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During the past decades, numerous yield criteria for orthotropic materials, possibly 
showing tension–compression asymmetry, were developed. Although they were applied 
successfully to forming simulations, they are usually only adequate for a specific class of 
materials. The aim of this work is to present a generalized, pressure-independent criterion 
for plane stress states on the base of a two-dimensional Fourier series. Its complexity is 
adjustable through the number of considered Fourier coefficients, and thus, albeit using an 
associated flow rule, virtually any number of experimental data can be captured exactly. 
The criterion is applicable for materials with or without tension–compression asymmetry.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Au cours des dernières décennies, de nombreux modèles de critères d’écoulement plastique 
ont été présentés pour décrire le comportement des matériaux orthotropes présentant 
éventuellement une asymétrie entre la traction et la compression. Malheureusement, ils 
sont, soit exclusivement applicables à une seule classe de matériaux, soit d’une grande 
complexité. Le but de ce travail est de développer, pour des états de contraintes planes, un 
modèle universel et indépendant de la pression. Le critère d’écoulement plastique proposé 
est basé sur une série de Fourier bidimensionnelle. La complexité du modèle étant ajustable 
au nombre de coefficients de Fourier considérés, la quantité de données expérimentales 
prise en compte est donc illimitée, et ceci même en utilisant une loi d’écoulement associée. 
Cette fonction permet donc de modéliser un grand nombre de matériaux différents, avec 
ou sans asymétrie entre la traction et la compression.
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1. Introduction

Numerical simulations are nowadays indispensable for planning and optimizing forming tools and processes. The de-
mands for better accuracy have led to the development of a vast number of constitutive material models during the 
past decades. Especially, numerous flow criteria were proposed for different materials, able to capture vertical and planar 
anisotropy and, more recently, also tension–compression asymmetry.

A first anisotropic model was proposed by Hill [1], who added flexibility to the von Mises criterion. Because of its 
formal simplicity and accuracy, it is still widely used today, especially for steels showing a mild anisotropy. However, it 
was recognized that, for instance, aluminium alloys are described more accurately by non-quadratic functions, which were 
firstly developed for isotropic materials, e.g., by Hosford [2], Hill [3]. Logan and Hosford [4] and Barlat and Richmond [5]
used crystal plasticity simulations to provide further evidence for the suitability of non-quadratic models, Hosford [6] and 
Barlat and Lian [7] re-introduced anisotropy. The latter used a linear transformation of the stress tensor for this purpose, 
an approach that was re-adopted later by numerous authors, e.g., [8–12]. Besides the mentioned criteria that make use 
of generalised potential functions, some authors (e.g. [13] and [14]) proposed to re-parametrise the stress state by polar 
coordinates and to construct interpolation functions that describe the flow surface.

Especially materials with an hcp lattice show, besides anisotropy, also a tension–compression asymmetry. Asymmetric 
and anisotropic yield criteria were proposed by, e.g., [15–20]. Stoughton [21] proposed to decouple the yield criterion from 
the flow direction by the use of two different potentials and a non-associated flow rule. This, on the one hand, introduces 
more flexibility to the models and, on the other hand, allows for a pressure-dependent flow criterion without the prediction 
of plastic volume change. Several authors, such as Stoughton and Yoon [22], Bai and Wierzbicki [23], Yoon et al. [24]
formulated functions for the description of tension–compression asymmetry based on this concept.

It is evident that the described multitude of flow criteria is problematic, as most functions are very specific and probably 
only suitable for a special class of materials. The numerical implementation into FEM code, nevertheless, is cumbersome 
and has to be carried out for each of those functions.

The model proposed in this work overcomes the mentioned limitations by the use of a general formulation. The stress 
state is re-parametrized by spherical coordinates and a two-dimensional Fourier series is applied on the angles. In that way, 
yield surfaces of virtually arbitrary complexity can be described. Specifically, it is straightforward to adapt the number of 
parameters to the number of experiments to be considered.

2. Proposed model

A first version of the proposed model was reported in [25], where it was applied to titanium. Here, an improved and 
generalized calibration procedure is presented and the important special case of materials without tension–compression 
asymmetry is treated.

2.1. Formulation of the criterion

In the space of plane stress states, the von Mises flow surface

σ 2
xx − σxxσyy + σ 2

yy + 3τ 2
xy − σ 2

y = σ̄ 2
vM − σ 2

y = 0 (1)

forms a (closed) ellipsoid. A natural way of describing this space is therefore the use of a periodic parametrization, which is 
found in a spherical coordinate system. Its zenith direction could be aligned with any of the principal axes of the ellipsoid. 
However, it is convenient to use the principal axis 

{
σxx − σyy = 0, τxy = 0

}
, the “north pole” pointing to the quadrant of 

biaxial compression (σxx < 0, σyy < 0). Further, as can be seen in Fig. 1, the axes of normal stresses are scaled by a factor of 
1/

√
2, and the azimuthal angle 2ψ is measured from the line 

{
σxx + σyy = 0, τxy = 0

}
, which is another principal direction 

of the von Mises ellipsoid (1).
In this way, there exist close relations between the loading direction θ of a uniaxial tensile test and the coordinate ψ , and 

between the magnitude of stress σ and the radius r. This will be shown below. Analytically, the coordinate transformation 
reads

r =
√

σ 2
xx

2
+ σ 2

yy

2
+ τ 2

xy (2a)

ϕ = arccos

(
−σxx + σyy

2r

)
(2b)

ψ = 1

2
arctan2

(
2τxy,

(
σxx − σyy

))
(2c)

with the back transformation
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Fig. 1. Parametrization of the space of plane stress states.

