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This paper presents a methodology to model a blanking process using a continuum 
mechanical damage model. A variant of the Lemaitre model, in which the quasi-
unilateral conditions are taken into consideration to modify the damage behavior under 
compressive stress states, is selected as material model. S45C high-carbon steel is analyzed 
experimentally. To characterize the damage behavior of the material, notched round bar 
tensile tests with three different notch radii (6 mm, 10 mm, and 20 mm) using image 
analysis are performed. Using digital image processing, the strain at the deformation zone 
can be computed for the load–strain curves. Those curves are used as an objective function 
to determine the parameters of the Lemaitre damage model. The experimental results 
are compared with the results of the FE analysis of the tensile test. The identified model 
parameters are used in numerical investigations of axisymmetric blanking. The effect of the 
model’s extension to quasi-unilateral damage evolution is discussed. The crack progress 
in high-carbon steel sheet during blanking and the final sheared part morphology are 
predicted and compared with the experimental results. Sheared surface and burr height 
obtained by the analysis coincide with the results of the blanking experiment.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Shear-cutting processes require separation of the material from the remaining workpiece. There are various shear-cutting 
operations such as blanking, trimming, guillotining, punching, and adiabatic shearing, each of which has a certain exper-
imental setup and a set of process parameters. Plastic flow, fracture behavior (material properties) and friction (process 
parameters) influence the resulting fracture’s surface properties [1]. To minimize the efforts for the process design, the 
predictions of surface quality and required maximum force by cutting machine are mandatory. Especially for sheet metal 
cutting operations, there are several analytical models to predict the required maximal shearing force and the fraction of 
sheared and fracture surface to assign the sheared surface quality [2,3]. Application of finite element models using dam-
age models ease and improve these predictions. Hambli [4] used the Lemaitre damage model [5] to simulate fine blanking 
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Table 1
Some application examples for Lemaitre model and its variants.

Study Model specification Test for 
characterization

Process

Hambli [4] Isotropic standard model Tensile test Sheet fine blanking
Hambli [7] Isotropic standard model Tensile test Sheet blanking
Gutknecht et al. [10] Crack-closure enhancement Notched tensile test Sheet blanking

In-plane shear test
Bouchard et al. [11] Crack-closure enhancement Notched tensile test Cold forging, extrusion

(1% clearance) and showed that the Lemaitre Model is incapable to model the fine blanking process of 4-mm-thick sheets. 
Hambli [4] suggested that the application of Rice and Tracey’s model [6] provides better prediction for crack initiation and 
propagation. On the contrary, Hambli [7] showed that the Lemaitre model provides better prediction for the blanking pro-
cess (10% clearance), compared to the Gurson Model [8] for a relatively thick sheet (3.5 mm in sheet thickness). In this 
study, the predictive capability of a variant of the Lemaitre model is investigated with a moderately thick workpiece (thick-
ness of 1.2 mm). In further studies, the Lemaitre model and its variants are used to model the onset of fracture (Table 1). 
The most common enhancement of the Lemaitre model is related to the effect of the compressive stress states, crack-closure 
phenomenon presented in [9]. For the cutting process, especially the studies are concentrating on the sheet metals (as in 
the studies of Hambli [4] and [7] and Gutknecht et al. [10]). Bouchard et al. investigated the application of the Lemaitre 
model with crack-closure for more classic bulk forming operations such as cold forging and extrusion [11]. In this work, 
blanking of a bulk material is investigated. The specimens are cut from bulk material.

In general, material anisotropy is more critical for sheet materials than for bulk ones, because of texture due to the 
preforming procedure (rolling, etc.). The cutting operations take place in the through-thickness direction, which is not 
directly related to the planar anisotropy of the sheet. From this point of view, the cutting operation is not a typical sheet 
forming operation, during which in-plane plane-stress conditions are dominant.

In this paper, the blanking process for a bulk material is modeled using a variant of the Lemaitre model, which is 
extended to unilateral damage evolution to distinguish damage accumulation for tensile and compressive stress states [9]. 
The details of this damage model are presented in Section 2. The experimental procedures for material characterization 
and blanking experiments are explained in Section 3. Section 4 includes the details of finite element simulations of the 
characterization and blanking tests. The simulation results and comparisons with experiments are discussed in Section 5
and, finally, conclusions are drawn in Section 6.

2. Lemaitre model with a quasi-unilateral damage evolution

2.1. General framework

In the Lemaitre model family, the material deterioration is measured by the damage variable D . More specifically, 
D stands for the phenomenological construct, which is a measure for homogenized microvoids and microcracks in the 
material. The limits are D = 0 for undamaged material and D = Dcritical for the complete material deterioration.

