41)

The harmonic excitation can be written as

Va = 1

2
V eiωT0 (42)

where ω is the excitation frequency. To study the behavior of a system around the first natural frequency, the excitation 
frequency can be expressed in terms of natural frequency of the system, such as

ω = ωn(1 + σε) (43)
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where σ is a detuning parameter. The general solution to Eq. (40) can be expressed as

q0 = A(T1)eiωn T0 + A(T1)e−iωn T0 = A(T1)eiωn T0 + cc (44)

where cc indicates the complex conjugate term. As the derivation in Eq. (40) is with respect to T0, the amplitude A is not 
a constant parameter, but a function of slow-scale T1. By substituting q0 into Eq. (41), disregarding higher harmonics and 
eliminating the secular terms yields

2iωn A′ + μiωn A + μ1iωn A2 A + 3k1 A2 A + 10k2 A3 A
2 − 1

2
V eiωnσ T1 = 0 (45)

The amplitude A (T1) can be defined in terms of the polar coordinates,

A(T1) = 1

2
α(T1)eiβ(T1) (46)

And thus, by substitution of Eq. (46) into Eq. (45), the following equations yield:

ωnα̇ = −1

2
αωnμ − 1

8
ωnα

3μ1 + 1

2
V sin(σ T1 − β) (47)

−αωnβ̇ = −3

8
k1α

3 − 10

32
k2α

5 + 1

2
V cos (σ T1 − β) (48)

In order to eliminate the explicit dependence on T1, a new variable is introduced below

γ = σωn T1 − β (49)

By substituting Eq. (49) into Eqs. (47) and (48), the following equations are obtained,

α̇ωn = −1

2
αωnμ − 1

8
ωnα

3μ1 + 1

2
V sin(γ ) (50)

αωnγ̇ = +σω2
nα − 3

8
k1α

3 − 10

32
k2α

5 + 1

2
V cos (γ ) (51)

In this study, the steady-state frequency response of the actuator is required. As the variables α and γ attain a constant 
magnitude in the steady-state vibration of the actuator, their derivatives α̇ and γ̇ vanish. Thus, Eqs. (50) and (51) can be 
reformed to the following formats,

1

2
αωnμ + 1

8
ωnα

3μ1 = 1

2
V sin(γ ) (52)

−σω2
nα + 3

8
k1α

3 + 10

32
k2α

5 = 1

2
V cos (γ ) (53)

The phase can be eliminated by squaring and adding both sides of the equations above, namely,

(
1

2
μωnα + 1

8
μ1ωnα

3
)2

+
(
σω2

nα − 3

8
k1α

2 − 10

32
k2α

4
)2

α2 = 1

4
V 2 (54)

Eq. (54) can be used to calculate the amplitude of the steady-state vibration. In addition, the phase response can be achieved 
by calculating the steady-state response of Eq. (48).

4. Experimental analysis

4.1. Experimental setup

In this section, the validity of the suggested mathematical framework is experimentally evaluated by means of a bimorph 
piezoelectric actuator (T226-H4-203X), which consists of a brass substrate that is symmetrically laminated with two lead 
zirconate titanite layers (series connection). The actuator’s properties are listed in Table 1.

Fig. 2 shows the experimental set-up in which an amplifier (EPA-104-230) from Piezo System Company (Woburn, MA, 
USA) provides the required voltages. Two data acquisition cards (PCI-1710) and (PCI-1716) capture data with a frequency 
of 20 kHz. Also, a laser displacement sensor (Micro-Epsilon optoNCDT 2300) measures the deflection with a resolution of 
10 nm.
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Table 1
Geometric and material properties of the PZT-5H bimorph bending actuator.

Parameters PZT-5H Brass

Length (l) (mm) 24.53 24.53
Width (Y ) (mm) 6.4 6.4
Thickness (t) (mm) 0.265 0.140
Mass density (ρ) (kg/m3) 7500 9000
Elastic modulus (cE, cb) (GPa) 51.51 105
Piezoelectric constant (e31) (C/m2) −13.11 –
Permittivity constant (ε33) (nF/m) 25.5 –

Fig. 2. The experimental setup.