σxx = r · (sin(ϕ) cos(2ψ) − cos(ϕ)) (3a)

σyy = r · (− sin(ϕ) cos(2ψ) − cos(ϕ)) (3b)

τxy = r · sin(ϕ) sin(2ψ) (3c)

Applying this, von Mises equivalent stress (1) can be rewritten as

σ̄ 2
vM = σ 2

xx + σ 2
yy − σxxσyy + 3τ 2

xy

= r2 ·
(

cos2 (ϕ) + 3 sin2 (ϕ)
(

cos2 (2ψ) + sin2 (2ψ)
))

= r2 ·
(

cos2 (ϕ) + 3 sin2 (ϕ)

)

= r2 ·
(

2 − cos (2ϕ)

)
(4)

Further, the isotropic Hosford [2] criterion

σ̄ a
Hosf = |σ1|a + |σ2|a + |σ1 − σ2|a

2
(5)

is, for an exponent a = 6, re-parametrized by

σ̄ 6
Hosf = r6

(
25

2
− 15 cos(2ϕ) + 9

2
cos(4ϕ) − cos(6ϕ)

)
(6)

and for a = 8 by

σ̄ 8
Hosf = r8

(
315

8
− 56 cos(2ϕ) + 49

2
cos(4ϕ) − 8 cos(6ϕ) + 9

8
cos(8ϕ)

)
(7)

Note that these criteria do not depend on the azimuthal angle ψ , as the latter is a measure of the sheet orientation. This is 
not the case if anisotropy is considered. For instance, the well known Hill [1] model for plane stress states

σ̄ 2
Hill = (G + H)σ 2

xx − 2Hσxxσyy + (H + F )σ 2
yy + 2Nτ 2

xy (8)

reads

σ̄ 2
Hill = r2

(
3F + 3G + 4H + 2N

4
+ F + G + 4H − 2N

4
cos (4ψ)

+ F + G − 4H − 2N

4
cos (2ϕ) + −F − G − 4H + 2N

4
cos (2ϕ) cos (4ψ)

+ (F − G) sin (2ϕ) cos (2ψ)

) (9)
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In all of these examples, a two-dimensional Fourier series of the angles ϕ and ψ with the general form [26]

f (ϕ,ψ) :=
∞∑

m=0

∞∑
n=0

am,n cos (mϕ) cos (nψ) +
∞∑

m=0

∞∑
n=1

bm,n cos (mϕ) sin (nψ)

+
∞∑

m=1

∞∑
n=0

cm,n sin (mϕ) cos (nψ) +
∞∑

m=1

∞∑
n=1

dm,n sin (mϕ) sin (nψ)

(10)

can be recognized between the parentheses. The mentioned examples have fairly simple structures and, thus, compact equiv-
alent representations. However – as stated by Dirichlet’s theorem – every sufficiently continuous function can be rewritten 
as a (possibly infinite) Fourier series. A formally compact flow function

σ̄ q = rq f (ϕ,ψ) (11)

is, therefore, proposed, where f is a Fourier series according to (10).
Its gradient is readily calculated as

∂σ̄

∂σxx
= P

[
qf

sin(ϕ) cos(2ψ) − cos(ϕ)

2
+ ∂ f

∂ϕ

cos (ϕ) cos(2ψ) + sin (ϕ)

2
− ∂ f

∂ψ

sin(2ψ)

4 sin(ϕ)

]
(12a)

∂σ̄

∂σyy
= P

[
qf

− sin(ϕ) cos(2ψ) − cos(ϕ)

2
+ ∂ f

∂ϕ

− cos (ϕ) cos(2ψ) + sin (ϕ)

2
+ ∂ f

∂ψ

sin(2ψ)

4 sin(ϕ)

]
(12b)

∂σ̄

∂τxy
= P

[
qf sin(ϕ) sin(2ψ) + ∂ f

∂ϕ
cos (ϕ) sin(2ψ) + ∂ f

∂ψ

cos(2ψ)

2 sin(ϕ)

]
(12c)

where P = 1
q

( r
σ̄

)q−1 = 1
q f

1−q
q . The gradient is thus independent of the radius, which is a consequence of the criterion 

being homogeneous of degree 1. Note that the partial derivatives of the series f are Fourier series themselves. They can be 
calculated efficiently, as the trigonometric functions already have to be evaluated for the determination of f . Further, the 
formal structure of the gradient is independent of the number of considered Fourier coefficients.

