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Conformal mapping and analytic continuation are employed to prove the existence of an 
internal uniform electroelastic field inside a non-elliptical piezoelectric inhomogeneity 
interacting with a screw dislocation. We focus specifically on the case when the 
piezoelectric matrix surrounding the inhomogeneity is subjected to uniform remote anti-
plane mechanical and in-plane electrical loading and a constraint is imposed between the 
remote loading and the screw dislocation. The constraint can be expressed in a relatively 
simple decoupled form by utilizing orthogonality relationships between two corresponding 
eigenvectors. The internal uniform electroelastic field is found to be independent of the 
presence of the screw dislocation; moreover, it can be expressed in decoupled form.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The uniformity of stresses and strains inside elastic inhomogeneities has been discussed extensively in the literature by 
numerous investigators (see, for example, [1–14]). In particular, it was shown recently that the stress and strain fields inside 
elastic inhomogeneities can remain uniform despite the presence of nearby screw dislocations [15–17]. The electromechan-
ical coupling phenomenon of piezoelectric materials has led to their widespread use as sensors and actuators in smart 
materials and structures. The study of piezoelectric solids with various kinds of defects is extensive, for example, we cite 
the works of Pak [18,19], Suo et al. [20], Ting [8], Lee et al. [21] and Wang & Schiavone [22].

In this paper, we show that, in the case of anti-plane shear deformations of a piezoelectric composite, the electroelastic 
field (stress, strain, electric displacement and electric field) inside a non-elliptical piezoelectric inhomogeneity interacting 
with a nearby screw dislocation in the matrix subjected to uniform remote anti-plane mechanical and in-plane electric 
loading can remain uniform subject to a particular constraint. For given material and geometric parameters, this constraint 
can be considered as two separate conditions on the remote loading and the screw dislocation after employing orthogonal 
relations for the two associated eigenvectors. The screw dislocation itself suffers jumps in anti-plane displacement and 
in electric potential across the slip plane, and is also subjected to an anti-plane line force and a line charge at the core. 
During the solution procedure, two either real or complex conjugate mismatch parameters, the magnitudes of which are 
smaller than unity, are introduced for the two-phase piezoelectric composite. The internal uniform electroelastic field, which 
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is found to be independent of the presence of the screw dislocation, can be described in terms of the two mismatch 
parameters and a single geometric parameter.

2. Complex variable formulation

In the case of anti-plane shear deformations of a hexagonal piezoelectric material exhibiting 6 mm symmetry with its 
poling direction along the x3-axis of a Cartesian coordinate system {xi} (i = 1, 2, 3), the general solution is given by [23][

u3

φ

]
= Im

{
f(z)

}
, (1)

[
2ε32 + 2iε31

−E2 − iE1

]
= f′(z),

[
σ32 + iσ31

D2 + iD1

]
= Cf′(z), (2)

where, respectively, u3 and φ are the anti-plane displacement and electric potential; σ31 and σ32 are the Cartesian anti-
plane shear stresses; D1 and D2 are the in-plane electric displacements; E1 and E2 are the in-plane electric fields; ε31 and 
ε32 are strain components; f(z) is a 2D analytic vector function of the complex variable z = x1 + ix2; the 2 ×2 dimensionless 
real symmetric matrix C is defined by

C = Cᵀ =
[

C44 e15

e15 − ∈11

]
, (3)

where C44, e15 and ∈11 are the elastic stiffness, the piezoelectric constant and the dielectric constant, respectively. Note that 
C defined by Eq. (3) is neither positive definite nor negative definite.

3. Internal uniform electroelastic field

Consider a domain in �2, infinite in extent, containing a non-elliptical piezoelectric inhomogeneity, with electroelastic 
properties different from those of the surrounding matrix. Both the inhomogeneity and the matrix are hexagonal with their 
poling directions along the x3-axis. Let S1 and S2 denote the inhomogeneity and the matrix, respectively, perfectly bonded 
through the non-elliptical interface L. The matrix is subjected to uniform remote anti-plane shear stresses (σ∞

31 , σ∞
32 ) and 

in-plane electric displacements (D∞
1 , D∞

2 ). In addition, a piezoelectric screw dislocation is applied at z = z0 in the matrix. 
The screw dislocation suffers a jump b3 in anti-plane displacement and a jump �φ in electric potential across the slip plane. 
Meanwhile, the screw dislocation is subjected to an anti-plane line force f3 and a line charge Q at its core. Throughout the 
paper, the subscripts 1 and 2 are used to identify the respective quantities in S1 and S2. In the remaining of this section, 
we will study the existence of an internal uniform electroelastic field inside the non-elliptical piezoelectric inhomogeneity 
in the presence of the nearby screw dislocation.