The Lemaitre model according to [12] belongs to the class of thermo-dynamically consistent models. Here thermo-
dynamically consistency means that the dissipation

0 ≤ � = T : Ė − �̇ (1)

is always non-negative. T is an arbitrary stress tensor and E the thermo-dynamically conjugate strain tensor. In (1), “ : ” 
denotes the double contraction product.

� = �(χ) with χ = {
Ee,α, D, T temp

}ᵀ (2)

represents the Helmholtz free energy, a positive and convex function with respect to its argument χ . The superscript “ᵀ” 
denotes the transpose of a vector or tensor. In the case of the Lemaitre model, common choices for χ are Ee for the elastic 
part of the strain tensor, D for the scalar damage variable, α for the scalar isotropic hardening variable, and T temp for the 
temperature. Here, the fact that the plastic part Ep of the total strain E does not modify the stored or reversible energy is 
exploited. One obtains T = ∂Ee� from (1), where ∂◦ (•) denotes ∂ (•) /∂◦ . Similar stress-like driving forces q and Y are given 
by

q = ∂α�(Ee,α, D, T temp)

Y = −∂D�(Ee,α, D, T temp)

s = ∂T temp�(Ee,α, D, T temp)

(3)

for the isotropic hardening and the damage, respectively. s denotes the specific entropy.
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Substitution of the state equations (3) back in (1) yields the mechanical portion of the reduced dissipation inequality �m

for purely mechanical conditions without temperature effects:

0 ≤ �m = T : Ėp − qα̇ + Y Ḋ (4)

2.2. Special model choices

The model formulation requires the selection of a kinematic framework which governs the elastoplastic material behavior. 
In the current model, the multiplicative split of the total deformation gradient, which has an elastic Fe and plastic part Fp

as proposed by Lee [13], is:

F = Fe · Fp (5)

The kinematic formulation of the model relies on an approximation for the logarithmic, elastic stretch Ue , which arises in 
the context of the polar decomposition Fe = Re · Ue, with Re the elastic rotation tensor. As demonstrated in [14]:

d

dt
ln

(
Ue) = Re · D · Reᵀ − Dp (6)

Ṙe = W · Re − ReWp (7)

for small elastic strain, i.e. 
∣∣ln (

Ue
)∣∣ � 1. The rate of total deformation D = sym (L) is given in terms of the “velocity gradient” 

L = Ḟp · F−1. Consequently, Dp = sym
(
Lp

) = sym(Ḟp · Ḟ−1) and Wp = skw(Lp) represent the rate of plastic rotation and the 
plastic spin, respectively. The assumption Wp ≈ 0 is justified for the investigated metals, so that the axes of the material 
rotate with the continuum, and consequently Re = R, with R the rigid body rotation.

In light of Eqs. (5)–(7), the model is formulated in terms of the back-rotated Cauchy stress:

M = Reᵀ · T · Re (8)

The evolution relations

Dp = λ∂M�(M,q, Y ; D)

α̇ = −λ∂q�(M,q, Y ; D)

Ḋ = λ∂Y �(M,q, Y ; D)

(9)

for Dp, α̇ and Ḋ making use of the generalized normality rule require the choice of a specific dissipation potential. It is split 
into a plastic �p and a damage part �D:

� = �p(M,q, D) + �D(Y , D) (10)

�p distinguishes between an elastic domain �p ≤ 0 and an anisotropic plastic domain.
A Hill-type form according to [15]

�p(M,q, D) = σ̃eq − q (11)

is chosen, where σ̃eq =
√

M̃ : H : M̃ represents the effective equivalent stress with the fourth-order tensor H accounting for 
the texture of the material. M̃ = M/(1 − D) is the effective stress considering the effect of damage. The damage poten-
tial [16]:

�D = S

(δ + 1)

〈
Y − Y0

S

〉δ+1 1

(1 − D)β
(12)

introduces a threshold for damage initiation by means of the Macaulay brackets 〈•〉 =
{

0 for •<0
• for •≥0

}
β , S , Y0 and δ are material 

parameters governing the evolution of damage.
For the model variant that weighs the effect of compressive stress states by introducing an additional scaling parameter 

(crack-closure parameter) h, the modified elastic energy density expression becomes [9]:

Y = 1 + ν

2E

[〈
Mij

〉 〈
Mij

〉
(1 − D)2

+ h

〈−Mij
〉 〈−Mij

〉
(1 − hD)2

]
− ν

2E

[
〈Mkk〉2

(1 − D)2
+ h

〈−Mkk〉2

(1 − hD)2

]
(13)

where ν is Poisson’s ratio and E is Young’s modulus.
For h = 0, only tensile stresses are effective in the damage evolution, whereas for h = 1 the model boils down to the 

original Lemaitre model. For a value of h between zero and one, 0 < h < 1, just a part of the compression stresses will be 
considered for the evolution of damage.
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Table 2
Mechanical properties of the material S45C.

