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1. Introduction

In the last decades, a major computational challenge in geotechnical engineering has been the rational design of mat
footing reinforced by pile groups, namely ‘piled-raft foundation,” which has been used extensively in Asia and Europe [1].
The relatively large number of piles along with the extreme heterogeneity of the soil and the interaction effects among
them makes it difficult to study the response of such a soil-structure problem by using analytical as well as numerical
methods. To simulate the behavior of such complex three-dimensional foundations, different analysis methods ranging from
simplified [2,3] to more rigorous analyses [4] have been developed.

As for the analysis of a piled-raft foundation, approximate closed-form solutions as a simplified method have been
proposed by a number of authors [5,6], which are frequently employed in preliminary design. For instance, Poulos et al.
[7] studied the response of axially-loaded piled rafts among other examples. These methods are based on the application
of the well-known Mindlin’s equations [8], by which, the displacement caused by a point load within a semi-infinite mass
is calculated. In most simplified methods, the pile-soil interactions can not be considered. Furthermore, the distribution of
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Fig. 1. Schematic representation of a pile group in the two-phase approach.

forces along the piles cannot be calculated directly. Analytical solutions can be ameliorated by applying concepts such as
homogenization techniques in order to investigate more accurately the behavior of axially-loaded piled rafts embedded in
soil deposits.

In a piled-raft foundation, the piles are often distributed regularly in the ground, which can be regarded as a composite
system. Such a problem can be analyzed by homogenization methods, where the pile-soil region can be substituted by
an equivalent anisotropic medium. The application of such a solution has already been validated for the soil improved by
columnar inclusions [9]. In this approach, a composite material is replaced by a single homogeneous continuum, where the
interaction between the distinct elements cannot be considered. A ‘multiphase approach’ as an extension of the homogeniza-
tion technique has been introduced by de Buhan and Sudret [10] to overcome the shortcomings of classical homogenization
methods. This approach has been used as a powerful tool to analyze reinforced soil structures such as reinforced soil re-
taining walls [11-13], tunnels [14,15], piled embankments [16], and strength of reinforced soils [17,18]. The multiphase
approach, which is based on the principle of the virtual work, provides a mechanical framework that describes a compos-
ite material with periodically-arranged inclusions such a reinforced soil as several homogeneous media called ‘phases’. The
advantage of the multiphase approach is to consider the interaction among the phases. The soil and the pile group in a
piled-raft foundation can be regarded as a ‘two-phase system’.

In the simplest form, this concept has been used by Sudret and de Buhan [14] for the analysis of a piled-raft foundation
where perfect compatibility was assumed between the displacement of the piles and the soil amongst. They demonstrated
that in spite of some discrepancy in the results, the computational effort is interestingly smaller with respect to the discrete
modeling of the piled-raft foundation problem, which makes parametric studies and design optimization very simple. Later
on, Bennis and de Buhan [19] and afterward Hassen et al. [20] have focused on the interaction between the phases, i.e.
piles and soil in piled-raft problems. The results are compared with classical numerical simulations where the piles are
considered individually. General comparisons indicate that the two-phase approach yields reliable results for the estimation
of settlement as well as pile force distributions. Furthermore, the interaction among the phases plays an important role.
It is noted that all of these efforts were carried out numerically by the implementation of the two-phase technique into
finite-element formulations.

Following the attempts in the analysis of piled-raft foundations as a two-phase material, the present study is devoted to
the extension of an explicit analytical solution for a vertically-loaded piled raft embedded in an infinite soil layer. In this
contribution, both the soil and the piles are assumed to behave as linear elastic materials, and the corresponding equilibrium
equations are solved in the multiphase framework in one-dimensional form. Accordingly, the pile displacement as well as
the stress distribution in the medium are obtained and expressed in terms of equations in a simple form. In addition to
the simplicity of the proposed method, the major advantage against other simplified methods is to assess the distribution
of axial force along the piles’ length. The results are compared with other existing cases in the literature. Parametric studies
on effective parameters are presented and discussed as well.

2. Mathematical formulation of the two-phase model
2.1. Resolution of the problem

Consider a pile group as a reinforced soil mass where vertical inclusions are embedded in a uniform pattern in a Carte-
sian x-y-z coordinate system as shown in Fig. 1. In the microscopic view, the individual piles are being paid attention to
separately, as shown in Fig. 1a, while this medium can be regarded as a homogeneous but anisotropic two-phase material
in a macroscopic view, as depicted in Fig. 1b. The two phases are called ‘matrix phase,” as representative of the soil, and
‘reinforcement phase,’ representing the piles. Each point of the two-phase model has two independently kinematics, one
related to the matrix phase (§™) and the other one associated with the reinforcement phase (¢7). The internal forces of the
phases are coupled with each other at the same geometric point by mutual interaction force (I).
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2.2. Static equilibrium of the two-phase model

Derivation of governing equations for a two-phase material is explained in detail by Sudret and de Buhan [14] where
stress tensors of the phases are defined by the global form of the classical Cauchy stress tensor (¢™) for the matrix phase
and the scalar stress (o") for the reinforcement phase that behaves as an axial (tensile or comp_ressive) one-dimensional
element. By superposition of these two phases in a macroscopic scale, as shown in Fig. 1b, the body force (I) is induced.
The external forces consist of a body force (P!G') and an inertial force (P'A’) of each phase, which both of them are exerted
on the volume. The index i represents ‘m’ for the matrix phase and ‘r’ for the reinforcement phase. G represents the body
force mass density, while A’ is the density of inertial forces.

