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Industrialising manufacturing processes for aeronautic composite parts is a challenging 
issue. Among the existing techniques, the Automated Fibre Placement (AFP) is a promising 
one, since it allows the making of large and complex pieces with good productivity and 
repeatability. However, in order to ensure the regulatory requirements, the process must 
be controlled efficiently. In this paper, we propose the off-line computation of a parametric 
solution to a minimisation problem subject to heat equation. To solve this saddle-point 
problem with the so-called PGD method, we considered using Uzawa’s technique or the 
Ideal Minimal Residual-based formulation, the aim being real-time control of the heat 
source within the AFP process.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Automated Fibre Placement (AFP) is one of the main technologies employed today to manufacture advanced composite 
laminates from unidirectional prepregs [1]. This technique consists in laying and welding tapes of prepregs, building a 
laminate with more or less complex geometry, as depicted in Fig. 1.

In the 1990s, numerical models were proposed [2,3], with crude assumptions far from real process conditions. Improve-
ments were made in [4,5].

In [6], even if the model itself was more relevant (3d domain, anisotropic material, inter-ply interfaces. . . ), the numerical 
method was novel. To achieve a global thermo-mechanical process modelling, the numerical strategy proposed was based 
on the Proper Generalized Decomposition (PGD) [7,8]. This method uses a separated representation of the unknown field, 
reducing the computational complexity of the system. A key asset of this technique is its ability to introduce parameters 
(from process, from material, even from geometry. . . ) as extra-coordinates into the model, without incurring the curse of 
dimensionality. Thus, in a single computation we have access to a multi-parametric virtual chart providing all possible 
solutions for each combination of the considered parameters [9–13].

Then, the computational vademecum can be exploited on-line for process control or process optimisation purposes. 
Indeed, within the AFP we want to efficiently control the heating power: tapes have to be heated enough to ensure the 
melting of the matrix coating the fibres and the cohesion with the previously laid tapes, while not exceeding a threshold 
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Fig. 1. Process sketch.

from which material burns, for a given process velocity. Indeed, both reticulation and thermal degradation depend on 
temperature and on the time spent at that temperature [14].

Therefore, we took advantage of the PGD to build off-line static and transient virtual charts in order to determine the 
best power associated with a draping velocity profile [15].

However, in those simulations, solutions were computed from equations provided by underlying physics of the studied 
phenomena, the optimisation being carried out as post-process. We propose here to compute directly the solution to an 
optimisation problem in order to get the separated representations of both the field and the control to obtain it. That is to 
say that the optimisation is made directly off-line, reducing the cost of the post-process and improving the real-time control 
of the AFP.

Within the next section, we present the equations governing the phenomenon under consideration. In order to have a 
reference solution, the system is solved by a standard finite element method (FEM). Thereafter, section 3 shortly presents 
the so-called PGD, and we take benefit of this technique in section 4 to build virtual charts to be used for control. Section 5
focuses on the writing and solving of the optimal system. We improve the obtained results by applying an iterative scheme 
in section 6. To circumvent the drawback of this additional loop, we also tried a modified PGD-based solver in section 7. 
Lastly section 8 addresses few conclusions and perspectives.

2. Process modelling

Let us consider a unidirectional stacking of layers constituting a homogeneous domain �, depicted in Fig. 2. This picture 
also makes explicit the meaning of some geometrical parameters.

We assume the heat source acts only on a part of the upper boundary, denoted by �P in Fig. 2. With the assumption of 
a steady state, within a large piece, a Dirichlet condition is set on the boundary �D , homogeneous for the sake of simplicity. 
On the remaining boundaries, gathered under the unique name �N , we consider homogeneous Neumann conditions, once 
again for the sake of simplicity.

Fig. 2. Domain of study.
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Table 1
Sets of parameters used.

