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point under the influence of a magnetic field.
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r é s u m é

Nous étudions le comportement d’une couche limite stationnaire magnétohydrodynamique 
(MHD) dans le cadre modifié par O.A. Ladyzhenskaya. Nous estimons le déplacement du 
point de séparation sous l’influence d’un champ magnétique.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

To describe boundary layers of fluids, mathematicians use the Prandtl system of equations, which is obtained from 
Navier–Stokes system by rescaling. The solvability of boundary value problems as well as initial boundary value problems 
for boundary layers of Newtonian fluids, and separation of boundary layers were investigated in [1], [2] and [3]. Similar 
topics for non-Newtonian fluids and liquid crystals were studied in [4], [5], [6], [7], [8]. Nonuniqueness of solutions to 
the Navier–Stokes system leads to several modifications of this system. We consider the O.A. Ladyzhenskaya modification, 

✩ The paper was partially supported by RFBR grant 18-01-00046.
E-mail addresses: regina.bulatova@mech.math.msu.su (R.R. Bulatova), chechkin@mech.math.msu.su (G.A. Chechkin), chechkina@mail.ru (T.P. Chechkina), 

vnsamokhin@mtu-net.ru (V.N. Samokhin).
https://doi.org/10.1016/j.crme.2018.06.010
1631-0721/© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

https://doi.org/10.1016/j.crme.2018.06.010
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:regina.bulatova@mech.math.msu.su
mailto:chechkin@mech.math.msu.su
mailto:chechkina@mail.ru
mailto:vnsamokhin@mtu-net.ru
https://doi.org/10.1016/j.crme.2018.06.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crme.2018.06.010&domain=pdf


808 R.R. Bulatova et al. / C. R. Mecanique 346 (2018) 807–814
Fig. 1. The separation of a boundary layer.

where a nonlinear viscosity was suggested also for Newtonian fluids [9], [10]. The theory of boundary layer for the O.A. 
Ladyzhenskaya fluids was developed in [11].

In this paper, we study a boundary layer of magnetic fluid of O.A. Ladyzhenskaya. We show the influence of magnetic 
field on the separation of the boundary layer (Fig. 1).

2. Settings

In the two-dimensional case, the stationary system of modified magnetic hydrodynamical boundary layer has the form⎧⎪⎪⎨
⎪⎪⎩

ν
∂

∂ y

((
1 + k

( ∂u

∂ y

)2
)

∂u

∂ y

)
− u

∂u

∂x
− v

∂u

∂ y
+ B2(U − u) = −U

dU

dx
,

∂u

∂x
+ ∂v

∂ y
= 0,

(1)

where ν denotes the kinematic viscosity, k is a small positive constant, the density ρ and the medium conduction σ are 
equal to one, B(x), U (x) are given functions. The function U (x), the pressure p(x), and the electromagnetic field B(x) satisfy

U
dU

dx
= −dp

dx
− E

B

σ
− B2U .

We consider equations (1) in D = {0 < x < X, 0 < y < ∞} with the boundary conditions

u(0, y) = u0(y), u(x,0) = 0, v(x,0) = v0(x),

u(x, y) → U (x) as y → +∞.
(2)

Here the functions u0(x), v0(x) are given.

Definition 2.1. It is said that the functions u(x, y) and v(x, y) are a classical solution to problem (1), (2), if they satisfy 
the following properties: u and v are continuous in D , have in D continuous derivatives appearing in Eq. (1); and satisfy 
pointwise equations (1) and conditions (2).

To prove the existence and the uniqueness results, we need some more restrictions to given functions. Assume that the 
following conditions hold true.