Fig. 3. Actuator time responses for two levels of chirp input voltages. (a) 0.5 V; (b) 4.5 V.

4.2. Linear dynamic identification

First of all, in order to identify the linear damping ratio, a series of experiments were conducted. The identification is 
performed using a chirp signal with a constant amplitude, a duration of 60 s, and a frequency range from 0.1 to 1000 Hz. 
The sampling time is set to 0.0001 s. Fig. 3 shows the time response of the actuator, which is sensed at a point close to the 
tip (xt ≈ 23.46 mm) at two input voltages.
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Fig. 4. Frequency response for V = 0.5 V obtained by experiment and analytical model.

It is clear that the actuator depicts the nonlinear behavior by increasing the input voltage. Therefore, to decrease the 
effects of nonlinear behaviors on the vibration of the actuator and minimizing the error of linear modeling, a low-amplitude 
input voltage of 0.5 V is applied. Finally, a fast Fourier transform (FFT) algorithm is utilized to compare the experimental data 
with the ones obtained with the linear theory. As a result, the first natural frequency of actuator is obtained as 2637 rad/s 
with the linear damping ratio of ξ = 0.0085. Fig. 4 illustrates the correspondence between the linear model for ξ = 0.0085
and the experimental data for a low-amplitude excitation.

In order to accurately describe the dynamic behavior of the piezoelectric actuator, one needs to identify the nonlinear 
parameters of Eq. (34) as well. For this purpose, a solution to the nonlinear equation of motion of the actuator should be 
first obtained, which is explained in the sequel.

4.3. Nonlinear dynamic identification

In order to validate the proposed dynamic model for the bimorph piezoelectric actuator, and also to identify the non-
linear parameters, an experiment is conducted, in which the actuator is excited by means of a sinusoidal input signal. As 
the obtained fundamental natural frequency of the actuator is 2637 rad/s, the experimental data are acquired at frequen-
cies near the resonance, such as 2512, 2580, 2637, 2680, and 2736 rad/s. The laser displacement sensor is set almost on 
the tip of the actuator (xt ≈ 23.46 mm), and the steady-state displacements are recorded for nine different input voltages 
with a sampling time of 0.0001 s. It is noteworthy to mention that each amplitude on the frequency response plot is the 
average of all peak displacements over the time response of the actuator. Starting with initial values for unknown nonlinear 
parameters, the steady-state phase and the amplitude of the actuator displacement are obtained by resorting to Eqs. (54)
and (48). In order to ensure that the suggested model accurately describes the phase of the system, the phase values are 
also obtained experimentally at different frequencies and amplitudes. However, the time delay, which is caused by the data 
acquisition card, significantly affect the data, and thus, it should be eliminated. In this regard, the value of phase differ-
ence which is caused by the equipment is first experimentally measured, and then, it is subtracted from the total phase 
difference at each corresponding frequency. It is noteworthy to mention that the main target of this study is to evaluate the 
nonlinear parameters by considering the amplitude and the phase frequency responses simultaneously. The identification 
process results in the following values for the unknown nonlinear parameters,

k1 = −6.94 × 1017

k2 = 1.443 × 1028

μ1 = 6.28 × 1013

Fig. 5 shows the actuator vibration amplitude at frequencies around the first resonance. Small triangles refer to the experi-
ments, and the solid lines are obtained from the solution to Eq. (54) for different input voltages. The results ensure that the 
nonlinear parameters are identified correctly, and also that the suggested model properly predicts the vibration amplitude 
for different input voltages.

To evaluate the accuracy of the dynamic modeling and its identification, the theoretical and experimental phase re-
sponses have been illustrated in Fig. 6 for three different input voltages. As it is observed, the phase responses that are 
obtained from experiments are in good agreement with the theoretical results.

In order to better clarify the difference between a linear and a nonlinear model, the corresponding phase responses are 
also shown in Fig. 7.