2.2. Properties

The plane stress state for a uniaxial tensile (ut) test at an angle θ to the rolling direction with magnitude σ reads, in the 
system of orthotropy,

σ ut(θ,σ ) = 1

2

(
1 + cos (2θ) sin (2θ)

sin (2θ) 1 − cos (2θ)

)
σ (13)

Applying coordinate transformation (2), the spherical coordinates

rut(θ,σ ) =
√

2

2
σ ϕut(θ,σ ) = 3π

4
ψut(θ,σ ) = θ (14)

result. Thus, for uniaxial tension, the radial and polar coordinates are independent of the loading direction, while the half 
azimuthal angle corresponds to the angle of the loading direction. The predicted flow stress is hence

σ ut
θ =

√
2σy

q

√
f

(
3π
4

, θ

) (15)

Also a relatively simple expression for the tensile R values follows1 from (12)

Rut
θ = −

f,ϕ

(
3π
4

, θ

)

qf

(
3π
4

, θ

)
+ f,ϕ

(
3π
4

, θ

) (16)

1 A subscript preceded by a comma denotes a partial derivative here and in the following.
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The derivation of this relation is lengthy, but straightforward, and will be shown in Appendix A. Note that it is independent 
of the partial derivative with respect to ψ .

For uniaxial compression (uc),

σ uc(θ,σ ) = −σ ut(θ,σ )

holds and therefore

ruc(θ,σ ) =
√

2

2
σ , ϕuc(θ,σ ) = π

4
, ψuc(θ,σ ) = θ − π

2
(17)

which leads to the predicted flow stress

σ uc
θ =

√
2σy

q

√
f
(π

4
, θ − π

2

) (18)

and the predicted Lankford coefficient

Ruc
θ =

f,ϕ
(π

4
, θ − π

2

)
qf

(π
4
, θ − π

2

)
− f,ϕ

(π
4
, θ − π

2

) (19)

Equi-biaxial tension (bt) or compression (bc) with a magnitude σ are characterized by the plane stress states

σ bt(σ ) =
(

1 0
0 1

)
σ σ bc(σ ) = −

(
1 0
0 1

)
σ (20)

which leads to

rbt(σ ) = σ , ϕbt(σ ) = π (21a)

rbc(σ ) = σ , ϕbc(σ ) = 0 (21b)

and an undetermined value of ψ . This ambiguity is due to the singularity of the parametrization and will be treated later. 
Setting ψ = 0, the predicted equi-biaxial flow stresses read

σ bt = σy
q
√

f (π,0)
, σ bc = σy

q
√

f (0,0)
(22)

and the predicted biaxial “R values” defined as

Rbt/c = dε
p
yy

dε
p
xx

(23)

are

Rbt = qf + f,ϕ
qf − f,ϕ

∣∣∣∣
ϕ=π,ψ=0

, Rbc = qf + f,ϕ
qf − f,ϕ

∣∣∣∣
ϕ=0,ψ=0

(24)

Simple shear (ss), characterized by a tensile stress acting at an angle θ to the rolling direction with magnitude σ and 
compressive stress acting in the perpendicular direction with the same magnitude, leads to the stress state

σ ss(θ,σ ) =
(

cos (2θ) sin (2θ)

sin (2θ) − cos (2θ)

)
σ (25)

in global coordinates. This translates to

rss(θ,σ ) = σ , ϕss(θ,σ ) = π
2
, ψss(θ,σ ) = θ (26)

again with constant radius and polar coordinates and the half azimuthal angle corresponding to the loading direction. Thus, 
the predicted flow stress under shear reads

σ ss
θ = σy

q

√
f
(π

, θ
) (27)
2
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A tensile stress state leading to a plane strain (pst) state is characterized by a tensile principal stress with magnitude σ1

acting at an angle θ to the rolling direction and a perpendicular tensile principal stress with magnitude σ2. In the global 
coordinate system, the corresponding tensor components read

σ pst(θ,σ1,σ2) = 1

2

(
σ1 [1 + cos (2θ)] + σ2 [1 − cos (2θ)] (σ1 − σ2) sin (2θ)

(σ1 − σ2) sin (2θ) σ1 [1 − cos (2θ)] + σ2 [1 + cos (2θ)]

)
(28)

The transformation to the spherical coordinates yields

rpst(θ,σ1,σ2) =
√

σ 2
1 + σ 2

2

2
, ϕpst(θ,σ1,σ2) = arccos

(
−2

σ1 + σ2

rpst(θ,σ1,σ2)

)
, ψpst(θ,σ1,σ2) = θ (29)

Further, the plane strain condition (vanishing transversal strain in the local coordinate system) also dictates the value of the 
partial derivative f,ϕ

f,ϕ
(
ϕpst, θ

) = qf
(
ϕpst, θ

) sin
(
ϕpst

)+ cos
(
ϕpst

)
sin

(
ϕpst

)− cos
(
ϕpst

) (30)

The derivation of this result can be found in Appendix B.
These relations can be used to calibrate the model (see below), if the positions of the plane strain points are known from 

experiments. On the other hand – as with many other flow functions – it is not straightforward to determine the predicted
plane strain points, as a non-linear system of equations has to be solved.

2.3. Physical considerations

The proposed criterion (11) allows for virtually arbitrarily shaped flow surfaces in the space of plane stresses. However, 
some physical constraints must be enforced when applied to sheet metal.

