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In this paper, an algorithm for identifying equations representing a continuous nonlinear 
dynamical system from a noise-free state and time-derivative state measurements is pro-
posed. It is based on a variant of the extended dynamic mode decomposition. A particular 
attention is paid to guarantee that the physical invariant quantities stay constant along 
the integral curves. The numerical methodology is validated on a two-dimensional Lotka–
Volterra system. For this case, the differential equations are perfectly retrieved from data 
measurements. Perspectives of extension to more complex systems are discussed.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the context of today’s facilitated access to data in terms of quality, cost and quantity, the machine learning discipline 
appears to be a promising complementary solution for the derivation of mathematical models in the science and engineering 
domain. We can have different situations or conditions.

1. For a given physical system, we have neither information on the system nor any available model. Then standard data 
analysis, knowledge/feature extraction or machine learning algorithms can be used in this case.

2. We still do not know any model, but we have partial knowledge of the system from physical considerations. For exam-
ple, it is known that the system has an invariant quantity, or a decaying one during time (Lyapunov function). We then 
would like to derive a model from data that satisfies the invariance/decay property.

3. A model with a certain accuracy has already been derived from finer physical considerations or assumptions. In this 
case, one can try to improve the accuracy or reliability of the current model by adding some correction terms. These 
correction terms can be identified and calibrated from data/measurements (see [1] for example).
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This paper focuses more on the second intermediate situation. We try to identify the equations of a continuous au-
tonomous dynamical system from data/measurements and it is supposed that the system preserves a known invariant 
quantity, denoted by η later on. As a starting work in this field, we will only consider the case of noise-free data in this 
paper. Beyond this restriction, for wide applicability reasons, we would like to get a global model (meaning that it is valid 
even in regions that have not been explored by the data) from only little data.

This paper is organized as follows. Section 2 is devoted to the setting of the problem. Then section 3 will introduce 
dynamic mode decomposition (DMD) and deal with DMD under skew-symmetry constraints on the searched matrix. The 
following step is the search of both coefficients matrix and nonlinear functions; this will the object of section 4. Then 
section 5 presents the whole greedy algorithm. The section 6 is dedicated to the numerical experiments and validation. We 
will end up with additional comments in section 7 and concluding remarks.

Notations We will use the Frobenius matrix inner products 〈., .〉F. Given two real-valued m × n matrices A and B , the 
Frobenius inner product is defined by the following summation:

〈A, B〉F ,m,n =
m∑

i=1

n∑
j=1

Aij Bi j = tr(ABᵀ)

The corresponding Frobenius norm ‖.‖F ,m,n is defined by ‖A‖F ,m,n = √〈A, A〉F ,m,n . The usual vector Euclidean norm in Rd

will be simply denoted by ‖.‖2,d .

2. Setting of the problem

Consider a physical time-continuous autonomous dynamical system governed by the system of nonlinear differential 
equations

ẋ(t) = f (x(t)), t > 0 (1)

where f : Rd → Rd is a locally Lipschitz continuous mapping. Added to this differential system, an initial condition 
x(0) = x0 is given. It is assumed that, starting from any initial condition in an open set X ⊂ Rd , maximal solutions are 
defined on the whole time domain [0, +∞), with all states x(t) in the admissible set X .

Data generation From the physical system, it is assumed that one can measure the full states xk (without noise in a first 

time) at N discrete times {tk}k=1,...,N , i.e. xk = x(tk) but also the time derivatives yk = dx

dt
(tk), k = 1, ..., N . From the data 

matrices

X = [x1, x2, ..., xN ] ∈ MdN(R), Y = [y1, y2, ..., yN ] ∈ MdN(R) (2)

we would like to identify the equations (1) of the dynamical system. If this is not possible, at least we would like to find 
an accurate approximate differential model of (1) with some stability properties (large time stability, ...). In the sequel, we 
will assume that N ≥ d.