It is obvious that, like for the amplitude-frequency response, the actuator nonlinearity can make a distortion in the 
phase-frequency response as well. Moreover, as it is apparent from the results, the responses that are obtained by the linear 
model are significantly different from that of nonlinear model, and hence, the necessity of an accurate nonlinear modeling 
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Fig. 5. Identification results for the actuator vibration amplitude at different input voltages. Triangles: experiments; solid lines: nonlinear model.

Fig. 6. Identification results for the actuator vibration phase at different input voltages. Triangles: experiments; Lines: nonlinear model.



P. Shahabi et al. / C. R. Mecanique 347 (2019) 953–966 963
Fig. 7. Comparison of phase responses for linear and nonlinear models for different input voltages. (a) 2.5 V; (b) 3.5 V; (c) 4.5 V.

Fig. 8. Frequency drift of the peak amplitude for various excitation voltages.

is justified. In this study, with an elastic nonlinearity up to the fifth order and only one nonlinear damping parameter, the 
nonlinear behavior of the piezoelectric actuator is accurately predicted.

The piezoelectric actuators are generally designed to work at the resonant condition; therefore, as it was depicted, a 
linear model fails to precisely describe the dynamic behavior. Fig. 8 shows the frequency drift of the peak amplitude for 
different input voltages.
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Fig. 9. The input voltage effect on the vibration amplitude in two frequencies below and above the first resonance (a) ω = 2580 rad/s, (b) ω = 2637 rad/s.

It should be noted that, in case of linear systems, there is no frequency drift, and the corresponding plot is a horizontal 
line. In other words, the natural frequency of a linear system does not depend on the amplitude of excitation. However, in 
nonlinear systems, by increasing the amplitude of excitation the natural frequency can be increased or decreased, which is 
called hardening or softening behavior, respectively. As it is shown in Fig. 8, in the present case study, the actuator presents 
softening behavior. The deviation of the linear model from the nonlinear one, at special frequencies below and above 
resonance, is illustrated in Fig. 9. In a nonlinear system with softening behavior, at frequencies below the fundamental 
natural frequency, by increasing the amplitude of excitation, the response amplitude is increased with a higher rate than 
the one in the corresponding linear model (Fig. 9a). However, at frequencies above the fundamental natural frequency, this 
rate becomes lower than the linear model counterpart (Fig. 9b).

In the aforementioned modeling, the nonlinear parameters are identified by considering the phase and amplitude of 
displacement simultaneously. Therefore, as a matter of fact, it is expected that the suggested model predicts the behavior of 
the actuator with any physically possible higher amplitude. To verify the foregoing claim, the frequency responses of actuator 
at higher input voltages, such as 6, 8, and 10 V, are also investigated and compared with the corresponding experimental 
data. Fig. 10 depicts the theoretical amplitude responses achieved by the previously identified nonlinear parameters in 
comparison with the ones obtained experimentally. In order to check the fidelity of the model, in the experiment, the input 
voltage is increased up to two times of what was considered in the identification study; as it is apparent, the proposed 
model can still predict the behavior of the system accurately.

5. Conclusions

In this work, a nonlinear mathematical framework was developed and experimentally validated for a piezoelectric bi-
morph actuator. The actuator was excited from low to high electrical voltages in its first bending mode. The nonlinear 
mathematical framework was obtained using Hamilton’s principles, Galerkin’s method, and the single mode assumption. 
The obtained nonlinear equation was solved by resorting to the multiple scales method. The nonlinear parameters were 
identified by applying voltages between 0.5 to 4.5 V, and the results were compared with the experimental data. The linear 
parameter identification was done using MATLAB FFT algorithms and the nonlinear parameter identification was conducted 
by considering amplitude and phase frequency responses of the actuator simultaneously. In the identification domain, the 
suggested model accurately predicts the overall dynamic behavior of the actuator for near-resonant actuation with the 
maximum error of 7% and an average error of 5.5% [16].
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Fig. 10. Evaluation of the identified nonlinear model in higher input voltages; triangles: experiments; solid lines: nonlinear model: (a) 6 V; (b) 8 V; (c) 10 V.
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