De Buhan and Sudret [21] described in detail how to calculate the field equilibrium equations and boundary conditions
of a two-phase system by using the first and second states of the virtual work principle. Accordingly, two sets of equations
are eventuated for each phase as follows:

divg™ +PMG™ — PTA™ 4 [ =0

a0 (1)
§L+P@F—VE—1=0
X

where P™ and P' are densities of the matrix and reinforcement phases, respectively.
The constitutive law of each phase can be stated in the general form as follows:

gM=EM:gh
= £ = 2)

OI‘ — E_I‘EI‘
where E™ is the forth-order stiffness tensor of the matrix phase and E" is the scalar form of stiffness of the reinforcement

phase. ¢™ is the strain tensor of the matrix phase and &' is the axial strain of the reinforcement phase. The solution to the
equations of equilibrium together with the constitutive equations for each phase is completed by the corresponding stress
boundary conditions.

2.3. Interaction between the phases

The interaction force (I) in Eq. (1) is a volume density force. According to the second law of thermodynamics described
by de Buhan and Sudret [21], the interaction force (I) equals:

I=C'Af (3)
where C! is an interaction stiffness coefficient tensor and A& = &7 — £™ is the relative displacement between the reinforce-
ment and matrix phases at each geometrical point.

As for the simplest case, it can be assumed that there is no relative displacement between the phases, which is called the
‘perfect-bonding’ situation. This particular condition exists if the kinematics of the matrix and reinforcement phases remain
identical (£" = £™). Alternatively, this case can be reached by defining C! as infinity in Eq. (3) [15]. The applicability of such
assumption, i.e. perfect bonding, can be considered for the analysis of reinforced soil walls [11,12,22,23], since the average
displacement of reinforced elements (such geogrids, etc.) can be assumed to be equal to that of the surrounding soil. For
a piled-raft foundation as a two-phase material, however, the perfect bonding assumption would not be correct since the
matrix (as the soil) and the reinforcement (as the piles) phase can have separate fields of displacement. It has been shown
in many studies [15,19] that the interaction plays an important role in the piled raft response, and it is recommended to
take it into consideration.

3. Problem solving
3.1. Definitions and assumptions

The geometric details of the problem are described in Fig. 2. Consider a piled-raft foundation over a uniform soil layer
that supports a superstructure as shown in Fig. 2(a). The foundation contains an A x B rigid raft in plan founded at depth D¢
below the ground surface, overlaying the soil mass reinforced by a group of vertical piles with length L. The cross-section
area of the piles is a solid circle with the diameter d. The piles are arranged regularly and the distance between the two
adjacent piles is characterized by s. The piled-raft foundation has a uniform settlement (§) at the base level of the raft.

In order to analyze this problem by using the two-phase approach, the reinforced zone is substituted by a two-phase
material with the same length L according to Fig. 2b. The building load together with the raft weight (Q ) is applied at the
top of the two-phase zone. The estimated settlement (§) is identical for both matrix and reinforcement phases at x = 0.
For simplicity, it is assumed that the raft, as well as the two-phase zone has an identical area with an equivalent radius
(rg). The average vertical stress applied to the soil at the level of the toe of the pile group can be estimated by distributing
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Fig. 2. Geometrical description of the problem.

the overall applied load over the extended area with radius re suggested by Fleming et al. [24]. Such simplification in the
geometry eventuates to have a one-dimensional problem.

The phases are assumed to behave as a linear elastic material. According to Timoshenko [25], in an elastic material,
radial and tangential strains are very small compared with the axial strains and, consequently, the radial deformation is
ignored in this problem. Furthermore, the shear and flexural effects of the piles are disregarded in the reinforcement phase,
since the loading of the piled raft is solely vertical. It is noted that, although the shear and flexural behavior of the piles
can be implemented in the framework of the two-phase approach [21], Hassen et al. [26] indicated that this simplification
under vertical loading has an inconsequential role in the amount of settlement of piled-raft foundations. Considerably, this
assumption helps to simplify the formulation and boundary conditions of the problem.

3.2. Outline procedure

In view of the above descriptions, the equilibrium and constitutive equations of the one-dimensional elastic two-phase
model are summarized in Egs. (4) and (5), respectively, as follows:

aox Fhe=

’ (4)
T

&O—X — IX =0

d
op=en(Lup)

d
oy =E" (&WQ

where o and o," are the phase stresses and w} and w}' indicate the vertical displacement related to the reinforcement
and matrix phases at an arbitrary depth x, respectively.

In the context of a one-dimensional elastic behavior, the interaction body force density (I) is reduced to one single
component along the pile direction:

(5)

he=C! (w}— wi) ®)

A general view of the one-dimensional two-phase model and the boundary conditions of both reinforcement and matrix
phases are sketched, separately, in Fig. 3. The simplified model of the problem is shown in Fig. 3a, in which the piled zone
is substituted by a two-phase material. The details of the boundary conditions are figured in Fig. 3b. The top boundary of
the zone, where the equivalent raft is located (x = 0), has the same displacement (§) in each phase. The sum of matrix and
reinforcement stresses at this boundary equals the average imposed pressure ¢ = Q /(A x B). The other boundary condition
that prescribes a pile-toe reaction is imposed at the lower surface of the zone (x = L). For each phase:

Oply=—q+p
Oy =—P

(7)
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Fig. 3. Schematic view of the basic assumptions and boundary conditions of the problem.