2.1. Invariant quantity and structure hypotheses

Let us assume that there exists a differentiable function η :X →R being invariant along all integral curves, i.e.

d

dt
η(x(t)) = ∇η(x(t)) · ẋ(t) = ∇η(x(t)) · f (x(t)) = 0 (3)

Then, for integral curves of (1), we have the property

∇η(x) · f (x) = 0 ∀x ∈ X (4)

meaning that for any initial condition x0 ∈X , the quantity η(x) is kept constant on trajectories of (1).
As a consequence, there exists a skew-symmetric matrix A(x) such that

f (x) = A(x)∇η(x) ∀x ∈ X (5)

This is a direct consequence of the following lemma.

Lemma 2.1. For any u, v ∈Rd,

(u⊥v) ⇐⇒ (∀A, v = Au =⇒ A is skew symmetric)

Remark 2.1. In (5), the mapping x �→ A(x) is continuous as soon as both f and ∇η are continuous too.
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Fig. 1. Different orbits of the Lotka–Volterra system and orthogonality between ∇η(x(t)) and f (x(t)) for a point x(t) or the orbit.

Example Consider the time-continuous two-equation prey-predator Lotka–Volterra dynamical system (see [2]):

ẋ = (1 − y)x (6)

ẏ = (x − 1)y (7)

with initial condition x(0) = x0 > 0, y(0) = y0 > 0. For this two-equation system, it can be shown that maximal solutions 
stay in the positive orthant X = (0, +∞)2. It is easy to check that the quantity

η(x) = log(xy) − x − y (8)

is invariant along integral curves of the system. Each equation η(x) = η(x0) defines an orbit of the system. We have ∇η(x) =
(1/x − 1, 1/y − 1)ᵀ . One can observe that f (x) can be written in the form

f (x) = A(x)∇η(x)

with A(x) = xy 
(

0 1
−1 0

)
.

Fig. 1 shows different orbits or the Lotka–Volterra system. Since orbits are also level sets of the function η, we can check 
that f (x(t)) is orthogonal to ∇η(x(t)). Remark that such kinds of systems may require specific time integration schemes 
like sympletic schemes for stability or long range time simulation purposes. The reference [3] for example gives details on 
geometric computational methods for prey-predator systems.

2.2. Truncated decomposition of skew-symmetric matrix-valued mappings

In this subsection, we give a particular expansion of skew-symmetric matrix-valued mappings. This will be useful for the 
structure of a search of equations in the identification procedure. Let us denote by Eij , 1 ≤ i < j ≤ d the matrices that form 
the canonical basis of the vector space of skew-symmetric matrices, i.e. Eij = ei eᵀ

j , where ei denotes the i-th vector of the 
canonical basis in Rd . For any x ∈X , we can write the decomposition into this canonical basis

A(x) =
∑

1≤i< j≤d

ai j(x) Eij

with scalar coefficients aij(x) ∈ R. Each function aij : X → R is assumed to have reasonable regularity, say at least of 
regularity L2

ω(X ) (the weight function ω may be chosen fast-decaying at infinity in the case of unbounded domains). Then 
we consider a total orthonormal family {ϕk}k of L2

ω(X ). For each function aij , we have the decomposition

aij(x) =
∑
k≥0

ak
i j ϕk(x)

giving the decomposition for A(x):
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A(x) =
∑

1≤i< j≤d

∑
k≥0

ak
i j Ei j ϕk(x) (9)

which can also be written

A(x) =
∑
k≥0

Ak ϕk(x) (10)

(assuming that we can permute the two summation operators, see the Remark 2.2 below) where the skew-symmetric 
matrices Ak , k ≥ 0 are defined by

Ak =
∑

1≤i< j≤d

ak
i j Ei j

By truncating the expansion in (10) up to a rank (say K ), we define an approximation of the matrix A(x). One can define 
a projection operator �K acting on A(.) with projection on the K first functions ϕk:

�K A(x) =
K∑

k=1

Ak ϕk(x) (11)

The projection error (A − �K A) will decay fast with K as soon as the coefficient functions ak
ik(x) are smooth functions.