The boundary value problem for the two-phase piezoelectric composite has the form:

f2(z) + f2(z) = C−1
2 C1f1(z) + C−1

2 C1f1(z),

f2(z) − f2(z) = f1(z) − f1(z), z ∈ L;
(4a)

f2(z) ∼= b̂ − iC−1
2 f̂

2π
ln(z − z0) + O (1), z → z0; (4b)

f2(z) ∼= C−1
2 wz + b̂ − iC−1

2 f̂

2π
ln z + O (1), |z| → ∞, (4c)

where

b̂ =
[

b3

�φ

]
, f̂ =

[
f3

−Q

]
, w =

[
σ∞

32 + iσ∞
31

D∞
2 + iD∞

1

]
. (5)

Equation (4a) describes the continuity of traction, normal electric displacement, displacement and electric potential 
across the perfectly bonded inhomogeneity-matrix interface L; Eq. (4b) describes the logarithmic singular behavior of f2(z)
at the location of the screw dislocation; Eq. (4c) gives the remote asymptotic behavior of f2(z) due to the remote loading 
and the screw dislocation.

For our purposes, it is sufficient to consider the following conformal mapping function [16]

z = ω(ξ) = R

(
ξ + p

ξ
+ q ln

ξ − ξ̄−1
0

ξ

)
, ξ = ω−1(z), |ξ | ≥ 1, (6)

where R is a real scaling constant, p and q are two complex constants, ξ0 = ω−1(z0). The branch cut for the logarithmic 
function appearing in Eq. (6) is chosen as the line segment connecting ξ = 0 and ξ = ξ̄−1(|ξ̄−1| < 1). Thus, the logarithmic 
0 0
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function in Eq. (6) is analytic and single-valued for |ξ | ≥ 1. Using the above mapping function, the exterior of the inhomo-
geneity is mapped onto |ξ | ≥ 1, the inhomogeneity-matrix interface L is mapped onto the unit circle |ξ | = 1, the location of 
the piezoelectric screw dislocation z = z0 is mapped onto ξ = ξ0.

In order to ensure the uniformity of the electroelastic field incorporating stresses, strains, electric displacements and 
electric fields inside the piezoelectric inhomogeneity, it is sufficient that the analytic vector function defined inside the 
inhomogeneity take the following form

f1(z) = kz, z ∈ S1, (7)

where k is a two-dimensional complex vector to be determined.
By using Eq. (7) and imposing the continuity conditions for traction, normal electric displacement, displacement and 

electric potential across the perfect interface L in Eq. (4a), we arrive at

f2(ξ) = f2
(
ω(ξ)

) = (C−1
2 C1 + I)k

2
ω(ξ) + (C−1

2 C1 − I)k̄

2
ω̄

(
1

ξ

)
, |ξ | ≥ 1. (8)

Using Eq. (8) and satisfying Eqs. (4a) and (4c), we obtain the following relationships

(C1 + C2)k + p̄(C1 − C2)k̄ = 2w, (9)

Rq(C1 − C2)k = 2(C2b̂ + if̂). (10)

The constant vector k can be uniquely determined from Eq. (9) as

k = 2
[
C1 + C2 − |p|2(C1 − C2)(C1 + C2)

−1(C1 − C2)
]−1[

w − p̄(C1 − C2)(C1 + C2)
−1w̄

]
. (11)

Substitution of Eq. (11) into Eq. (10) yields the following constraint between the remote loading characterized by w and 
the piezoelectric screw dislocation characterized by b̂ and f̂:

Rq
[
w − p̄(C1 − C2)(C1 + C2)

−1w̄
]

= [
(C1 + C2)(C1 − C2)

−1 − |p|2(C1 − C2)(C1 + C2)
−1](C2b̂ + if̂).