where p is the axial stress caused by the interaction between the phases at the pile toe at the macroscopic scale. This
stress, which corresponds to the pile force at the pile toe, is exerted on the lower boundary of reinforcement phase with
the positive sign and reciprocally in the matrix phase with the negative sign, as shown in Fig. 3b.
By replacing the interaction volume density I (Eq. (6)) and the constitutive equations (Eq. (5)) in the equilibrium equa-
tions (Eq. (4)) of the system, the final set of differential equations in the two-phase material is obtained:
2

d
En e+ C (W - ) =0
X (8)

d2
Er@w,r< —cl(wh—wl)=0

By introducing the relative displacement of the reinforcement and matrix phases A(x) = w} — wy', Eq. (8) simplifies to:

d? 1
32[A@] - 5am=0 9)
where A = % is named as characteristic length.
The general solution of Eq. (9) is in the form:
. X X
Ax)=cy smh<x> +cq cosh<x> (10)

The constant c¢; in the above equation is 0 because the boundary condition (w}_, = w7l , =§) is accepted at the top of
the two-phase zone (x = 0). The constant c; is obtained from the lower boundary condition.
Substitution of Eq. (7) into Eq. (5) at x =L leads to the following differential equation:

d A q 1 1 11
) —m (e 5) av
In order to solve the differential equation above, it is assumed that p = 0, which means that the piles totally transfer the
load to the surrounding soil through side friction and that the pile toe carries no load. In order to justify this simplification,
it is reminded that, based on the results of Reese and O’Neill’s work [27], the full friction of the drilled piles is generally
mobilized at very smaller pile displacement in comparison to the pile toe and so, the pile can be regarded as a “floating
pile”. In the literature review, there are many examples indicating that the load proportion of the pile toe is small in slender
piles [28-30]. For instance, by comparing the results of in situ measurement with those of numerical simulations, Fleming
et al. [24] showed that the load proportion of a pile with a diameter of 0.8 m, a length of 20 m, and situated in a uniform
soil layer is less than 10%. Poulos and Davis [28] analytically demonstrated that the pile toe carries less than 10% if the ratio
of the pile diameter to the pile length is less than 0.1. Basile [29] concluded a similar result by studying numerically the
nonlinear behavior of vertically loaded piled rafts. Based on detailed in situ measurements, Yamashita [30] and Yamashita
et al. [31] reported a very small portion of pile toe load (less than 7%) for a 47-story building constructed over a piled raft
that was installed in sand and gravel layers. These examples show that the floating piles carry non-zero but very small ratio
of total load at their toe. It should be noted that in the framework of the two-phase model as a numerical approach, it is
possible to implement a pile-soil interaction law as the pile toe resistance [32]. However, for more simplicity, the pile-toe
load is ignored in the present analytical approach. By assuming that p = 0, Eq. (11) simplifies to:

d _q
[aA(X)iLL Bl E_m (12)
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The term in the bracket can be obtained from the derivative of Eq. (10) and can be replaced into Eq. (12) with x=1L to
determine the constant c;:

()
Cy = —— 13
2T Em cosh() (13)
and consequently:
A ( sinh(%)
A<X>=q—m( 1 ) (14)
E™\ cosh(3)

By integrating the equilibrium equations (Eq. (4)) and considering Eq. (14) and the stresses o,_; and o, from boundary
conditions (refer to Fig. 3), the stress distribution in the reinforcement and the matrix phases can be calculated, respectively,
by using Egs. (15) as follows:

ot =——IE (1 COSh(X))

EM+ET\"  cosh(L) as)
o™(x) = __9 <Em + Ef%>
EM + ET cosh(%)

The displacement profile of the reinforcement and matrix phases is determined by considering the integration of the
constitutive equations (Eq. (5)) and phase stress components (Eq. (15)) as well as the boundary condition at the ground
surface (wW)_, = wyl, =98):

Asinh(%
wi(x) = — 1 X— (LA) +6
Em 4+ ET cosh(z)
SN (16)
q E" sinh(%)
whx) =———(x+ 21— ) +38
Em 4 ET E™ cosh(3)

In order to find §, the compatibility of the displacement at the boundary of the reinforced zone and the soil underneath
(at x =) is utilized. The settlement induced at the level of the base of the pile group can be estimated by taking the overall
applied load and distributing it over the equivalent area of the pile group by radius r. [24]:

re=25L1p(1—v)+r1g (17)

where L, is the distance between the pile base and the ground surface (= L + Ds). p is the degree of soil homogeneity and
is defined as the ratio of the shear moduli at the pile mid-depth and the pile base. The settlement of the unreinforced soil
layer beneath the pile group (wy) can be calculated as:

_2Q(1—vd)

18
nreEs (18)

u
where Eg and vg are the elastic properties of the unreinforced soil beneath the piled raft whose values correspond to the
toe level of the piles. The compatibility requirement between the displacements of the matrix phase (wjL;) and w, leads
to calculate § as a final result:

q ET L 2Q(1—v)
§=——(L+r—tanh( = i R 19
Em+Ef( + gm0 (x>)+ nreEs (19)

According to Eq. (19), the total settlement of the piled-raft foundation can be assessed by two sentences. The first one
shows the settlement contribution of the two-phase medium and the second sentence represents the additional settlement
caused by the soil layers beneath the pile group. The soil stiffness in the two-phase medium (E™) is assumed to be constant
and equal to the average value along the length of the pile, while the variation of the soil stiffness beneath the piled-raft
foundation is considered in the second sentence by the parameter r. according to Eq. (17).