Young’s modulus 
E [GPa]

Poisson’s ratio 
ν

Yield strength 
σ0 [MPa]

Hardening law

C [MPa] n

199.15 0.29 414 1210 0.217

Fig. 1. Dimension of the tensile test specimens (circumferential notched round bar).

With the given framework the following evolutionary equations can be derived,

Dp = λ
1

(1 − D) σ̃eq
H : (M̃

)
α̇ = λ

Ḋ = λ

〈
Y − Y0

S

〉δ 1

(1 − D)β

(14)

which completes the material model derivations. The stress update is given by the isotropic form

Ṁ = (1 − D)
(
μ1 tr

(
Re · D · Reᵀ − Dp

)
1 + 2μ2

(
Re · D · Reᵀ − Dp

))
(15)

where μ1 and μ2 denote Lamé’s first and second parameters, respectively, which can be represented in terms of the Poisson 
ratio, ν , and the elasticity modulus, E:

μ1 = Eν

(1 + ν) (1 − 2ν)

μ2 = E

2 (1 + ν)

(16)

The material model is implemented via the VUMAT interface into the commercial finite-element code ABAQUS [17].

3. Experimental methods

The deformation behavior of S45C high-carbon steel is modeled with the isotropic hardening law with isotropic damage 
evolution. The elastic material parameters are Young’s modulus, E , and Poisson’s ratio, ν . Plastic flow curve expression 
(hardening law) with σy (α) = Cαn , where C and n are material parameters, is used. Those elastoplastic material parameters 
are listed in Table 2.

3.1. Circumferential notched round bar tensile test using image analysis

In order to characterize the material for the damage model, tensile tests with three different notch geometries are 
performed. The specimens have the initial notched radii, R of 6, 10, and 20 mm, which have different stress states in the 
deformation zone (Fig. 1). The load and strain curves obtained from the tests are used in the inverse parameter identification 
algorithm. To measure the load–strain response of the experiments, image analysis is coupled with the force measurement 
of the universal testing machine.

3.2. Bridgman’s stress analysis

Analysis of normal stress components in necking was carried out by Bridgman [18]. The axial and radial stresses σz and 
σr are calculated by the following equations,

σz = σ0 ·
{

1 + ln

(
a2 + 2aR + r2

2R

)}
(17)

σr = σθ = σ0 · ln

(
a2 + 2aR + r2

2R

)
(18)
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Fig. 2. a) Schematic diagram of the tension test system using image analysis [19], b) sketch of the experimental setup for blanking.

where σ0 is flow stress, a and R are necking radius and necking curvature radius, respectively. r is the distance from 
longitudinal center axis. σz is the maximum principal stress. There is a relation between the average tensile stress σz_ave

and the tensile load,

σ0

(
1 + 2R

a

)
ln

(
1 + a

2R

)
= load

πa2
= σz_ave (19)

Thus, if the change in the necking shape (a and R) and load are measured, all stress components are calculated by Eqs. (17)
and (18). The equivalent strain at necking is expressed as:

εeq = 2 ln
d0

d
(20)

where d is the diameter at the notch root and d0 is the initial value of d. Stress triaxiality is calculated by [19] as follows:

σm

σ
= 1

3
+ ln

( a

2R
+ 1

)
(21)

3.3. Image analysis

The contour of the deformation zone (notched area) of a test piece is photographed with a CCD camera (Fig. 2a). The 
image is processed into a monochrome picture to measure a and R during the test. The load measurement is taken from a 
universal testing machine.

3.4. Axisymmetric blanking process

The experiment of axisymmetric blanking process is carried out at room temperature by using a hydraulic press. The 
S45C steel part has an initial thickness of 1.2 mm. Fig. 2b shows the experimental blanking conditions. The punch radius 
of the circular punch is 4.0 mm, and the clearance between punch and die is 0.12 mm (10% of part thickness). The die tip 
radius and punch tip radius are 0.015 mm and 0.030 mm, respectively. The sheared surface length and burr height of the 
blanked disk are measured by using a laser microscope. The punch force and displacement are recorded for comparison 
with the simulations.