Simulation V
[
m s−1

]
P w [W] h [m]

0 10−3 600 0.01
1 10−2 1900 0.003
2 10−1 6000 0.0015
3 1 19000 0.0005

This leads to the convection–diffusion equation⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−div (K∇u) + ρC pV · ∇u = 0 in �

u = 0 on �D

K∇u · �n = 0 on �N

K∇u · �n = � on �P

(1)

with K =
(

k‖ 0
0 k⊥

)
and V =

(
v
0

)
.

The associated weak form writes⎧⎪⎨
⎪⎩

Find u(x) ∈ H1(�), verifying

∀u� ∈ H1(�), with u(x ∈ �D) = u�(x ∈ �D) = 0∫
�

K∇u · ∇u� dω + ∫
�

ρC pV · ∇uu� dω = ∫
�P

�u� dγ

(2)

This system can obviously be solved in a classical way with a standard FEM. However, since we want a reference so-
lution to later compare with results from other methods, we have to implement comparable systems. Consequently, in 
order to compare solution in separated representation, we take advantage of the tensor product method introduced by R.E. 
Lynche, J.R. Rice, and D.H. Thomas [16,17]. The discrete form of Eq. (2) involves matrices that can be expressed in terms of 
tensor products of lower-order matrices, leading to a computational gain. Authors also claim that there are no numerical 
instabilities with this method.

For more details on the properties of tensor products, the interested reader can refer to [18] and [19].
Expressing Eq. (2) with Kronecker products and then solving it with a standard FEM is what we call K-FEM. The aim of 

this artefact is to use shape functions from tensor product, so that involved matrices are the same as in the PGD formulation.
To illustrate our point, we consider four draping speeds, changing accordingly, not only the height h of the domain 

(since the slower the velocity is, the deeper the heat propagates), but also the power Pw of the source taken as a Gaussian 
function defined on �P by Eq. (3). The sets of parameters are provided in Table 1. These values of Pw are chosen in order 
to reach a maximal temperature between 350 K and 400 K on �P .⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�(x) = Pw

Sray

(
1 +

(
x − μ

r

)4

− 2

(
x − μ

r

)2
)

Sray: heated surface

μ = l1 + l2
2 : centre of the Gaussian

r = l2
2 : radius of the Gaussian

(3)

Temperature fields computed from the four simulations are given in Fig. 3. As the dimensions of the domain depend on 
the simulation (see Table 1), these fields are plotted on a normalized domain.

In a former work (see [20]), we had to use a stabilisation technique with the standard FEM on this problem, since the 
convection term becomes dominant with an increasing velocity.

3. PGD at a glance

Consider a problem defined in a space of dimension d for the unknown field u(x1, · · · , xd). Here, the coordinates xi
denote any usual coordinate (scalar or vectorial) related to physical space, time, or conformation space in microscopic 
descriptions [7], for example, but they could also include model parameters such as boundary conditions or material pa-
rameters.

We seek a solution for u(x1, . . . , xd) ∈ �1 × . . . × �d . The PGD yields an approximate solution in the separated form

u(x1, . . . , xd) ≈
N∑

X1
i (x1) · . . . · Xd

i (xd) =
N∑ d∏

X j
i (x j) (4)
i=1 i=1 j=1
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Fig. 3. Reference temperature fields.

The PGD approximation is thus a sum of N functional products involving each a number d of functions X j
i (x j) that are 

unknown a priori. It is constructed by successive enrichment, whereby each functional product is determined in sequence. At 
a particular enrichment step n +1, the functions X j

i (x j) are known for i ≤ n from the previous steps, and one must compute 
the new product involving the d unknown functions X j

n+1(x j). This is achieved by invoking the weak form of the problem 
under consideration. The resulting problem is non-linear, which implies that iterations are needed at each enrichment step. 
A low-dimensional problem can thus be defined in � j for each of the d functions X j

n+1(x j).