3.3. Identification of the two-phase model parameters

Application of the two-phase approach to analyze a piled-raft foundation introduces new parameters, including E™, v™,
E', and C!, which can be estimated mechanically and geometrically from the characteristics of the soil and of the piles. In
a two-phase material, the volume fraction of the soil against the piles is very large; hence, the parameters of the matrix
phase (E™, v™) can be assumed equal to those of the soil itself. The elastic stiffness of the reinforcement phase (E") is
simply defined as the multiplication of the stiffness of a single pile (Epje) by the ‘reinforcement fraction’ n:
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The interaction stiffness coefficient (C') is a constant factor that can be determined from analytical or numerical methods
based on the definition of a laterally constrained Representative Volume Element (RVE). RVE is interpreted as the smallest
volume of the reinforced material, by which the corresponding calculations give a representative value of the whole. The
evaluation of this coefficient has been discussed by Bourgeois et al. [32] by using finite-element simulations. In the present
configuration, the value of C! is calculated analytically based on a shape function for the deformation of a single pile in
RVE, as shown in Fig. 4. The interaction stiffness coefficient is obtained from the elastic solution of an RVE with a circular
cross-section (Fig. 4a), which is imposed by a predefined uniform longitudinal displacement (8,) to the pile. For example,
as mentioned in Fig. 4b, a linear shape function (¢) is assumed in the form of ¢(r) = ((R —r)/(R — 0.5d)) 8p, where r is
the radial distance from the center of the pile and R denotes the equivalent RVE radius (= s/+/7). The soil around a pile
shaft can be idealized as concentric cylinders in shear [33] and, consequently, the imposed shear stress around the soil
is T(r) =—Gs(9¢/9r) = Gs (28p/(2R —d)), where G is the shear modulus of the soil and equals (= Es/2(1 + vs)). The
interaction force volume density (I) is obtained by the sum of shear stresses that are longitudinally distributed throughout
the lateral surface of the pile per the volume of RVE (S;) as follows:

JtdS,
1= 21
nR2h (21)
By applying a uniform displacement §, on the pile longitudinally, Eq. (21) is solved simply in terms of §p:
2d

[=——— G 22
R2(2R—d)GSp (22)

As a result, the interaction stiffness coefficient is calculated from Eq. (6) as:
I
cl = (23)

mean
8 — o0

where §"¢" is the average of the longitudinal soil displacement over RVE that can be calculated as the following function:

smean _ de;Z 2nre (r)dr B [ N d ] 3p (24)
S n(R2—(0.5d)2) d+2R] 3
Accordingly, the interaction stiffness coefficient is obtained as:
3nG
cl = s (25)
52 (1 — 20
n=y1

Alternatively, different shape functions can be considered for the soil deformation curve. If a logarithmic function is
considered for ¢, the interaction stiffness coefficient is calculated as the following relationship [19]:

4nG
cl = TG (26)

- Inn
52 (ﬂj — l)

According to different forms of C! (e.g., Egs. (25) and (26)), if the pile number increases and accordingly s reduces to
small values (s — 0), C! tends to infinity, which indicates perfect bonding conditions between the matrix and the reinforce-
ment phases. According to Pando et al. [34], a rigorous analysis such as the finite-element approach indicates that Eq. (26)
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Table 1
Characteristics of the hypothetical piled-raft example by Poulos et al. [35].
Example of Poulos et al. [35] Present model
Soil Pile Raft Two-phase material Unreinforced soil
E =20 MPa E = 30,000 MPa Area = 60 m? E™ = 20 MPa Es = 20 MPa
v=203 L=10m D¢ =0m E" = 1473 MPa p=1
d=05m ¢’ =111 MN/m* re = 20.7 m
n=15 n = 0.0490
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Fig. 5. Comparison of settlement and pile load sharing obtained through different methods.

is a good approximation of the deformation patterns. In this study, Eq. (26) is adopted as the definition of the interaction
stiffness coefficient (C!).

4. Validation of the proposed approach

The validity of the proposed approach is examined by considering two case studies and the results of the proposed
model are compared with those of approximate solutions published in the literature.

4.1. Case study 1

The accuracy of the analytical method proposed in this paper is initially appraised by a hypothetical piled raft example
presented by Poulos [7,35,36]. The piled raft contains a 6 m x 10 m raft in plan supported by 15 piles (= 3 x 5) under a
vertical load of 12 MN. The raft is situated on the ground surface. The piles are 10 m in length and 0.5 m in diameter. The
brief collection of the data of the piled-raft model as well as the input parameters are presented in Table 1. The results of
the settlement and pile load sharing are compared with alternative methods reported by Poulos [35] including Poulos and
Davis’ (PD) [6] approach, GARP [37] (a program based on plate on springs approach), GASP [38] (a program based on strip
on springs approach), and a simplified method by Ta and Small [39], denoted hereafter by TS. It is noted that the simplified
PD method is based on an elastic approach in a semi-infinite field with a perfectly-rigid or a perfectly-flexible raft, while
in the GARP or GASP method, an elastic-perfectly plastic model for the soil is taken into account along with the flexibility
of the raft. In the TS method, a finite layer for the soil and a finite element method for the raft and piles were considered
and the slippage between the piles and soil was not regarded. According to Poulos [35], it is not possible to specify which
method gives the correct answer. However, the results of different approaches should not be so far from each other. The
comparison of the settlement and the proportion of load taken by the piles are illustrated in Fig. 5 for different approaches.
By using the proposed method, the example has been analyzed by assuming two different conditions including:

i) the piles are perfectly bonded to the soil (denoted as P.B.);
ii) the relative displacement between the piles and the soil is considered (denoted as R.D.).