4. Finite element analysis of the experiments

4.1. FE analysis of circumferential notched round bar tensile test

In order to acquire the damage parameters in the Lemaitre model, 3D finite element analysis of a round notched bar 
tensile test using this model is performed. Considering the symmetry of the specimen and loading, only 1/2 of the whole 
geometry is simulated using the axisymmetrical model. In the finite element model of this test, 4-node bilinear axisymmet-
ric quadrilateral elements are utilized. Because of the mesh dependency of the local damage models, a constant mesh size 
is used for parameter identification and blanking experiments. The minimum mesh size is taken as 0.01 mm, which is ap-
propriate for the blanking experiments with a clearance of 0.12 mm and die tip radius 0.015 mm. This minimum mesh size 
is applied at the deformation zone of the specimen, namely at the center of the round notched bar. An inverse calibration 
method based on the Lemaitre damage model is developed. The inverse parameter optimization algorithm compares the 
load–strain curves from simulations with experimental results and adjusts the model parameters to minimize the difference 
between those results. The obtained material parameters are shown in Table 3.
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Table 3
Mechanical properties of the S45C material.

S [MPa] Y0 [MPa] β δ Dcritical

6.51 0.30 1.36 1.64 0.21

Fig. 3. Load–strain comparison for experiment and simulation at the center of the notched tensile specimens with a notch radius of a) 6 mm, b) 10 mm, 
and c) 20 mm (the arrows show the fracture point for the experimental curve).

Fig. 4. The effect of h on the punch force–displacement curve.

4.2. FE analysis of axisymmetric blanking

Due to symmetry conditions, the examined blanking process can be simulated as an axisymmetric plane-strain model. 
The die, blank holder and the punch are modeled as rigid curves, whereas the sheet is modeled as a deformable body. The 
punch velocity is 35 mm/s as in the experiment. In order to reduce the computational time, the mesh size used for the 
parameter identification is applied only in the deformation zone. The remaining part is meshed with a coarser mesh. To 
show the effect of mesh size, a simulation with finer mesh (0.003 mm) and one with coarser mesh (0.02 mm) are compared 
with the reference one. The cracks are modeled using element deletion technique, such that the elements are removed, as 
the critical damage value is reached.

5. Results and discussion

5.1. Identification of damage model parameters

The calibration procedure is performed for the experimental tensile load-equivalent plastic strain curve, in which numeri-
cal simulations of the notched tensile test are iteratively conducted with a set of damage parameters until the experimental 
tensile load-equivalent plastic strain curve matches with the calculated curve. The final simulated tensile load-equivalent 
plastic strain curves obtained are compared with the experimental results (Fig. 3).

The selected specimens are deformed under tension. Consequently, there is no compressive stress component. Therefore, 
the model parameters, except the crack-closure parameter h, can be identified using those tests. The influence of the crack-
closure parameter is discussed using the blanking simulations. The comparison of the experimental and numerical punch 
force–displacement curves shows that the original Lemaitre model (h = 1), underestimates the critical punch displacement 
for crack initiation. Partial contribution of compressive stress states results in a delayed crack initiation for the material. 
The simulation with crack-closure parameter h = 0.2 matches well with the required maximum force value and the fracture 
initiation point. This value is similar to the typical values mentioned for metallic materials in [20]. All simulations show 
a steeper increase compared to the experimental curve during the initial deformation stage. This can be explained by the 
elastic deformation of the complete punching system. This additional deformation is not considered in the simulations. Thus, 
the predicted response is stiffer (Fig. 4). For the same reason, the tested penetration distance where the maximum force is 
achieved is larger in the experiment than in the simulation. The load–displacement curves in Fig. 4 show that the introduc-
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Fig. 5. The effect of minimum element size (le) on fracture pattern at a punch displacement of 0.48 mm.

Fig. 6. The effect of mesh size on the force–displacement curves.

tion of the unilateral damage evolution coefficient (h) results in an increase of the peak force as well as a delayed onset of 
fracture. This behavior is physically reasonable, since with the modified model, compressive stresses delay the evolution of 
damage.

5.2. Comparison of sheared part morphology

In the blanking process, intensive plastic deformation and damage localize in the area between punch and die. In order to 
correctly simulate the damage localization and crack path, a mesh size study is conducted by comparing the results of three 
different mesh sizes in the intensive blanking region. The minimum mesh size of the three mesh patterns are 0.02 mm, 
0.01 mm, and 0.003 mm, as shown in Fig. 5, respectively.