(12)

The coupling present in the above constraint makes it somewhat difficult to interpret. Consider the following eigenvalue 
problem:

C2v = λC1v, (13)

where λ denotes an eigenvalue and v the associated eigenvector.
Let λ1 and λ2 be the two eigenvalues from Eq. (13) with associated eigenvectors v1 and v2, respectively (explicit expres-

sions for λ1, λ2, v1 and v2 can be found in the appendix). It is relatively straightforward to verify the following orthogonality 
relationships for the two eigenvectors with respect to the two real symmetric matrices C1 and C2:

ΦT C1Φ = diag
[
δ1 δ2

]
,

ΦT C2Φ = diag
[
λ1δ1 λ2δ2

]
,

(14)

where δ1 and δ2 are constants, and

Φ = [
v1 v2

]
. (15)

We further introduce the following transforms:



w′ = [ 


w ′
1



w ′

2

]T = ΦT w′, 

w′′ = [ 


w ′′
1



w ′′

2

]T = ΦT w′′,



b =
[




b1



b2

]T = ΦT C2b̂,



f =
[




f1



f2

]T = ΦT f̂,
(16)

where w′ and w′′ are the real and imaginary parts of w. It is seen from Eq. (16) that both 

w′ and 


w′′ are complex-valued 
when the two eigenvectors are complex.

Using Eqs. (14) and (16), the constraint in Eq. (12) can be rewritten in the following simpler decoupled form

Rq = (K −1
1 − |p|2 K1)(




b1 + i



f1)


w ′ + i



w ′′ − p̄K (



w ′ − i



w ′′)

= (K −1
2 − |p|2 K2)(




b2 + i



f2)


w ′ + i



w ′′ − p̄K (



w ′ − i



w ′′)

, (17)

1 1 1 1 1 2 2 2 2 2
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where the two either real or complex conjugate mismatch parameters K1 and K2 are defined by

K1 = 1 − λ1

1 + λ1
, K2 = 1 − λ2

1 + λ2
, |K1| < 1, |K2| < 1. (18)

The magnitudes of K1 and K2 are smaller than one since the two eigenvalues always have positive real parts (see the 
Appendix). The constraint in Eq. (17) can be considered as two separate conditions on the remote loading characterized by 


w′ and 


w′′ and on the screw dislocation characterized by 



b and 



f for given material and geometric parameters K1, K2, p
and Rq.

For example, when p = 0, Eq. (17) reduces to the following one



b1 + i



f1


w ′

1 + i


w ′′

1

= RqK1,




b2 + i



f2


w ′

2 + i


w ′′

2

= RqK2. (19)

The internal uniform electroelastic field quantities of stress and electric displacement inside the piezoelectric inhomo-
geneity is given by[

σ32 + iσ31

D2 + iD1

]
= 2C1

[
C1 + C2 − |p|2(C1 − C2)(C1 + C2)

−1(C1 − C2)
]−1

× [
w − p̄(C1 − C2)(C1 + C2)

−1w̄
]
, z ∈ S1, (20)

which is independent of the complex constant q, in other words, independent of the existence of the piezoelectric screw 
dislocation.

The stresses and electric displacements are distributed within the matrix as follows[
σ32 + iσ31

D2 + iD1

]
= [

I − |p|2(C1 − C2)(C1 + C2)
−1(C1 − C2)(C1 + C2)

−1]−1[
w − p̄(C1 − C2)(C1 + C2)

−1w̄
]

− [
(C1 + C2)(C1 − C2)

−1 − |p|2(C1 − C2)(C1 + C2)
−1]−1

× [
w̄ − p(C1 − C2)(C1 + C2)

−1w
] ω̄′( 1

ξ
)

ξ2ω′(ξ)
, |ξ | ≥ 1. (21)

Using Eq. (14) and (16), the expressions for stresses and electric displacements in Eqs. (20) and (21) can be concisely 
written into the following decoupled form



σ = (1 + K1)[ 


w ′
1 + i



w ′′

1 − p̄K1(


w ′

1 − i


w ′′

1)]
1 − |p|2 K 2

1

,




D = (1 + K2)[ 

w ′

2 + i


w ′′

2 − p̄K2(


w ′

2 − i


w ′′

2)]
1 − |p|2 K 2

2

, z ∈ S1;
(22)



σ =



w ′

1 + i


w ′′

1 − p̄K1(


w ′

1 − i


w ′′

1)

1 − |p|2 K 2
1

− K1[ 

w ′

1 − i


w ′′

1 − pK1(


w ′

1 + i


w ′′

1)]
1 − |p|2 K 2

1

ω̄′( 1
ξ
)

ξ2ω′(ξ)
,




D =


w ′

2 + i


w ′′

2 − p̄K2(


w ′

2 − i


w ′′

2)

1 − |p|2 K 2
2

− K2[ 

w ′

2 − i


w ′′

2 − pK2(


w ′

2 + i


w ′′

2)]
1 − |p|2 K 2

2

ω̄′( 1
ξ
)