Conditions I:

• U (x) > 0; u0(y) > 0 as y > 0;
• u0(0) = 0, u′

0 > 0, u0(y) → U (0) as y → ∞;

• dU

dx
, v0(x), B(x) are differentiable on [0, X];

• u0(y), u′
0(y), u′′

0(y) are bounded as 0 ≤ y < ∞ and satisfy the Hölder condition;
• in (0, 0) the following compatibility condition holds true as y → 0:

ν
∂

∂ y

((
1 + k

(∂u0

∂ y

)2
)

∂u0

∂ y

)
− v0(0)

∂u0

∂ y
+ B2(0)(U (0) − u0(y))+

+ U (0)
dU (0) = O (y2).
dx
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The system (1) with conditions (2) can be rewritten as a quasilinear differential equation by means of the Mises trans-
form. To this end, we introduce new independent variables x = x, ψ = ψ(x, y), where

u = ∂ψ

∂ y
, v − v0(x) = −∂ψ

∂x
, ψ(x,0) = 0,

and a new unknown function w(x, ψ) = u2(x, y). Then

u = √
w; y =

ψ∫
0

dψ√
w(x,ψ)

;

∂u

∂x
= 1

2
√

w

∂ w

∂x
+ 1

2
√

w

∂ w

∂ψ

∂ψ

∂x
;

∂u

∂ y
= 1

2
√

w

∂ w

∂ y
= 1

2
√

w

∂ w

∂ψ

∂ψ

∂ y
= 1

2

∂ w

∂ψ
;

∂2u

∂ y2
= ∂

∂ y

(1

2

∂ w

∂ψ

)
= 1

2

∂

∂ψ

(∂ w

∂ψ

)∂ψ

∂ y
=

√
w

2

∂2 w

∂ψ2
.

Substituting this expressions into the first equation of the system (1), we get

ν

√
w

2

∂2 w

∂ψ2

(
1 + 3k

(1

2

∂ w

∂ψ

)2
)

− √
w

( 1

2
√

w

∂ w

∂x
+ 1

2
√

w

∂ w

∂ψ

∂ψ

∂x

)
−

−1

2

(
v0(x) − ∂ψ

∂x

)∂ w

∂ψ
+ B2(U − √

w) = −U
∂U

∂x
.

Finally, the new equation has the form

ν
√

w

(
1 + 3

4
k
(∂ w

∂ψ

)2
)

∂2 w

∂ψ2
− ∂ w

∂x
− v0

∂ w

∂ψ
+ 2 B2(U − √

w) = −2 U
∂U

∂x
(3)

in domain G = {0 < x < X, 0 < ψ < ∞} with conditions

w(0,ψ) = w0(ψ), w(x,0) = 0, w(x,ψ) → U 2(x) as ψ → ∞. (4)

The function w0(ψ) is defined from the equation

w0

( y∫
0

u0(η)dη

)
≡ u2

0(y).

The above conditions in terms of the new unknown function become the following ones.

Conditions II:

• w0(ψ) > 0, as ψ > 0;
• w0(0) = 0, w ′

0(0) > 0;
• w0(ψ) → U 2(x) as ψ → ∞;

• dU

dx
, v0(x), B(x) are continuously differentiable as x ∈ [0, X];

• w0(ψ), w ′
0(ψ), w ′′

0(ψ) are bounded as 0 ≤ ψ < ∞ and Hölder continuous;
• in (0, 0), the compatibility condition holds true as ψ → 0:

μ(ψ) =ν
√

w0(ψ)

((
1 + 3

4
k
(∂ w0(ψ)

∂ψ

)2
)

∂2 w0(ψ)

∂ψ2

)
− v0(0)

∂ w0(ψ)

∂ψ
+

+ 2B2(0)(U (0) − √
w0(ψ)) + 2U (0)

dU (0)

dx
= O (ψ).

(5)
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3. Existence and uniqueness

The following assertions hold true.

Theorem 3.1 (Existence). Suppose that the functions U (x), u0(y), v0(x) satisfy the conditions I. In the domain D for some X > 0, the 
problem (1), (2) has a solution u(x), v(x), satisfying the following properties: u(x) is continuous and bounded in D; u > 0 as y > 0; 
∂u

∂ y
> m > 0 as 0 ≤ y ≤ y0; m, y0 = const; 

∂u

∂ y
,
∂2u

∂ y2
are bounded and continuous in any finite subdomain of D. The solution to 

problem (1), (2) does exist for any X > 0 if

U

(
dU

dx
+ B2

)
≥ 0 and v0 ≤ 0 or U

(
dU

dx
+ B2

)
≥ α = const > 0.