• The function has to be orthotropic, i.e. symmetric with respect to the plane τxy = 0. In terms of the spherical coordinates 
this means f must be an even function of ψ . Therefore, only cosine terms of ψ are allowed for the construction of the 
series

bm,n = dm,n = 0 ∀ {m,n} (31)

• The surface obviously must be closed. Because the azimuthal angle is defined as 2ψ , the series f has to be a periodic 
function of ψ with a period of 4π. Hence, only even-numbered multiples of ψ must occur in f or

am,n = cm,n = 0 if n is odd (32)

• Singularities, which are inherent to spherical coordinates, lead to an ambiguity of the azimuthal angle at the poles. 
Consequently, the value of f should be same for all ψ at these positions. Or, put differently, the partial derivative with 
respect to the azimuthal angle must vanish at the poles

f,ψ (π,ψ) = 0 ∀ψ (33a)

f,ψ (0,ψ) = 0 ∀ψ (33b)

In that way, also the singularities that occur in the gradient (12) become removable.
• The constraints (33a) and (33b) prevent “jumps” of the surface at the poles. But also its tangent, which is represented 

here by the derivative of f w.r.t. ϕ , should be continuous. This is ensured by the constraints

f,ϕ(π,ψ) = − f,ϕ(π,ψ + π/2) ∀ψ (34a)

f,ϕ(0,ψ) = − f,ϕ(0,ψ + π/2) ∀ψ (34b)

• In the important case of a material without tension–compression asymmetry, the function must return the same value 
for the stress states 

{
σxx, σyy, τxy

}
and 

{−σxx,−σyy, τxy
}

(symmetry in τxy is already fulfilled through orthotropy). If 
former stress state is denoted by a superscript + and latter by a superscript −, this translates to

r− = r+, ϕ− = π − ϕ+, ψ− = π
2

− ψ+ (35)

in spherical coordinates, thus f (ϕ, ψ) = f (π − ϕ, π2 − ψ) is required. From this,

am,n = 0 if {m is even and n/2 is odd}or {m is odd and n/2 is even} (36a)

cm,n = 0 if {m is even and n/2 is even}or {m is odd and n/2 is odd} (36b)

follows.



C. Raemy et al. / C. R. Mecanique 346 (2018) 779–793 785
Fig. 2. Visualisation of the parameter identification procedure. One-dimensional Fourier series (red solid lines) are constructed based on experimental data. 
A two dimensional series f , spanned by the sub-series, is sought such that a convex flow surface results. Here, uniaxial and equibiaxial tests are considered; 
further one-dimensional support functions could be obtained through plane strain and/or simple shear experiments.

2.4. Calibration

The parameter identification procedure is rather different from other flow criteria. Instead of minimising the error 
between the predicted and the measured values of flow stresses and Lankford coefficients, the Fourier coefficients are 
optimised so that a convex flow surface results while the physical restrictions and experimental data impose constraints on 
the optimisation problem. Expressed more figuratively, one-dimensional Fourier sub-series are constructed based on experi-
mental data, and the two-dimensional series f , spanned by the sub-series, is sought such that a convex flow surface results. 
This concept is visualised in Fig. 2.

Convexity is assessed by means of the Gaussian curvature K of the flow surface, which is determined for a sample of 
1681 points (41 × 41) of the parameter space {ϕ ∈ [0,π] ,ψ ∈ [0,π/2]}. If all curvatures are positive, the surface is assumed 
to be strictly convex. This procedure is no proof in the mathematical sense. However, according to the Nyquist–Shannon 
sampling theorem, the chosen sample is sufficient to analyse a series containing harmonics up to the 20th order in ϕ and 
40th order in ψ . As it will be shown below, only frequencies well below these values are usually necessary and, therefore, it 
is unlikely that a non-convex area of the yield surface remains undetected. Increasing the sample, on the other hand, does 
not add further information, but leads to longer calculation times during the fitting procedure.

The objective function

Err = −min
i

(Ki) (37)

where the index i runs over all samples, is hence minimized by varying the Fourier coefficients. The optimization was carried 
out by use of the fminimax function of MATLAB® R2017b Optimization Toolbox™. This algorithm reformulates the problem 
into an equivalent non-linear programming problem which is solved by a sequential quadratic programming method. As – 
in most cases – more Fourier coefficients than experimental data are needed to allow for a convex flow surface, the solution 
is in general not unique and dependent on the start values.

The Gaussian curvature is computed through the relation

K = αβ − γ 2

AB − �2
(38)

where A, B, �, α, β and γ are the coefficients of the first and second fundamental form [27](
A �

� B

)
=

(
x,ϕ · x,ϕ x,ϕ · x,ψ

x,ψ · x,ϕ x,ψ · x,ψ

)
,

(
α γ
γ β

)
=

(
ν · x,ϕϕ ν · x,ϕψ

ν · x,ψϕ ν · x,ψψ

)
, ν = x,ϕ × x,ψ∥∥x,ϕ × x,ψ

∥∥ (39)

with ν representing the normalized outward normal and x (ϕ,ψ) the explicit parametrisation of the yield surface, which is 
obtained by rearranging (11) to

x (ϕ,ψ) =
⎛
⎝ σxx

σyy

τxy

⎞
⎠ = σy

q
√

f (ϕ,ψ)
·
⎛
⎝ sin (ϕ) cos (2ψ) − cos (ϕ)

− sin(ϕ) cos(2ψ) − cos(ϕ)

sin(ϕ) sin(2ψ)

⎞
⎠ (40)

The optimisation is subject to the following constraints.