Remark 2.2. One can always choose a family {ϕk}k≥0 such that the convergence when K → +∞ is uniform w.r.t. x. The 
uniform convergence justifies the permutation of the two summations in (9).

Expression (11) gives us a way to build an algorithm to identify A(x) in (5) from the data within a greedy procedure. 
As a preliminary step, in section 3 we introduce the DMD method for identifying a first approximate skew-symmetric 
matrix A. In section 4, we define the first step of the greedy algorithm, which involves both functions ϕ1(x) and matrix A1. 
In section 5, we define the main iteration and the whole greedy algorithm.

3. Dynamic mode decomposition approach under skew-symmetry constraints

First, we try to identify the dynamics of the system according to the (approximate) model

f̃ (x) = A ∇η(x) (12)

where A is a constant skew-symmetric matrix to be determined from the data. For the sake of simplicity, in all the sequel 
we will denote g(x) := ∇η(x). From the data xk stored in the matrix X , one can compute a new matrix with column vectors 
gk = g(xk), k = 1, ..., N:

G = [g1, g2, ..., gN ] ∈ MdN(R)

In the sequel, we will assume that rank(G) = d. Then, following the same ideas from Dynamic Mode Decomposition (DMD, 
[4]), we look for a matrix that minimizes the constraint least squares problem:

min
A∈Md(R)

J (A) = 1

2

N∑
k=1

‖A gk − yk‖2
2,d (13)

subject to A skew-symmetric matrix

The cost function J can be rewritten in matrix form

J (A) = 1

2
‖AG − Y ‖2

F ,d,N

using the Frobenius norm.

Solution to the problem (13) The originality in problem (13) in the skew-symmetry constraint on A. Remark that, if the 
matrix A is skew-symmetric, then

‖AG − Y ‖F ,d,N = ‖AᵀG + Y ‖|F ,d,N = ‖Gᵀ A + Y ᵀ‖F ,N,d

The minimal argument of (13) is the same as the minimal argument of
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min
A∈Md(R)

1

2
‖AG − Y ‖2

F ,d,N + 1

2
‖Gᵀ A + Y ᵀ‖2

F ,N,d (14)

subject to A skew-symmetric matrix

Let us show that the unconstrained minimization problem

min
A∈Md(R)

J (A) := 1

2
‖AG − Y ‖2

F ,d,N + 1

2
‖Gᵀ A + Y ᵀ‖2

F ,N,d

has a unique solution A, which is skew-symmetric intrinsically, thus A will be also the solution to problem (13). An ele-
mentary differential calculus gives, for any H ∈ Md(R),

〈∇ J (A), H〉F ,d,d = 〈AG − Y , HG〉F ,d,N + 〈Gᵀ A + Y ᵀ, GᵀH〉F ,N,d

= 〈AGGᵀ − Y Gᵀ, H〉F ,d,d + 〈GGᵀ A + GY ᵀ, H〉F ,d,d

The first-order optimality conditions give

A (GGᵀ) + (GGᵀ) A = Y Gᵀ − GY ᵀ

in the form

A S + S A = Q (15)

with S = GGᵀ and Q = Y Gᵀ − GY ᵀ . We get a Lyapunov equation [5]. We observe that the matrix S is symmetric and the 
right-hand-side matrix Q is skew-symmetric. As soon as rank(G) = d (meaning that we have d linearly independent vectors 
among the data), the matrix S is symmetric positive definite. Let us recall the following well-known result of existence and 
uniqueness of solutions to Sylvester equations.

Proposition 3.1. Given complex n × n matrices A and B, Sylvester’s equation A X + X B = C has a unique solution X for all C if and 
only if A and −B have no common eigenvalues.