Theorem 3.2 (Existence). Suppose that the functions U (x), w0(ψ), v0(x) satisfy the conditions II. Then problem (3), (4) has a solution 
w(x, ψ) in domain G = {0 < x < X, 0 < ψ < ∞} for some X. This solution satisfies the following properties: w(x, ψ) is bounded in 
G, w(x, ψ) > 0 as ψ > 0, ∣∣∣∣∂ w

∂ψ

∣∣∣∣ ≤ M,

∣∣∣∣√w
∂2 w

∂ψ2

∣∣∣∣ ≤ M in G,∣∣∣∣∂ w

∂x

∣∣∣∣ ≤ Mψ1−β,
∂ w

∂ψ
≥ m > 0 as 0 ≤ ψ ≤ ψ1, 0 < β <

1

2
,

where the positive constants M, m, ψ1 depend only on X, U , w0 , v0 .

If U
(

dU

dx
+ B2

)
≥ 0 and v0(x) ≤ 0 or U

(
dU

dx
+ B2

)
> 0, then such a solution does exist in G for any X > 0.

Theorem 3.3 (Uniqueness). Assume that the functions u(x, y), v(x, y) satisfy the system (1) in the domain D = {0 < x < X,

0 < y < ∞}, are continuous in D and satisfy the conditions (2); moreover, the inequalities 0 < u < C as y > 0,

k1 y ≤ u ≤ k2 y as 0 < y < y0, (6)

∂2u

∂ y2
≤ k3 in D (7)

hold true, where C , k j , y0 are positive constants. Then the solution u(x, y), v(x, y) to the problem (1), (2), satisfying the conditions 

above, is unique. If U
(

dU

dx
+ B2

)
≥ 0 and v0 ≤ 0, then the conditions (6), (7) can be omitted. If U

(
dU

dx
+ B2

)
≥ 0, and v0 is an 

arbitrary function, then the condition (6) can be omitted (i.e. we only need the condition (7)).

Theorem 3.4 (Uniqueness). The solution w(x, ψ) to the problem (3), (4), continuous and bounded in G, satisfying the inequalities 
k1ψ ≤ w(x, ψ) ≤ k2ψ as ψ ≤ ψ1; w(x, ψ) ≥ a > 0 as ψ ≥ ψ1; 

√
w ∂2 w

∂ψ2 ≤ M, is unique in G, where k1 , k2 , ψ1 , M are positive 
constants.

The proof of the theorems is based on the following statements.

Lemma 3.5. Assume that in G = {0 < x < X, 0 < ψ < ∞}, there exists a solution w(x, ψ) to the problem (3), (4), with the following 
properties: the function w(x, ψ) is bounded in G; w(x, ψ) > 0 as ψ > 0. There exist constants M, m, ψ1, only dependent on X, u0, 
v0 , and p(x), such that∣∣∣∣∂ w

∂ψ

∣∣∣∣ ≤ M,

∣∣∣∣√w
∂2 w

∂ψ2

∣∣∣∣ ≤ M, (x,ψ) ∈ G; (8)

moreover,∣∣∣∣∂ w

∂x

∣∣∣∣ ≤ Mψ1−β,
∂ w

∂ψ
≥ m > 0 as 0 ≤ ψ ≤ ψ1, 0 < β <

1

2
.

Then in D = {0 < x < X, 0 < y < ∞}, there exists a solution u(x, y), v(x, y) to the problem (1), (2), satisfying the following prop-
erties: the function u(x, y) is continuous and bounded in D, u > 0 as y > 0; ∂u

∂ y > m1 > 0 as 0 < y < y0 (m1 and y0 are some 

constants); ∂u and ∂
2u

2 are continuous and bounded in D; ∂u , v, ∂v are continuous and bounded in any finite subdomain of D.

∂ y ∂ y ∂x ∂ y
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Consider the domain Gε =
{

0 < x < X, 0 < ψ <
1

ε

}
. Let

�ε = {0 < x < X, ψ = 0} ∪
{

x = 0, 0 < ψ <
1

ε

}
∪

{
0 < x < X, ψ = 1

ε

}
.