• Orthotropy is guaranteed if conditions (31) and (32) are fulfilled. It is convenient to remove the corresponding coeffi-
cients before the actual calibration procedure, as it significantly reduces the number of design variables.

• If no tension–compression asymmetry has to be considered, further coefficients can be removed through (36).
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• To remove the effects of the singularities, (33) and (34) have to be enforced. To this end, (33a) is expanded

f,ψ (π,ψ) =
∑

m

∑
n

∂

∂ψ

[
am,n cos (mπ) cos (nψ) + cm,nsin (mπ) cos (nψ)

] ≡ 0 ∀ψ

and ∑
m

am,n (−1)m = 0, n = 2,4, . . . (41)

follows. Similarly for (33a), it follows from

f,ψ (0,ψ) =
∑

m

∑
n

∂

∂ψ

[
am,n cos (0) cos (nψ) + cm,nsin (0) cos (nψ)

] ≡ 0 ∀ψ

the constraint∑
m

am,n = 0, n = 2,4, . . . (42)

The relation corresponding to (34a) is slightly more complex. Expanding leads to

0 = f,ϕ(π,ψ) + f,ϕ(π,ψ + π/2)

=
∑

m

∑
n

m
[
−am,nsin (mπ)

(
cos (nψ) + cos (nψ + nπ/2)

)+ cm,n cos (mπ)
(
cos (nψ) + cos (nψ + nπ/2)

)]

=
∑

m

∑
n

mcm,n (−1)m
(

cos (nψ) − sin (nψ) sin
(n

2
π
)

+ cos (nψ) cos
(n

2
π
))

=
∑

m

∑
n

mcm,n (−1)m
(

1 + (−1)n/2
)

cos (nψ) , ∀ψ

and hence∑
m

mcm,n (−1)m
(

1 + (−1)n/2
)

= 0, n = 0,2,4, . . . (43)

Finally, for (34b)

0 = f,ϕ(0,ψ) + f,ϕ(0,ψ + π/2)

=
∑

m

∑
n

m
[
−am,nsin (0)

(
cos (nψ) + cos (nψ + nπ/2)

)+ cm,n cos (0)
(
cos (nψ) + cos (nψ + nπ/2)

)]
=

∑
m

∑
n

mcm,n

(
1 + (−1)n/2

)
cos (nψ) , ∀ψ

and thus∑
m

mcm,n

(
1 + (−1)n/2

)
= 0, n = 0,2,4, . . . (44)

• Biaxial flow stresses are captured by rearranging (22)

f (π,0) =
∑

m

∑
n

am,n (−1)m =
( σy

σ bt

)q
(45a)

f (0,0) =
∑

m

∑
n

am,n =
( σy

σ bc

)q
(45b)

• Biaxial R values can be set by rearranging (24)

f,ϕ(π,0) =
∑

m

∑
n

mcm,n (−1)m = qf (π,0)
Rbt − 1

Rbt + 1
= q

( σy

σ bt

)q Rbt − 1

Rbt + 1
(46a)

f,ϕ(0,0) =
∑

m

∑
n

mcm,n = qf (0,0)
Rbc − 1

Rbc + 1
= q

( σy

σ bc

)q Rbc − 1

Rbc + 1
(46b)
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• A major advantage of the proposed criterion is the procedure for capturing uniaxial flow stresses and R values. If 
necessary, any number of experiments can be captured accurately by adding non-zero Fourier coefficients to f . To 
this end, one-dimensional series are assembled based on the experimental data, and by means of constraints, f is 
forced to follow them (Fig. 2). If – as an example – tensile uniaxial flow stresses were measured in three directions, 
θ = {0◦,45◦,90◦} to the rolling direction, a Fourier series

gut(θ) =
∑

n

gut
n cos (nθ) = gut

0 + gut
2 cos(2θ) + gut

4 cos(4θ)

with three coefficients is required. The coefficients can be calculated by solving the linear system of equations

⎛
⎝1 cos(0) cos(0)

1 cos(π/2) cos(π)

1 cos(π) cos(2π)

⎞
⎠

⎛
⎝ gut

0
gut

2
gut

4

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(√
2σy

σ ut
0◦

)q

(√
2σy

σ ut
45◦

)q

(√
2σy

σ ut
90◦

)q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(47)

which follows from rearranging (15). The flow function can be forced to reproduce the measurements exactly by setting

f

(
3π
4

, θ

)
= gut(θ) (48)

thus by the constraints∑
m

[
am,n cos

(
m

3π
4

)
+ cm,nsin

(
m

3π
4

)]
= gut

n , n = 0,2,4, . . . (49)

For compression, a series guc(ψ) is constructed analogously as above and

f
(π

4
,ψ

)
= guc(ψ) =

∑
n

guc
n cos

(
n
(
θ − π

2

))
is enforced by the constraints∑

m

[
am,n cos

(
m

π
4

)
+ cm,nsin

(
m

π
4

)]
= guc

n , n = 0,2,4, . . . (50)

Note that any number of experiments (angles to the rolling direction) could be captured. However, to prevent over-
fitting, the experimental data can also be mapped in a least-square sense by considering less coefficients in the series 
gut and guc. In that case, the coefficients can be found by solving the system of equations

Aᵀ A

⎛
⎜⎜⎝

gut/c
0
...