In the case of the Lyapunov equation (15), since S is symmetric positive definite, matrices S and −S have no common 
eigenvalues and the Lyapunov equation has a unique solution A for all Q . Finally, let us show that A is skew-symmetric: 
since Q ᵀ = −Q , we have

S Aᵀ + Aᵀ S = −Q

Summing up with equation (15), we get

(A + Aᵀ)S + S(A + Aᵀ) = 0

showing that by uniqueness A + Aᵀ = 0 and then A is skew-symmetric.
A classical algorithm for the numerical solution to the Sylvester/Lyapunov equations is the Bartels–Stewart algorithm [5], 

which consists in transforming the matrices into a Schur form using a QR algorithm, and then solving the resulting triangular 
system via back-substitution.

4. Dynamic mode decomposition with both matrix and function identification

As the next step, we now try to identify the dynamics of the system according to the more complex model

f̃ (x) = ϕ(x)A∇η(x)

where the real-valued function ϕ(x) is searched as a linear combination of given functions (e.g., from a dictionary), i.e. in 
the form

ϕ(x) = a1 b1(x) + a2 b2(x) + ... + aM bM(x)

Let us denote a = (a1, a2, ..., aM)ᵀ the vector of coefficient ai . Let us also write ϕ(x) in the vector form

ϕ(x) = aᵀb(x)

with b(x) = (b1(x), b2(x), ..., bM(x))ᵀ . So we want to find a pair (A, a) ∈ Md(R) ×RM , A skew-symmetric matrix, solution 
to the minimization problem
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min
(A,a)

J (A,a) := 1

2

N∑
k=1

∥∥∥yk − (a · b(xk)) A g(xk)

∥∥∥2

2,d
(16)

Without any constraints on a, we can observe that if (A, a) is a minimizer of (16), then (μA, 1
μa) for any μ �= 0 is also a 

minimizer of (16). To avoid nonuniqueness, one can add a constraint into the minimization problem, for example ‖A‖∞ = 1. 
So the minimization problem of interest is:

min
(A,a)

J (A,a) (17)

subject to A skew-symmetric and ‖A‖∞ = 1

Problem (17) becomes nonlinear and nonquadratic. A simple way to solve (17) is to apply an alternating direction relaxation 
minimization method that updates A and a sequentially within an iteration loop. When a is fixed, then the minimization 
problem in A (without the constraint ‖A‖∞ = 1) is essentially the same as the one seen in the previous section. Then the 
constraint ‖A‖∞ = 1 can be taken into account by means of a projection step. When A is fixed, the minimization problem 
in a is standard least squares s problem.

i) First consider the minimization problem

min
A skew symmetric

J (A,a)

at fixed vector a. Let us first rewrite J (A, a) in condensed matrix form. By denoting

Dm = diag(bm(xk), k = 1, ..., N), G = [g(x1), g(x2), ..., g(xN)]
and Za the matrix

Za = G (a1 D1 + a2 D2 + ... + aM D M)

it is easy to check that J (A, a) can also be written as

J (A,a) = 1

2
‖Y − A Za‖2

F ,d,N

Just like in the previous section, it is convenient to symmetrize the cost function, considering skew-symmetric matrices A:

J (A,a) = 1

2
‖Y − A Za‖2

F ,d,N + 1

2
‖[Zᵀ

a A + Y ᵀ‖2
F ,N,d

We have to solve the Euler equations ∇A J (A, a) = 0 that lead to the following Lyapunov equations

A Sa + Sa A = Q a (18)

with Sa = Za Zᵀ
a and Q a = Y Zᵀ

a − ZaY ᵀ .

ii) Let us now solve the minimization problem

min
a

J A(a) := 1

2

N∑
k=1

∥∥∥yk − (a · b(xk)) A g(xk)

∥∥∥2

2,d
(19)

at fixed matrix A. Using the notations bk = b(xk) and gk = g(xk), we have

J A(a) = 1

2

N∑
k=1

‖yk − A gk (bk)ᵀ a‖2
2,d

We get a standard least squares function to minimize. As soon as the rank of the matrix

C =
N∑

k=1

A gk (bk)ᵀ

is M , we get a unique solution. Otherwise, the least squares problem should be regularized by a Tykhonov regularization 
term or proximal term to get a well-posed problem.