ξ2ω′(ξ)
, |ξ | ≥ 1,

(23)

where[


σ



D

]
= Φᵀ

[
σ32 + iσ31

D2 + iD1

]
. (24)

It can be seen from Eqs. (22) and (23) that the constants 

σ and 




D inside the piezoelectric inhomogeneity can be 
completely determined once the three parameters K1, K2 and p and the remote loading 


w′ and 

w′′ are given. More precisely, 



σ is determined only by K1, p, 


w ′
1, 


w ′′
1; whilst 




D is determined only by K2, p, 

w ′

2, 

w ′′

2.
When p = 0, Eqs. (22) and (23) reduce to



σ = (1 + K1)

( 

w ′

1 + i


w ′′

1

)
,




D = (1 + K2)
( 


w ′
2 + i



w ′′

2

)
, z ∈ S1; (25)



σ = 


w ′
1 + i



w ′′

1 − K1
( 


w ′
1 − i



w ′′

1

) ω̄′( 1
ξ
)

ξ2ω′(ξ)
,




D = 

w ′

2 + i


w ′′

2 − K2
( 


w ′
2 − i



w ′′

2

) ω̄′( 1
ξ
)

ξ2ω′(ξ)
, |ξ | ≥ 1. (26)

We have verified that the uniform electroelastic field in Eq. (25) agrees with the uniform field inside a circular piezo-
electric inhomogeneity under uniform remote electromechanical loading in the absence of the screw dislocation [19]. The 
adoption of the transform in Eq. (24) makes the expression in Eq. (25) rather concise.
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4. Conclusions

Within the framework of anti-plane piezoelectricity, we have shown that the internal electroelastic field inside a non-
elliptical piezoelectric inhomogeneity interacting with a nearby screw dislocation can be maintained uniform when the 
constraint in Eq. (17) is satisfied. After the introduction of the transform in Eq. (24), the electroelastic field in the piezoelec-
tric composite can be written concisely in the decoupled form in Eqs. (22) and (23).
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Appendix A

Let

C1 =
[

C (1)
44 e(1)

15

e(1)
15 − ∈(1)

11

]
, C2 =

[
C (2)

44 e(2)
15

e(2)
15 − ∈(2)

11

]
. (27)

When (C (1)
44 ∈(2)

11 +C (2)
44 ∈(1)

11 +2e(1)
15 e(2)

15 )2 > 4(C (1)
44 ∈(1)

11 +e(1)2
15 )(C (2)

44 ∈(2)
11 +e(2)2

15 ), the two distinct eigenvalues of Eq. (13) are 
positive real and are given by

λ1,2 =

⎛
⎝ C (1)

44 ∈(2)
11 +C (2)

44 ∈(1)
11 +2e(1)

15 e(2)
15

±
√

(C (1)
44 ∈(2)

11 −C (2)
44 ∈(1)

11 )2 + 4(C (1)
44 e(2)

15 − C (2)
44 e(1)

15 )(∈(2)
11 e(1)

15 − ∈(1)
11 e(2)

15 )

⎞
⎠

2(C (1)
44 ∈(1)

11 +e(1)2
15 )

> 0. (28)

When (C (1)
44 ∈(2)

11 +C (2)
44 ∈(1)

11 +2e(1)
15 e(2)

15 )2 < 4(C (1)
44 ∈(1)

11 +e(1)2
15 )(C (2)

44 ∈(2)
11 +e(2)2

15 ), the two distinct eigenvalues of Eq. (13) are 
complex conjugates with positive real part and are given by

λ1,2 =

⎛
⎝ C (1)

44 ∈(2)
11 +C (2)

44 ∈(1)
11 +2e(1)

15 e(2)
15

±i
√

4(C (1)
44 e(2)

15 − C (2)
44 e(1)

15 )(∈(1)
11 e(2)

15 − ∈(2)
11 e(1)

15 ) − (C (1)
44 ∈(2)

11 −C (2)
44 ∈(1)

11 )2

⎞
⎠

2(C (1)
44 ∈(1)

11 +e(1)2
15 )

,

Re{λ1} = Re{λ2} > 0. (29)

The two eigenvectors associated with the eigenvalues for the above two cases are

v1 =
[

λ1e(1)
15 − e(2)

15

C (2)
44 − λ1C (1)

44

]
, v2 =

[
λ2e(1)

15 − e(2)
15

C (2)
44 − λ2C (1)

44

]
. (30)

When the two eigenvalues are real, the two eigenvectors are also real. When the two eigenvalues are complex conjugates, 
we have from Eq. (30) that v2 = v̄1.
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