It can be seen that the results of the proposed method with PB are in good agreement with the prediction from the
PD method, while other methods give larger values. In the case of RD, the piled-raft foundation behaves significantly softer
than the other methods. The pile load sharing is assessed higher than the other methods which are almost the same for
both interaction conditions (RD or PB) and is more similar to the PD method. The comparison of the results indicates
that considering the interaction of the piles and the soil has more effect on the estimation of the settlement rather than

considering the pile load sharing. The same result has been pointed out by Bourgeois et al. [32,40], who performed elaborate
three-dimensional numerical analyses.
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Table 2
Parameters of the piled-raft foundation investigated by Clancy et al. [41].
Example of Clancy et al. [41] Present model
Soil Pile Raft Two-phase material Unreinforced soil
E = 280 MPa E = 35000 MPa Area = 1296 m? E™ = 280 MPa Es = 280 MPa
v=04 L=20m D¢ =0m E" = 1100 MPa p=1
d=08m ¢! =30.5 MN/m* re =481 m
n =281 n = 0.0314
100.0 100
80.0 80
E _ S
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Fig. 6. Prediction of settlement and pile load percentage of a piled-raft using the present method and Clancy et al.’s [41] method.

4.2. Case study 2

An analysis is performed for a square raft supported by 9 x 9 piles under a vertical load of 1296 MN, as described by
Clancy et al. [41]. It is assumed that the raft is established on the surface of the ground. The characteristics of the problem
are given in Table 2. The results of the settlement and the pile load sharing were predicted by the hybrid method, in which
thin bending plate finite elements and one-dimensional bar finite elements were considered for the footing and the piles,
respectively. The soil response was modeled by means of springs. The settlement of the piled raft model and the pile load
sharing are presented in Fig. 6 with all the aforementioned methods, as well as the proposed method. The example has been
analyzed by assuming P.B. and R.D. conditions. The comparison shows that the settlement of the present method based on
the relative displacement (R.D.) is more consistent with those of Hybrid method, while in the case of P.B., the settlement
is underpredicted. The reason for the difference is that the piles and the soil were considered individually in the hybrid
method, which can be regarded as an interaction effect between the piles and the soil. The pile load sharing calculated by

the proposed method is overestimated with respect to the hybrid method, in a similar fashion to what was observed in the
previous case study.

5. Case histories

To present the reliability of the approach introduced in this paper, the proposed approach is applied to analyze two
published real case histories, in which a monitoring system of instrumentation was involved.

5.1. Stonebridge Park building

The first case history is the footing of a building in Stonebridge Park, London, as described firstly by Cooke et al. [42]
and then investigated by other researchers [24,36]. The 16-story building was constructed from 1973 to 1975 and had one
of the first instrumented piled systems to understand the proportion of carried load by the piles. The London clay layer is
extended to the ground surface in the site. The foundation consists of 351 bored, cast-in-situ concrete piles with a diameter
of 0.45 m and a length of 13 m. The piles are laid out in a rectangular configuration with a spacing of 1.6 m, which supports
a raft with a flat surface of 20.8 m x 43.3 m and a thickness of 0.9 m. The raft was constructed at a depth of 2.5 m below
the ground surface. In Table 3, a summary of the geometrical and geotechnical data is presented.

According to the observations from the instrumentation results, a total of full dead and live loads after the completion
was 155.6 MN, including the weight of the raft [42]. The shear modulus profile of the site is approximated to have a linear
variation with depth [24]. The elastic modulus of each pile is calculated by using the cube strength of concrete (= 25.5
MPa) and a recommended BS standard relationship [43]. Based on the available instrumented data and the results of pile
loading tests, Cooke et al. [42] stated that the pile behavior was elastic.

The predicted as well as measured settlement of the piled-raft foundation from different approaches is presented in
Fig. 7. Fleming et al. [24] predicted the settlement by using a simple approach with more than 10% error. By applying the
proposed two-phase method, there is a very good agreement between the measured and predicted value if the interaction
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Table 3
Characteristics of the foundation of the building in Stonebridge Park [42].
Measured [42] Present model
Soil Pile Raft Two-phase material Unreinforced soil
G = 15.7 + 144 x (MPa) E = 26,500 MPa Area = 900 m? E™ = 86 MPa Es = 114 MPa (at pile toe)
v=205 L=13m Df=25m E" = 1643 MPa p =075
d = 450 mm ¢! = 71.3 MN/m* re = 30.50 m
n = 351 n = 0.0620
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Fig. 7. Prediction of settlement as well as pile load sharing for the piled-raft of the 16-story building in Stonebridge Park.

effect (R.D. condition) is taken into account. The settlement obtained from the perfect bonding (PB) is predicted as very
close to the case with the relative displacement (less than 7%). This small difference between the results can be explained
by the existence of a large number of piles. Referring back to Eq. (26), as the reinforcement density increases, C! tends
to infinity, which indicates perfect bonding condition between the matrix and the reinforcement phases. Accordingly, the
values of pile load sharing from the two conditions (P.B. and R.D.) are obtained as being similar to each other, which is
overestimated with respect to the measured data as well as to the simple approach used by Fleming et al. [24].

5.2. Forty-seven-story Nagoya Tower

The second case is that of a piled-raft foundation consisting of 50-m-long piles that supports a 47-story residential
tower in Nagoya, Japan. The field measurements were conducted on the foundation settlement and axial loads of piles were
reported by Yamashita et al. [31]. The building of 162 m in height with a concrete structure was constructed between
2006 and 2009. The raft with dimensions of 30.5 m by 47 m in plan was constructed 4.3 m below the ground surface
and it is supported by 36 cast-in-place concrete piles. The modulus of elasticity of the piles is evaluated by using the
nominal strength of concrete (= 48 MPa) and AlJ relationship [44]. The average contact pressure under the raft due to
the total load (sum of dead and live loads) is 580 kPa [45]. The shear modulus profile of the site ground as proposed by
Yamashita et al. [45] showed a linear increase with depth. Table 4 presents a summary of the foundation parameters with
the elastic properties of the soil [45]. The overall behavior of the piled-raft foundation remains in the elastic range because
the superstructure load is far less than the ultimate bearing capacity of the foundation [46] and hence, the proposed analysis
method can be reasonably applied.