888 F. De Vuyst, P. Villon / C. R. Mecanique 347 (2019) 882–890
4.1. Summary of the minimization algorithm

Finally, the alternating direction minimization algorithm is as follows.

1. Choose an initial guess a0 �= 0, p = 0.
2. Loop on integer p

- p ← p + 1;
- compute the skew-symmetric matrix

A(p) = arg min
A

J (A,a(p))

by solving the Lyapunov equations (18) using a = a(p);
- normalize the matrix A(p):

A(p) ← A(p)

‖A(p)‖∞
- then compute the solution a(p+1) to

a(p+1) = arg min
a

J (A(p),a)

by solving the (possibly regularized) least squares problem (19) using A = A(p) .
3. Test the convergence stop criterion.

5. Greedy iterative procedure

The algorithm presented in the previous section can be advantageously used for the construction of a greedy enriching 
procedure. Assume that at the last iterate (k − 1), we get a differential model ẋ = f̃

(k−1)
(x). Then one can add a correction 

term in the form ϕk(x)Ak∇η(x), the function ϕk(x), and the matrix Ak to determine to get the enriched model:

f̃
(k)

(x) = f̃
(k−1)

(x) + ϕk(x)Ak∇η(x)

The identification of both matrix Ak and function ϕk(x) can be achieved following the same methodology as before. We 
need a stopping criterion to break the iterative loop. From a given accuracy threshold εtol , one can use, for example the 
natural accuracy estimate:

N∑
k=1

‖yk − f (k)(xk)‖2
2,d

N∑
k=1

‖yk‖2
2,d

≤ εtol

6. Numerical applications

6.1. Lotka–Volterra system

Let us recall that the two-dimensional Lotka–Volterra system (6), (7) has an invariant quantity (8) being constant over 
each integral curve. The vector field f (x), x = (x, y)ᵀ can be exactly written as

f (x) = ϕ(x) E12∇η(x) (20)

with ϕ(x) = xy. This means that the use of the only observable ϕ(x) = xy is sufficient to perfectly retrieve the system, as 
soon as we only have two linearly independent data (x1, g1) and (x2, g2). For the numerical experiment, the function ϕ(x)

is searched in the linear space of polynomials of degree not greater than two:

ϕ(x) = a1 + a2x + a3 y + a4x2 + a5xy + a6 y2

The search vector a = (a1, ..., a6)
ᵀ is initialized with a random vector a(0) �= 0. We use the alternating variable method as 

presented before. After a few iterates, we get the expected pair (a, A) with

a = (0,0,0,0,1,0), A =
(

0 1
−1 0

)
(up to floating number round-off error precision) using 20 samples in the dataset.
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7. Closing comments

7.1. Three-dimensional Lotka–Volterra system

Consider here the more complex three-dimensional Lotka–Volterra system

ẋ = (2 − y − z)x (21)

ẏ = y(x − z) (22)

ż = z(x + y − 2) (23)

with initial data x0 = (x0, y0, z0) such that x0, y0, z0 > 0. It is easy to check that the quantity

η(x) = log(xyz) − x − y − z

is an invariant of the dynamical system, and we have ẋ = A(x)∇η(x), with

A(x) =
⎛
⎝ 0 xy xz

−xy 0 yz
−xz −yz 0

⎞
⎠

The skew-symmetric matrix A(x) has the exact decomposition

A(x) = ϕ1(x)E12 + ϕ2(x)E13 + ϕ3(x)E23

with ϕ1(x) = xy, ϕ2(x) = xz and ϕ3(x) = yz. We observe that the greedy procedure needs at least three iterations to 
identify the system. Using a search dictionary composed of the first monomials should allow for a perfect identification of 
this system.