The fluctuation near the maximum force of the load curve observed in simulations is caused by the reduction of the 
structural stiffness due to element deletion during punch translation (Fig. 6). The fluctuation is less serious when the mesh 
size is smaller, because smaller discontinuities occur when the deleted elements are smaller. Another notable effect of the 
mesh size on the load–displacement curve is the critical fracture point, where the punch force starts to decrease sharply 
(Fig. 6).

Based on the experiment and simulation results, the physical mechanisms leading to the complete failure of the sheet 
material are analyzed as follows: at the first step, the punch and die penetrate the sheet gradually without obvious crack 
initiation. Damage accumulates intensively in the region between punch and die, until the punch penetrates by 30–35% into 
the thickness of the specimen.

In this case, because the die tip radius is only half of the punch tip radius, there is a more severe damage effect in the 
die tip’s vicinity, which also leads to earlier crack propagation at the die tip with respect to the punch tip. Then the crack 
tips propagate quickly to meet each other and create the whole crack path. The damage contours for various simulation 
steps are depicted in Fig. 7. Damage contours show that the central lines of the maximum damage area are very close to 
the cutting surface profile. Crack initiation takes place near the contact surface of punch and workpiece.

To assign the sheared and fractured surface ratios at the cutting zone, the experimental sheared edge is examined using a 
laser microscope. These measurements are compared with the predicted sheared edge using the enhanced Lemaitre damage 
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Fig. 7. Damage distributions for the given punch displacements.

Fig. 8. Experimentally determined and simulated cutting surface from the simulation with the Lemaitre model using the model parameters in Table 3. The 
measurements are listed in Table 4.

Table 4
Length of the characteristic zones of the cutting surface (shown in Fig. 8) 
for the experiment, and simulation with various values of the crack-closure 
parameter, h.

h a (mm) b (mm) c (mm)

0 0.181 0.199 0.820
0.2 0.179 0.244 0.777
0.5 0.166 0.407 0.627
Experiment 0.133 0.143 0.924

model. The quality of the cutting surface is described by the cutting surface parameters. From a typical cutting surface, 
four characteristic zones can be distinguished (shown in Fig. 8). They are (a) the shear droop area (die-roll width), (b) the 
burnished area (smooth cut section height), (c) the fractured surface, and (d) the burr.

The comparison of the simulation results with the photographs of the cutting surface reveals that similar distribution of 
the different cutting areas in the simulation and experiment (Fig. 8 and Table 4). Although the absolute values are different, 
the tendencies have been accounted for to improve the model (h = 0 and h = 0.2). For the experiment, the shear drop height 
and burnished surface length are close to each other (0.133 mm and 0.143 mm). By applying the crack-closure parameter, 
this relativity can be satisfied better. The overestimation of the shear drop area in simulation could be explained as the 
springback phenomenon after unloading.

6. Conclusions

Blanking is a shear stress state dominant material removal process, during which a compressive stress state exists. 
In order to describe material deterioration under shear and compression stress state appropriately, the applied damage 
model should give distinct predictive performances under tensile, shear, and compressive principal stress states. For this 
purpose, a variant of the Lemaitre model, extended for unilateral damage evolution to distinguish the damage accumulation 
for tensile and compressive stress states, is taken into consideration. In this model variant, the crack-closure parameter, 
h, scales the contribution of the compression stresses for the damage evolution. Lemaitre proposed a value in the range 
between 0 and 0.2 for metallic materials for this parameter [20]. For the material selected, S45C, the simulation result with 
h = 0.2 matches the experimentally investigated ones on the manner of maximum force and fracture initiation point for 
blanking experiments. The remaining model parameters are identified by using tensile tests with three different notch radii, 
at which only tensile stress states are effective. Because of the mesh size dependency of the model, a constant mesh size 
for the simulations of the characterization and blanking tests is selected. Changing mesh size (0.003 mm, 0.010 mm, and 
0.020 mm) alters the predictions for the blanking process excessively. Compared to the blanking simulations, the difference 
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between the simulations of the notched tests with mesh sizes (0.010 mm and 0.020 mm) is negligible. The identified model 
parameters are valid for the selected constant mesh size for the parameter identification. The cutting surface comparisons 
show that application of the model with a crack-closure improves the prediction related to the proportion of the shear droop 
area (die-roll width) to the burnished area. Hambli [7] showed that the basic Lemaitre model can predict crack initiation 
during blanking for the investigated sheet in his studies by comparing only the force–displacement curves. However, for 
the presented material (S45C), the basic Lemaitre model cannot predict crack initiation during blanking. By applying an 
improvement to the crack-closure model, not only crack initiation but also the cutting surface properties can be predicted 
appropriately.
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