The measured and predicted settlement and pile load sharing values are illustrated in Fig. 8 by applying the present
method as well as a simplified method proposed by Yamashita et al. [47]. The latter method was based on considering
interacting elastic springs for both the piles and the soil, and the problem was solved by using the finite-element method.
The comparison of the settlements shows that the value calculated by considering the relative displacement (RD) agrees well
with the measured data [31], with an error of less than 3%, while the settlement predicted by Yamashita [31] is bigger than
the measured value (more than 11%). In the perfect bonding conditions (PB), the settlement is underestimated by about
16% with respect to the measurement, which evidences the importance of considering the interaction. There is almost a
good accordance between the measurement and the calculations for pile load sharing. The value from the present study is
underestimated by about 5%, while the predicted value by Yamashita is by 3% smaller.

5.3. Messeturm Tower

As a third case history, the applicability of the proposed method is investigated for Messeturm Tower. This case is
popular and well known in the literature, since the behavior of the piles and the raft was precisely instrumented and a
full monitoring program was established. The advantage of this case over the other ones is that the axial force of the piles
along their length has been measured too. Messeturm Tower is a 256-m-high building which was constructed between
1988 and 1991 in Frankfurt, Germany. The building has a basement with two underground floors and 60 stories, with a
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Table 4
Characteristics of the foundation of the 47-story Nagoya Tower reported by Yamashita et al. [44,45,47].
Measured Present model
Soil Pile Raft Two-phase material Unreinforced soil
Gave = 688 MPa (at pile mid-depth) E = 36000 MPa Area = 1434 m? E™ = 413 MPa Es = 1790 MPa (at pile toe)
Gave = 159 MPa (at pile toe) L =502m Df =43 m E" = 2052 MPa p = 050
v =0.30 dave = 1700 mm C! = 24.6 MN/m* re = 654 m
n=36 n = 0.057
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Fig. 8. Comparison of settlement and load share of the piles for 47-Story Nagoya Tower through different methods.

total estimated load of 1860 MN [48]. The foundation details are described by Sommer [49]. The 58.8-m-square raft was
built at a depth of 14 m below the ground surface on overconsolidated Frankfurt clay, that was extended to a depth of more
than 100 m [50]. The raft’s thickness varies from 6 m at the middle to 3 m at the edge, which stands on 64 bored piles with
a diameter of 1.3 m. The piles are arranged in three rings under the raft. The piles have different lengths including 26.9 m
(28 piles), 30.9 m (20 piles), and 34.9 m (16 piles) in the outer, middle, and inner rings, respectively. The elastic modulus of
the piles, Epjle = 25,000 MPa, has been derived from in-situ measurements [48]. The soil elastic modulus increases linearly
with depth according to a relationship proposed by Katzenbach et al. [50]. Table 5 summarizes the parameters of the piled
raft of Messeturm Tower.

The results of settlement prediction and pile load sharing obtained by the proposed method (with RD and PB conditions)
are presented in Fig. 9 and compared with those of an in-situ measurement and finite-element analysis performed by
Reul and Randolph [48]. According to Fig. 9a, by considering the interaction effect, the proposed method (RD) predicts
the settlement very well in comparison to the measured value; however, as expected, the perfect bonding condition (PB)
produces a smaller value, which highlights the role of interaction. Furthermore, the proposed method with RD gives better
results than those obtained with finite element analysis. The results of the predicted pile load sharing are disappointing
regardless of the soil-pile interaction conditions. The prediction error is about 50% in this case.

In order to evidence the reason for the big error observed in the predicted pile load sharing, the corresponding formu-
lation is investigated. According to Eq. (15), the E'/(E" + E™) ratio plays an important role in the assessment of pile load
sharing. Based on a back analysis, E™ = 350 MPa is derived and the settlement is reassessed, whose value is still satisfac-
tory, as shown in Fig. 9b. It is noted that this high soil stiffness value is about four times the initial one calculated from
the equation in Table 5 reported by Katzenbach et al. [50]. This empirical equation was derived from the back analysis of
a shallow foundation, and the value was verified by Young’s modulus of the soil, obtained from uniaxial compression tests.
Based on the back analysis of boundary-value problems, another empirical equation was suggested by Reul and Randolph
[48], whose similarly gives low values for the stiff overconsolidated Frankfurt clay. The back-calculated high value of the soil
stiffness can be interpreted as the value corresponding to the small-stain level for the overconsolidated Frankfurt clay, while
the reported value of the soil stiffness in the references [48,50] might correspond to large-strain problems. It is noted the
authors do not intend to suggest to use small-strain soil stiffness for the analysis of piled-raft problems; however, it was
only aimed to show the effect of soil stiffness on the prediction of the settlement and the pile load sharing. The selection
of the soil stiffness is still a matter of debate, and an extra investigation is required in a separate work.

As mentioned before, the advantage of the proposed method is to assess the axial load distribution along the pile. In
Fig. 10, the predicted axial loads of three piles in different locations beneath the raft are compared with the measured as
well as finite-element analysis results performed by Sudret and de Buhan [14], Reul and Randolph[48], and Garcia et al. [51].
The calculations are based upon the characteristics of each pile (i.e. pile diameter and spacing) for inner, middle and outer
rings. Figs. 10a and 10b present the results obtained by using the soil stiffness value reported in the literature [50] and that
from the back-analysis (E™ = 350 MPa), respectively. The results of the analytical as well as of the numerical approaches
demonstrate the same decreasing trend in the variation of the axial pile along the pile length as that of the measurement.
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Fig. 9. Settlement and pile load sharing for Messeturm Tower predicted through different methods by using: (a) E™ = 84 MPa; (b) E™ = 360 MPa.