7.2. Links with extended dynamic mode decomposition

The identification method presented in this paper has close connections with the extended dynamic mode decomposition 
approach (EDMD). Indeed the search model in the form

f̃ (x) =
(

M∑
k=1

ϕk(x)Ak

)
∇η(x)

can be written in stacked EDMD-like form

f̃ (x) = T �(x)

where T is a constant matrix and �(x) is a vector of stacked nonlinear observables. We observe that is our approach, ele-
ments of �(x) are made of products ϕk(x)∂�η(x) that appear to be suitable observables of the system from the identification 
point of view.

7.3. Connections between invariants and Koopman theory

It is known that there are connections between EDMD and the Koopman theory of dynamical systems (see [6] and 
subsequent works). In this section, we would like to emphasize that is also a connection between invariant quantities 
like η and particular spectral properties of the Koopman operator. Let xt(u) be the solution at time t to the initial value 
differential problem: ẋ = f (x(t)), x(0) = u. The Koopman operator (or compositional operator) Kt relative to the discrete 
mapping xt(u) if defined as

(Kt g)(u) = g ◦ xt(u)

The continuous Koopman operator is defined by

K c
0 (g)(u) = lim

t→0

(Kt g)(u) − g(u)

t

For differentiable functions g , we have K c
0 (g)(u) = ∇g(u) · f (u). So we see that an invariant η of the system if an eigen-

function of the continuous Koopman operator with eigenvalue 0. It seems important to include these eigenfunctions as 
nonlinear observables to achieve a good identification of the system.
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8. Concluding remarks and perspectives

In the paper, we have presented a computational approach for identifying equations of a continuous nonlinear dynamical 
system from data. The leading model is built in order to preserve a known invariant quantity of the system, thus providing 
large time stability behavior as well as reinforced accuracy. The numerical methodology is validated on a two-dimensional 
Lotka–Volterra system.

Perspectives of extension to more complex systems could be interesting to study. In 1997, Grmela and Öttinger [7] pro-
posed a general framework to deal with thermodynamically-consistent dynamical models, the so-called GENERIC framework, 
standing for “General Equation for Non-Equilibrium Reversible-Irreversible Coupling”. For a conservative thermodynamical 
system, the laws of dynamics are searched in the form

ẋ = A(x)∇E (x) − S(x)∇η(x) (24)

where E denotes the total energy which is conserved and η is an entropy of the system. The entropy is supposed to decay 
during time, expressing the dissipative structure of the system:

d

dt
E (x(t)) = 0,

d

dt
η(x(t)) ≤ 0

For that, it is expected that matrices A(x) and S(x) in (24) are such that A(x) is skew-symmetric, and S(x) is symmetric, 
positive semi-definite with the additional constraints

A(x)∇η(x) = 0, S(x)∇E (x) = 0

It would be of interest to try to extend the work presented in this paper to the more complex case of GENERIC models.
Since the seminal work of 1997, the GENERIC formalism has been extensively used in the context of complex system 

modeling and simulation in Engineering Science. Recently, Moya et al. [8] and Gonzales et al. [9,1] have already used 
GENERIC in the data context for the derivation of consistent data-driven computational mechanics.

Another evident topic of interest is the more complex case of noisy data. Robust identification algorithms are required in 
this case. There are three options: i) either the model is seen deterministic, and the parameters are set as deterministic (real) 
quantities; ii) or the model is chosen deterministic, but the parameters are seen as random variables and we have to find 
the probabilistic laws; iii) or the model itself is seen as stochastic, involving for example stochastic differential equations, 
and parameters are seen either as deterministic or random variables. In the case of stochastic differential equations, we do 
not deal with invariant quantities, but with invariant measures. In the case of both deterministic models and parameters, 
one can adopt for example a “data assimilation” approach [10] where the problem is set under an optimization problem 
including Tykhonov-like regularization terms, with minimal a priori noise structure knowledge, for example a covariance 
matrix. This topic will be the object of future developments.