In the domain Gε , we consider Eq. (3) with conditions:

w(x,0) = w0(ε)exp

(
μ(ε)x

w0(ε)

)
, w(0,ψ) = w0(ε + ψ),

w

(
x,

1

ε

)
= w0

(
ε + 1

ε

)
exp

(
μ(ε + 1/ε)x

w0(ε + 1/ε)

)
.

(9)

Lemma 3.6. If the problem (3), (9) has a positive solution wε(x, ψ) in the domain Gε , then there exist numbers X > 0 and ε0 > 0
such that, for any ε > ε0 , the inequality

wε(x,ψ) ≥ wε(x,0) + f (ψ)(1 + e−αx), (x,ψ) ∈ Gε (10)

holds true, where α > 0, and the function f (ψ) satisfies f (ψ) = A1ψ
4/3 + A2ψ as ψ ≤ 1 and f (1) ≤ f (ψ) ≤ A3 as ψ > 1; in 

addition, 
∣∣ f ′(ψ)

∣∣ ≤ A4, 
∣∣ f ′′(ψ)

∣∣ ≤ A5 as ψ > 1. Here Ai are positive constants.

If U
(

dU

dx
+ B2

)
≥ 0 and v0(x) ≤ 0, then in the domain Gε , the a priori estimate

wε(x,ψ) ≥ wε(x,0) + f (ψ)e−αx (11)

holds for any X > 0 and sufficiently small ε0 > 0.

If U
(

dU

dx
+ B2

)
≥ β0 > 0, then in the domain Gε , the inequality

wε(x,ψ) ≥ wε(x,0) + f (ψ) (12)

holds true.

Lemma 3.7. Let wε(x, ψ) be a solution to the problem (3), (9). Then there exist positive constants M1, M2 , M3 , independent of ε, such 
that

0 < wε(x,ψ) < M1, (13)

M2 <
∂ w

∂ψ

∣∣∣
ψ=0

< M3. (14)

Lemma 3.8. There exists a constant M4 such that∣∣∣∣∂ w

∂ψ

∣∣∣∣ ≤ M4, (x,ψ) ∈ Gε.

Lemma 3.9. There exist positive constants C1, C2 independent of ε such that in Gε the estimates

∂ wε

∂x
≥ −C1,

√
wε

∂2 wε

∂ψ2
≥ −C2

hold.

Lemma 3.10. There exist positive constants C3, C4 , C5 independent of ε such that in domain Gε the estimates

√
wε

∂2 wε

∂ψ2
≤ C3,

∂ wε

∂x
≤ C4; (15)

∂ wε

∂ψ
≤ C5, 0 ≤ ψ ≤ ψ̃ (16)

hold true for some ψ̃ ≥ 0.

Lemma 3.11. In domain Gε , the estimate∣∣∣∣wβ−1
ε

∂ wε

∂x

∣∣∣∣ ≤ C6 (17)

takes place, where C6 does not depend on ε, 0 < β < 1/2.
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Fig. 2. Separation phenomenon.

4. Auxilliary propositions

Consider the domain

ω = {0 < x < X, ψ1 < ψ < ψ2}
and denote by γ the part of its boundary

γ = {x,ψ : 0 < x < X,ψ = ψ1}∪{x,ψ : 0 < x < X,ψ = ψ2}∪
∪{x,ψ : x = 0,ψ1 ≤ ψ ≤ ψ2}.

Let us consider a differential operator

A(w) ≡ a
(

w,
∂ w

∂ψ

)∂2 w

∂ψ2
− ∂ w

∂x
+ b(x,ψ)

∂ w

∂ψ
+ c(x,ψ)w, (18)

where a(w, p) ≥ 0.

Lemma 4.1. Assume that the functions a(w, p), b(x, ψ), c(x, ψ) are bounded as (x, ψ) ∈ ω and −∞ < p < ∞; w(x, ψ) is continuous 
in ω and has in ω continuous derivatives appearing in (18). If A(w) ≤ 0 in ω \ γ and w ≥ 0 on γ , then w ≥ 0 in ω. If A(w) ≥ 0 in 
ω \ γ and w ≤ 0 on γ , then w ≤ 0 in ω.