Table 5
Foundation parameters of Messeturm Tower [48-51].
Measured Present model
Soil Pile Raft Two-phase material Unreinforced soil
E =7+ 245 x (MPa) E = 25,000 MPa Area = 3457 m? E™ = 84 MPa (at pile mid-depth) Es = 127 MPa (at pile toe)
v =015 L =269~ 349 m Df =14 m E" = 614 MPa p = 0.70
d = 1300 mm ¢! = 3 MN/m* re = 101.7 m
n =64 n = 0.025

According to Fig. 10a, the values are discouraging for both series, especially in the lower half of the inner and middle piles.
Among the numerical simulations, only the axial force of the middle pile is precisely predicted by using a rigorous finite
element analysis by applying a visco-hypoplastic model [51], while for the rest of the piles, the analytical and numerical
modelings have almost the same error in the prediction. As shown in Fig. 10b, the axial force of the piles is assessed smaller
with respect to the previous case if a higher value of the soil stiffness is applied in the analysis. In the latter case, the axial
force of the lower part of the piles is predicted with higher accuracy, while in the upper part of the piles, the values are
underpredicted. Generally, it can be said that in spite of the poor quality of the prediction of the pile axial force, the present
simplified method can be regarded as a proper tool for preliminary design with respect to the sophisticated finite-element
approach.

By focusing on the values of pile load sharing of the case studies and the case histories mentioned above, it seems that,
generally, there is no obvious difference between the results obtained from PB and R.D. conditions. To investigate this, the
variation of the normalized pile load sharing in terms of o, _ /q(EmE—J:Er) is calculated along with the parameter L/ for
x = 0, in accordance with Eq. (15). The results are presented in Fig. 11. As shown before in Section 3.3, C! — oo for PB,
and thus, A — 0, which results in the infinite value of L/A. In other words, the normalized pile load sharing is unity for
PB condition. According to Fig. 11, it can be seen that the pile load sharing is sensitive for almost L/A <5 and reaches
unity thereafter. Referring back to the previous cases, the calculation of the parameters reveals that L/A=7.5 and 7.4 > 5
for the case studies 1 and 2 and L/X» =12.2,13.4, and 7.7 > 5 for the following cases, respectively, and thus, the proposed
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Fig. 10. Pile load distribution along the pile shaft obtained by the proposed method compared with results obtained through measurement and finite-
element analysis by using: (a) E™ = 84 MPa; (b) E™ = 360 MPa.

formulation cannot allow us to distinguish pile load sharing in PB conditions from that in RD conditions. A more detailed
parametric study is presented in the next section.

6. Parametric study

In this section, the proposed method is evaluated by studying the effect of significant piled raft foundation parameters
on the settlement and pile load sharing. The parameters considered in the analyses are the number and the length of the
piles, the raft dimensions, the elastic soil parameters and stiffness coefficient of interaction. In this parametric study, the
applied load and the elastic parameters of the piles, as well as the raft, are assumed to be constant in accordance with the
hypothetical example introduced by Clancy et al. [41], as already described in Section 4.2.

6.1. Pile length

In floating piles, the majority of the bearing capacity is provided by skin friction resistance, and hence the increase in pile
length decreases effectively the piled raft settlement [52]. The first parametric study focuses on the influence of the length
of the piles. The variation of settlement, as well as the pile load sharing of the piled raft, is shown in Fig. 12. The values



S.M. Nasrollahi, E. Seyedi Hosseininia / C. R. Mecanique 347 (2019) 716-733 729

1.20

1.00

/

0.80
P.B.icondition
ol (L/N— o0)

——F  0.60
) /

0.40

5 10 15 20
L/n

Fig. 11. Variation of normalized pile load sharing with L/A.

L/A
1.8 55 9.2 12.9
120 T 100
= = Settlement
E N Pile load sharing —
Z \ NS
g 100 [ 80 S
g N (R.D. =PiB. for L/A>5.5) 3
2 AN a
5 o g
n
80 > v 60 E
/ E
60 40
5 15 25 35

Length of piles (m)

Fig. 12. Effect of pile length (and of L/A) on the variation of settlement and pile load sharing.

of L/A are displayed in the figure. The results show the significant influence of the length of the piles on the settlement
reduction and pile load augmentation. The increase in the pile length from 5 m to 35 m causes to reduce the settlement
about 36% and to increase the pile load sharing about 30%. It seems that the settlement reduces gently to a constant value
at large pile length (L ~ 30 m). However, the value of pile load sharing is saturated sharply to a constant value (= 80%) at
a smaller pile length (L ~ 15 m). This length coincides with L/A =5, which was already investigated in the previous section
(Fig. 11), and it was shown that, after this limit, the pile-soil interaction does not affect pile load sharing. Based on the
results, the pile length has more effect on the piled raft settlement than pile load sharing.