gut/c
n

⎞
⎟⎟⎠ = Aᵀb (51)

if A is the coefficient matrix and b the right-hand-side in (47).
• Uniaxial R values are treated in a similar manner. For tension, a one-dimensional Fourier series

hut(θ) =
∑

n

hut
n cos (nθ) = −qf

(
3π
4

, θ

)
Rut

θ

Rut
θ + 1

= −qgut(θ)
Rut

θ

Rut
θ + 1

(52)

is constructed following from (16) and

f,ϕ

(
3π
4

, θ

)
= hut(θ) (53)

is enforced via the constraints∑[
−mam,n sin

(
m

3π
4

)
+ mcm,ncos

(
m

3π
4

)]
= hut

n , n = 0,2,4, . . . (54)

m
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In the case of uniaxial compression, the one-dimensional series is obtained by rearranging (19)

huc(ψ) =
∑

n

huc
n cos

(
n
(
θ − π

2

))
= qf

(π
4
, θ − π

2

) Ruc
θ

Ruc
θ + 1

= qguc
(
θ − π

2

) Ruc
θ

Ruc
θ + 1

(55)

and

f,ϕ
(π

4
,ψ

)
= huc(ψ) (56)

leads to the constraints∑
m

[
−mam,n sin

(
m

π
4

)
+ mcm,ncos

(
m

π
4

)]
= huc

n , n = 0,2,4, . . . (57)

3. Applications and discussion

The proposed criterion was initially developed for a commercially pure titanium sheet [25], which shows a pronounced 
tension–compression asymmetry. Only three loading directions were considered there. It will now be shown that the model 
is easily applicable also to materials without tension–compression asymmetry. The necessary amount of Fourier coefficients 
for an accurate description of a higher number of experimental data will be discussed.

The implementation of the criterion into finite element software is not considered here. However, current numerical 
techniques for stress updating are compatible with the proposed model, as it was shown in [25], where a convex cutting 
plane algorithm [28] was used, and in [29] by using a closest point projection algorithm [28].

3.1. Aluminium alloy without strength differential

As an example of a material with rather complex properties, but not showing tension–compression asymmetry, the 
aluminium alloy AA2090-T3 is considered. Its properties were reported by Park and Chung [30], who used the yld2000-2d 
model [9] and a non-associated flow rule to capture the experimental data. The uniaxial flow stresses of seven directions 
(0◦ , 15◦ , 30◦ , 45◦ , 60◦ , 75◦ and 90◦) and the corresponding Lankford coefficients as well as the biaxial flow stress and the 
R value were indicated, thus a total of 16 measurements.

The proposed model was calibrated to the reported data by the procedure outlined above. A varying number of non-zero 
coefficients of f was applied in the ψ direction. The number of coefficients in the ϕ direction was increased successively 
until convex solutions could be found in all cases, leading to a total of 13 harmonics in the ϕ direction; one constant and 
6 cosine and sine terms, respectively, q = 6. The predicted yield loci are presented in Fig. 3a; the courses of uniaxial flow 
stress and Lankford coefficients of the differently calibrated models are displayed in Figs. 3b and 3c.

It is observed that the measured flow stress as well as R values show significant oscillations. Specifically, in the 45◦
direction a relatively low flow stress, but quite elevated R value is exhibited by the material.

The proposed model captures exactly both biaxial flow stress and R values (those constraints were enforced for all 
number of Fourier coefficients). With an increasing number of Fourier coefficients, also the predictions of the uniaxial data 
get progressively more accurate. With only one coefficient in the ψ direction, the values are clearly constant and reflect 
an average2 flow stress and R value. With a bipartite series, the general trends are mapped and with four coefficients in 
the ψ direction, already a rather accurate approximation is obtained, at least for the flow stresses. Lankford coefficients are 
captured less precisely because of the “outlier” at 45◦ . Using five harmonics, the approximation is improved significantly, 
except for the region around 15◦ to the rolling direction. With six harmonics in the ψ direction, almost exact predictions are 
obtained (the corresponding coefficients for this case are given in Appendix C), seven harmonics finally reproduce the exact 
values. It is important to highlight the fact that, because of the high number of necessary harmonics in the ϕ direction, every 
added harmonic in the ψ direction significantly increases the total number of Fourier coefficients – the chosen parameter 
set in Appendix C contains 39 coefficients. Thus, the user has to make a trade-off between accuracy and a lightweight data 
set.

The different predicted flow stresses and Lankford coefficients are also reflected in the yield loci. While the predictions 
of the first and third quadrant are similar for all variants, the predicted strength under pure shear varies significantly, since 
it is strongly influenced by the slope of the curve at the uniaxial points. As seen above, also the shape of this region could 
be calibrated if corresponding experimental data were present.

Note that the least-square fit of the R values has led to negative predicted values if three harmonics were considered. 
Consequently, no convex flow surface could be found in this situation. However, a model with three harmonics could be 
calibrated straightforwardly by considering only experiments in 0◦ , 45◦ and 90◦ directions, in which case the model predicts 
also the exact values at these positions. The error at the other angles, nevertheless, is significant. Most state-of-the-art 
models also only consider those three directions, and thus similar differences can be expected. Because of the complexity 

2 It is not an average in the usual sense, as it can be seen in equation (47).
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Fig. 3. Predicted yield loci, uniaxial flow stresses and R values for AA2090 (experimental data taken from [30]), with different numbers of Fourier coefficients 
in the ψ direction.

of the material characteristics, it is therefore advised to use the proposed model with six or seven harmonics in the ψ
direction.