Lemma 4.2. Suppose that the conditions of Lemma 4.1 are fulfilled and moreover that a(w, p) has bounded partial derivatives on w
and p in ω. Suppose also that �(x, ψ) is a continuous function in ω, which has in ω \ γ continuous partial derivatives appearing in 
(18). If A(w) − �(w) ≤ 0 in ω \ γ and w ≥ � on γ , then w ≥ � in ω. If A(w) − �(w) ≥ 0 in ω \ γ and w ≤ � on γ , then w ≤ �

in ω.

The proof of these Lemmas can be found in [3, Ch. 2, §2.1].

5. On the separation of the boundary layer

The boundary layer with large Reynolds numbers exhibits a phenomenon called separation of boundary layer. The mean-
ing of this phenomenon is that a backward flow appearing for some movement of viscous medium separates (detach) the 
boundary layer from the streamline surface and takes it in the outer flow (see Fig. 2).

Definition 5.1. The separation point of a boundary layer is a point x0 such that u y(x, 0) > 0 for 0 < x < x0, and u y(x0, 0) = 0. 
Then x0 is the supremum of x > 0 such that, in domain D , the problem (1), (2) has a solution u(x, y), v(x, y), for which 
u y(x, 0) > 0.

In the point x0 as y = 0, the derivative of the velocity on y equals to zero. Hence an inflection point appears, and the 
stability of the flow is violated. Then, it appears a domain with negative derivative on y, i.e. the back flow inducing vorticity.

It is possible to avoid this phenomenon imposing a magnetic field perpendicular to the flow. Under this influence, the 
separation point moves to the right (see Fig. 3).
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Fig. 3. Influence of a magnetic field on the separation of boundary layer.

Theorem 3.1 says that, for B2 + dU

dx
≥ α, where α is a positive constant, there is no separation. The following statement 

is valid.

Theorem 5.1. If there exists a solution to the problem (1), (2) in domain D = {0 < x < X, 0 < y < ∞}, then X < x0 , where x0 is the 
separation point that can be found from the conditions

max
y

u2
0(y) −

x0∫
0

(
− 2U (x)

dU

dx
− 2B2(x)U (x)

)
dx = 0 and

dU (x0)

dx
< 0.

Proof. Consider the problem (3), (4) under the condition v0(x) ≡ 0. Suppose that 
dU

dx
< 0, B2 <

∣∣∣dU

dx

∣∣∣.
Let us denote p0 := max

ψ
w0(ψ) and define

w̃(x) = p0 −
x∫

0

(
− 2U (x)

dU

dx
− 2B2(x)U (x)

)
dx.

Define the operator

L(V ) := ν
√

w

(
1 + 3

4
k
(∂ w

∂ψ

)2
)

∂2 V

∂ψ2
− ∂V

∂x
− 2B2

√
V .

Assume that, in the domain G = {0 < x < X, 0 < ψ < ∞}, there exists a solution w(x, ψ) to the problem (3), (4) and 

there exists x0 such that w̃(x0, ψ) = 0, w̃(x, ψ) > 0 as x < x0, 
dU

dx
< 0.

Consider the difference L(w̃) ≡ −2 U
dU

dx
− 2B2U − 2B2

√
w̃ and L(w) ≡ −2 U

dU

dx
− 2B2U . We have

L(w̃) − L(w) = −2B2
√

w̃ ≤ 0 as w̃ ≥ 0, 0 < x ≤ x0.

Since

max
ψ

w0(ψ) + 2

x∫
0

(
U

dU

dx
+ B2U

)
dx > 0 = w(x,0)

and w(0, ψ) ≤ max
ψ

w0(ψ) ≤ w̃(0, ψ), then by the maximum principle (see Lemma 4.2), we get the inequality w(x, ψ) ≤
w̃(x, ψ) for x � x0.

Hence, if w̃(x0) = 0 and 
∂ w(x0,ψ)

∂x
=

x∫
0

2
(

U
dU

dx
+ B2U

)
dx < 0, then there is no positive solution w(x, ψ) as x > x0. It 

means that X < x0, i.e. for 0 < x < X there is no separation of the boundary layer. Theorem 5.1 is proved. �
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Remark 1. Due to Theorem 5.1 there is no separation of the boundary layer provided that:

B2(x) >

∣∣∣dU

dx

∣∣∣.
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