6.2. Number of piles

To reduce the settlement of a piled raft, the increase in the pile number is commonly an effective option used in the
design. However, increasing the number of piles influences the cost of the project adversely and it can lead to a non-
economical design that should be carefully minimized. Fig. 13 presents the variation of the settlement of the raft and of
pile load sharing with the number of piles. As expected, the settlement decreases with increasing the pile number. The
settlement reduces exponentially to a limit (about 200 piles) beyond which the effect of increasing the number of piles on
the settlement reduction is relatively low. A similar trend was also described in many other works in the literature [32,36,
40,53]. The number of piles has the same effect on pile load sharing, whose value increases up to an upper limit (95% ap-
proximately).In order to compare the effectiveness of the pile length with respect to the number of piles (pile spacing ratio),
the piled raft settlement for a different number of piles and pile lengths are shown in Fig. 14. As already demonstrated, for
a specific pile length, the settlement decreases moderately with the number of piles. It is also shown that the settlement of
the raft is reduced satisfactorily when the pile length is increased from 10 m to 30 m. The comparison of the results shows
that the efficiency of increasing the pile length is relatively bigger than the increase in the number of piles. For instance,
if the number of piles is increased by more than three times (from n =81 to n = 256), the reduction in the settlement
(about 11%) is less than that when there is an increase of the pile length from 10 to 30 m (about 24%) by considering the
same volume of the piles. It can be concluded that the pile length increase would be more efficient in reducing the piled
raft settlement than the increase of the number of piles.
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6.3. Raft dimensions

Logically, the increase in the dimensions of a piled raft under a constant load with a constant number of piles would
lead to settlement reduction. To investigate the effect of raft dimensions on the settlement, the variation of normalized
settlement (8/rg), as well as the pile load sharing with the normalized equivalent radius (rg/L) of the raft, is depicted in
Fig. 15. As shown, increasing rg/L up to 1.0 reduces the normalized settlement largely, while for rg/L > 1.5, the variation
of the settlement is negligible. The load sharing of the piles decreases linearly with increasing the normalized equivalent
radius whose reduction rate is almost constant for a wide range of values of rg/L (= 0.3-1.9).

6.4. Interaction stiffness coefficient

To clarify the role of interaction stiffness, it is reminded that the interaction stiffness coefficient is affected by some
mechanical and geometrical parameters, including soil shear modulus, pile diameter, and pile spacing.
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6.4.1. Soil stiffness

The values of the settlement, as well as the pile load sharing, versus various values of the soil shear modulus Gs from 7
to 150 MPa is shown in Fig. 16 by considering constant values for other parameters. In the upper axis, the corresponding
variation of C! is also presented. The results indicate that, for softer or looser soils with Gs < 30 MPa (corresponding to
C! < 10), the settlement is decreased sharply, while for stiffer or denser soils (corresponding to C! greater than 20), the
settlement decreases gradually to a constant value. Since the increase in Gs directly influences the value of the interaction
stiffness coefficient, it can be said that the pile-soil interaction resembles the perfect bonding condition. The load sharing
of the piles is reduced linearly with a very gradual slope as the soil shear modulus is increased.

6.4.2. Geometrical parameters

In a piled raft, the effect of two geometric parameters, including pile spacing (s) and pile diameter (d), are reflected
in the reinforcement fraction (1) according to Eq. (20). In order to compare the effectiveness of 1, parametric studies are
performed by considering two different cases: i) the number of piles is fixed to n = 81 while the diameter of the piles is
varied (d = 0.5 to 2), and ii) the pile diameter is constant (d = 0.8 m) while the piles number is varied (n = 36 to 484).
As shown in Fig. 17, the results show clearly that an increase in the number of piles has more effect on C! with respect to

the diameter of the piles with the same 7. It is reminded that the effect of pile spacing has already been investigated in
accordance with Fig. 13.

7. Concluding remarks

Based on the concept of two-phase model, an analytical approach is developed to analyze vertically-loaded piled-raft
foundations by considering the pile-soil-raft interaction. The governing equations are derived in the domain of elasticity to
predict the settlement and load sharing of the piles. The proposed method was evaluated by analytical as well as numerical
analyses of different piled raft problems. The applicability and the accuracy of the proposed method were examined by
measurements obtained from different case studies. Major conclusions can be drawn as follows.

e In comparison with existing analytical and numerical approaches, the proposed method can generally estimate the
settlement with a good precision, although pile load sharing might be over/underpredicted. There is generally a good
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agreement between the results of the proposed method and those of the field measurements. For the three case studies
mentioned in this work, the settlement was predicted with acceptable accuracy, while pile load sharing was predicted
with larger relative error.

e The important advantage of the proposed method is the prediction of axial load of pile along the pile length with
respect to other simplified methods.

Based on the parametric studies, the analysis of a piled-raft foundation by using the proposed method shows that:

e the prediction accuracy of the settlement, as well as pile load sharing, is highly influenced by soil and pile parameters;

e an increase in the length and the number of piles reduces the settlement considerably. Among these two factors, the
pile length is more efficient in the settlement reduction;

e the applicability of a piled raft highly depends on the stiffness of the soil. In the case of looser or softer soils, the piled
raft can highly reduce the settlement, while it is not effective in the case of denser or stiffer soils;

e the results show that, for a constant pile volume, the interaction stiffness coefficient is more influenced by the number
of piles (or, equivalently, pile spacing) with respect to the diameter of the piles diameter;

e increasing dimensions of the raft up to about twice the pile length can significantly reduce the piled-raft settlement.

In comparison with existing analytical solutions, the proposed method can properly consider the effect of soil-pile-raft
interaction and it can be more easily performed in the analysis and design of piled-raft foundations against sophisticated
numerical approaches. Generally, the proposed approach can give a good estimation of the settlement of piled rafts, while
the load sharing of the piles might be over/underestimated. The effectiveness of the proposed method is for the problems
where the applied load is in the service range and it is assumed that the soil and the piles behave elastically. In other words,
the proposed method cannot capture the nonlinear behavior of piled raft in the field, since the formulation is limited to
linear elasticity. However, the proposed method can be simply applied for the preliminary design of a piled-raft foundation.
The proposed approach could be ameliorated in a close future in order to consider the nonlinearity in the behavior as well
as the ultimate or failure state of piled-raft foundations.
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