3.2. Aluminium alloy showing strength differential

The ability of the flow function to model a complex material that exhibits a strength differential effect is demonstrated on 
aluminium AA2008-T4. Its properties were reported by Yoon et al. [31]. They indicated tensile and compressive uniaxial flow 
stresses in seven directions, tensile uniaxial R values, and biaxial flow stresses, thus 22 data in sum. Because of the lack of 
compressive R values, they were assumed to be equal to their tensile counterpart. Stoughton and Yoon [22], who modelled 
the same material, implicitly made the same assumption. They used a non-associated flow rule with a pressure-dependent 
yield criterion and a symmetric flow potential. Although it would not be necessary to impose constraints on the compressive 
R values for the proposed model, they were nonetheless considered in order to demonstrate flexibility. Further, as biaxial 
compressive flow stress was not indicated, it was assumed that the strength-differential ratio of the biaxial flow stresses is 
the same as the average ratio of the uniaxial flow stresses. Biaxial R values were not indicated either, they were assumed 
to have the isotropic value 1.

The model was again calibrated with different numbers of non-vanishing Fourier coefficients in the ψ direction, 
while the number in the ϕ direction was kept constant. Compared to AA2090-T3, less Fourier coefficients (one con-
stant and four cosine and sine terms, respectively, q = 2) in the ϕ direction were needed to obtain a convex solu-
tion, as the yield loci show less sharp corners.3 The different approximations of the experimental data are shown in 
Fig. 4.

In contrast to the previous example, the measured properties of this material follow rather smooth curves, except for the 
compressive flow stress at 60◦ . Due to this, quite accurate approximations are already feasible with a low number of Fourier 
coefficients in the ψ direction. However, with two harmonics, the approximation of the predicted compressive flow stresses 

3 It is known from Fourier analysis that a signal with “sharp” transitions contains high-frequency components.



790 C. Raemy et al. / C. R. Mecanique 346 (2018) 779–793
Fig. 4. Predicted yield loci, uniaxial flow stresses and R values for AA2008-T4 (experimental data taken from [31]), with different numbers of Fourier 
coefficients in the ψ direction.

are almost constant, because the measurements show a mirror symmetry at 45◦ , while the other measurements only have 
symmetries around 0◦ and 90◦ .4

The predictions are virtually identical for three to seven harmonics in the ψ direction. An exact mapping of the mea-
surements – especially of the compressive flow stress at 60◦ – requires all seven harmonics. However, the measurement of 
flow stresses is subject to some uncertainties, and thus the mentioned experimental point might contain a small error. Con-
sequently, there is a risk of over-fitting if an approximation with seven harmonics is applied. It is therefore recommended 
to use only three harmonic parameters (details are given in Appendix C) for this material – in contrast to AA2090, where at 
least six harmonics were necessary to get sufficiently accurate approximations.

4. Conclusions

A yield criterion for plane stress states with a very compact, yet flexible formulation was presented. As it is based on a 
Fourier series, its complexity can be adapted to the desired degree by adding or removing Fourier coefficients. This means, 
although an associated flow rule is used, a high number of experimental data can be reproduced exactly. On the other hand, 
the data can be approximated in a least square sense by a simpler series. In this case, a very smooth flow surface results. 

4 This means that the compressive flow stresses follow roughly a cosine wave with a period of π/2, the other experiments a cosine wave with a period 
of π. Note that only cosines of even-numbered multiples of ψ are allowed. Hence, a bipartite series consists of a constant term and a cosine with period π.
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Any intermediate configuration can be realised. Nevertheless, the formal structure of the flow function and its derivatives 
remain unchanged.

Appendix A. Derivation of the predicted Lankford parameters

An associated flow rule

dε
p,ut
i j = dε̄p ∂σ̄

∂σi j
(58)

is assumed in the following derivations and argument lists are omitted where appropriate.
The stress state for a uniaxial tensile test is characterized by the spherical coordinates (14), incremental plastic strain 

thus reads

dε
p,ut
xx

dε̄p = f
1−q

q

q

√
2

2

[
qf

1 + cos(2θ)

2
+ f,ϕ

1 − cos(2θ)

2
− f,ψ

sin(2θ)

2

]
(59a)

dε
p,ut
yy

dε̄p = f
1−q

q

q

√
2

2

[
qf

1 − cos(2θ)

2
+ f,ϕ

1 + cos(2θ)

2
+ f,ψ

sin(2θ)

2

]
(59b)

dε
p,ut
xy

dε̄p = f
1−q

q

2q

√
2

2

[
qf sin(2θ) − f,ϕ sin(2θ) + f,ψ cos(2θ)

]
(59c)

Note that dε
p,ut
xy = 1

2 dγ
p,ut
xy = 1

2
∂σ̄
∂τxy

. This tensor can be represented by a sum of three matrices

√
2qf

q−1
q

dεp,ut

dε̄p = qf

⎛
⎜⎝ cos2(θ)

1

2
sin(2θ)