Acknowledgements

The authors thank Prof. Georges Oppenheim for fruitful discussion on dynamic mode decomposition and general sta-
tistical learning methods. We would like also to thank the anonymous referees for their careful reading and constructive 
comments.

References

[1] D. Gonzales, F. Chinesta, E. Cueto, Learning corrections for hyperelastic models from data, Front. Mater. 6 (14) (2019) 14.
[2] P. Wangersky, Lotka–Volterra population models, Annu. Rev. Ecol. Syst. 9 (1978) 189–218.
[3] A. Ionescu, R. Militaru, F. Munteanu, Geometrical methods and numerical computations for prey-predator systems, Br. J. Math. Comput. Sci. 10 (5) 

(2015) 1–15.
[4] P.J. Schmid, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech. 656 (2010) 5–28.
[5] R.H. Bartels, G.W. Stewart, Solution of the matrix equation A X + X B = C , Commun. ACM 15 (9) (1972) 820–826, https://doi .org /10 .1145 /361573 .361582.
[6] M.O. Williams, I.G. Kevrekidis, C.W. Rowley, A data-driven approximation of the Koopman operator: extending dynamic mode decomposition, J. Non-

linear Sci. 25 (2015) 1307–1346.
[7] M. Grmela, H.C. Öttinger, Dynamics and thermodynamics of complex fluids. I. Development of a general formalism, Phys. Rev. E 56 (1997) 6620.
[8] B. Moya, D. Gonzalez, I. Alfaro, F. Chinesta, E. Cueto, Learning slosh dynamics by means of data, Comput. Mech. 64 (2) (2019) 511–552.
[9] D. Gonzales, F. Chinesta, E. Cueto, Contin. Mech. Thermodyn. 31 (1) (2019) 239–253.

[10] M. Asch, M. Bocquet, M. Nodet, Data Assimilation: Methods, Algorithms, and Applications, Fundamentals of Algorithms, SIAM, 2017.

http://refhub.elsevier.com/S1631-0721(19)30184-6/bib476F6E7A616C657332s1
http://refhub.elsevier.com/S1631-0721(19)30184-6/bib57616E676572736B79s1
http://refhub.elsevier.com/S1631-0721(19)30184-6/bib496F6E65736375s1
http://refhub.elsevier.com/S1631-0721(19)30184-6/bib496F6E65736375s1
http://refhub.elsevier.com/S1631-0721(19)30184-6/bib5363686D6964s1
https://doi.org/10.1145/361573.361582
http://refhub.elsevier.com/S1631-0721(19)30184-6/bib57696C6C69616D73s1
http://refhub.elsevier.com/S1631-0721(19)30184-6/bib57696C6C69616D73s1
http://refhub.elsevier.com/S1631-0721(19)30184-6/bib47726D656C61s1
http://refhub.elsevier.com/S1631-0721(19)30184-6/bib4D6F7961s1
http://refhub.elsevier.com/S1631-0721(19)30184-6/bib476F6E7A616C6573s1
http://refhub.elsevier.com/S1631-0721(19)30184-6/bib41736368s1

	Identiﬁcation of nonlinear dynamical system equations using dynamic mode decomposition under invariant quantity constraints
	1 Introduction
	2 Setting of the problem
	2.1 Invariant quantity and structure hypotheses
	2.2 Truncated decomposition of skew-symmetric matrix-valued mappings

	3 Dynamic mode decomposition approach under skew-symmetry constraints
	4 Dynamic mode decomposition with both matrix and function identiﬁcation
	4.1 Summary of the minimization algorithm

	5 Greedy iterative procedure
	6 Numerical applications
	6.1 Lotka-Volterra system

	7 Closing comments
	7.1 Three-dimensional Lotka-Volterra system
	7.2 Links with extended dynamic mode decomposition
	7.3 Connections between invariants and Koopman theory

	8 Concluding remarks and perspectives
	Acknowledgements
	References