1

2
sin(2θ) sin2(θ)

⎞
⎟⎠

︸ ︷︷ ︸
=:A

+ f,ϕ

⎛
⎜⎝ sin2(θ) −1

2
sin(2θ)

−1

2
sin(2θ) cos2(θ)

⎞
⎟⎠

︸ ︷︷ ︸
=:B

+1

2
f,ψ

⎛
⎜⎝− sin(2θ) cos(2θ)

cos(2θ) sin(2θ)

⎞
⎟⎠

︸ ︷︷ ︸
=:C

(60)

For a uniaxial tensile test, the R values are defined as R = dε
p
width

dε
p
thickness

, which corresponds to R = dε
p
yy

dε
p
zz

in a coordinate 

system where the x axis is aligned with the loading direction. The incremental plastic strain (60) must thus be rotated to 
the local coordinate system by means of the rotation matrix

Rθ =
(

cos (θ) sin (θ)

− sin (θ) cos (θ)

)
(61)

with

Rθ A Rᵀ
θ =

(
1 0
0 0

)
Rθ B Rᵀ

θ =
(

0 0
0 1

)
Rθ C Rᵀ

θ =
(

0 1
1 0

)
(62)

the incremental plastic strain in the local coordinate system follows

√
2qf

1−q
q

dεp,ut,local

dε̄p =

⎛
⎜⎜⎝

qf
1

2
f,ψ

1

2
f,ψ f,ϕ

⎞
⎟⎟⎠ (63)

Applying plastic volume constancy dε
p
zz = −dε

p
xx − dε

p
yy , one finds

Rut
θ = −

f,ϕ

(
3π
4

, θ

)

qf

(
3π
4

, θ

)
+ f,ϕ

(
3π
4

, θ

) (64)

The procedure is similar for uniaxial compression.
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Fig. B.5. Cut of the flow surface through the half plane ψ = θ in modified stress space with local system of coordinates and tangential vector to the yield 
locus.

Appendix B. Derivation of f,ϕ at the plane strain points

To obtain the partial derivatives f,ϕ at the plane strain points, we think of the half plane ψ = θ in the modified stress 
space. In Fig. 1, this half plane is spanned by the half circle in which the position vector lies. A local system of coordinates 
is assigned to the plane, where the first base vector points to the direction of the principal tensile stress σ1, and the second 
base vector to the direction of σ2, see Fig. B.5.

In accordance to (3), a position vector x on this manifold may be parametrized as

x = r

(
sin (ϕ) − cos (ϕ)

− sin (ϕ) − cos (ϕ)

)
︸ ︷︷ ︸

=:ξ

(65)

If the yield locus is interpreted as the image of x with parameter ϕ and the constraint r = σy f −1/q , a tangential vector can 
be obtained by deriving with respect to the parameter

t = ∂x

∂ϕ
= σy f −1/q

[
− f,ϕ

qf
ξ + ξ ,ϕ

]
(66)

For plane strain tension, t must be strictly vertical, thus t1 = 0 is required. It follows

f,ϕ
qf

ξ1

∣∣∣∣
ϕ=ϕpst,ψ=θ

= ξ1,ϕ

∣∣
ϕ=ϕpst,ψ=θ

(67)

and hence

f,ϕ
(
ϕpst, θ

) = qf
(
ϕpst, θ

) sin
(
ϕpst

)+ cos
(
ϕpst

)
sin

(
ϕpst

)− cos
(
ϕpst

) (68)

Appendix C. Calibrated Fourier coefficients

Table C.1
Non-trivial coefficients for AA2090, q = 6.

a0,0 a0,4 a0,8 a1,2 a1,6 a1,10

29.23 60.02 −48.09 −8.019 3.588 −4.387
a2,0 a2,4 a2,8 a3,2 a3,6 a3,10

−33.48 −82.05 68.31 11.67 −5.273 6.24
a4,0 a4,4 a4,8 a5,2 a5,6 a5,10

5.252 23.32 −22.7 −3.651 1.685 −1.854
a6,0 a6,4 a6,8

−0.188 −1.289 2.474
c1,0 c1,4 c1,8 c2,2 c2,6 c2,10

−11.72 −138.3 94.89 18.81 −10.1 8.697
c3,0 c3,4 c3,8 c4,2 c4,6 c4,10

3.593 64 −47.53 −12.76 6.92 −5.944
c5,0 c5,4 c5,8 c6,2 c6,6 c6,10

0.1875 −10.74 9.54 2.083 −1.259 1.073
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Table C.2
Non-trivial coefficients for AA2008, q = 2.

a0,0 a0,2 a0,4 a1,0 a1,2 a1,4

1.992 −1.012 0.2548 −0.2422 0.2721 0.05533
a2,0 a2,2 a2,4 a3,0 a3,2 a3,4

−0.6214 1.161 −0.3054 0.3711 −0.2721 −0.05533
a4,0 a4,2 a4,4

0.06483 −0.1498 0.0506
c1,0 c1,2 c1,4 c2,0 c2,2 c2,4

0.1798 1.595 −0.3078 0.2403 −0.2742 −0.02055
c3,0 c3,2 c3,4 c4,0 c4,2 c4,4

−0.05992 −0.5315 0.1026 −0.1202 0.1371 0.01028
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