If M nodes are used to discretise each coordinate, the total number of PGD unknowns is N ×M × d instead of the Md

degrees of freedom involved in standard mesh-based discretisations.
In the case of a field depending on the physical space x ∈ �x ⊂ R

3, the time t ∈ It ⊂ R+ and Q parameters p1, . . . , p Q , 
where p j ∈ �p j , with j = 1, . . . , Q , the solution is sought under the separated form

u(x, t, θ1, . . . , θ Q ) ≈
N∑

i=1

⎛
⎝Xi(x)Ti(t)

Q∏
j=1



j
i (θ

j)

⎞
⎠ (5)

As soon as this solution is available, after solving the multidimensional model within the PGD framework, we can have 
access to any possible solution.

PGD solution procedures have already been extensively described and successfully used in a plethora of applications. The 
interested reader can refer to the reviews [21–23] as well as to the primer [24] that describes the practical issues related to 
its computational implementation.

4. Controlling the AFP process

In order to ensure the quality of the produced composite parts, the thermoplastic has to be melted at an optimal 
temperature denoted uopt. To reach it, the heat source must be drastically controlled. The numerical simulation is a great 
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Fig. 4. Highest temperature as a function of the laser power and the line velocity: u (Pw, v).

Fig. 5. Heating control from the parametric steady-state solution.

tool to avoid experiments: instead of the expensive loop of test/error, we can take advantage of a numerical model. However, 
this expensive loop can also be implemented with a time-consuming model: the realistic try is simply replaced by its 
numerical equivalent. We perform a plethora of standard finite element computations depending on the set of parameters 
under consideration. These results are then stored in a kind of database.

To circumvent this issue, we benefit from the ability of the PGD to deal with extra-coordinates. That way, we are able 
to build a multi-parametric chart in a single computation, providing the solution for any value of the parameters in given 
domains, instead of running a computation for each possible combination.

For instance, we can construct a multi-parametric solution giving the temperature at any point in the domain (x, z), for 
any power of the source Pw and for any laying velocity v , i.e. u = u (x, z, Pw, v).

Within the PGD framework the separated representation reads

u(x, z, Pw, v) ≈
N∑

i=1

Xi(x) · Zi(z) ·Pi(Pw) · Vi(v) (6)

Denoting by un the rank-n solution, the approximation un+1 results from

(Xn+1(x), Zn+1(z),Pn+1(Pw),Vn+1(v)) = argmin ‖Lh (un + X(x) · Z(z) ·P(Pw) · V(v)) − f ‖ (7)

(X,Z ,P,V)
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Fig. 6. New domain of study.

Table 2
Mapping table.

Matrix Integral Description

K
u

∫
�

K∇u · ∇u� dω Stiffness matrix for u

A
u ρC p

∫
�

V · ∇uu� dω Convection term matrix for u

B
up
P

∫
�P

up� dγ Coupling matrix on �P

K
p

∫
�

K∇p · ∇p� dω Stiffness matrix for p

A
p ρC p

∫
�

V · ∇pp� dω Convection term matrix for p

B
p
O ρC p v

∫
�O

pp� dγ Boundary condition on �O for p

B
p
P ud

∫
�P

ud p� dγ Right hand side term for p

where Lh is the discretised operator from Eq. (2). The enrichment is computed using a fixed-point algorithm, where the 
minimisation of the above expression is carried out in turn on each of the four functions as previously described. The 
interested reader can refer to the primer [24] for the details on the separated representation constructor.

If one is interested by ensuring the target temperature uopt at the hottest point (xopt, zopt) (which depends on the process 
parameters and can be determined by post-processing the PGD result), it suffices to extract from u(x, z, Pw, v) the following 
parametric solutions:

u
(
x = xopt, z = zopt, Pw, v

)
(8)

Fig. 4 depicts u(Pw, v), that is, the highest temperature, as a function of the heating power and the line velocity.
As soon as the target temperature uopt is selected, it suffices extracting from u(Pw, v) the curve u(Pw, v) = uopt, which 

corresponds to an isothermal curve.
Such static parametric solutions can be used for controlling transient regimes. We consider the typical velocity–time 

profile shown in Fig. 5 (blue curve), and we want to adjust the laser power in order to ensure a constant target temperature 
uopt = 400 K. Using the parametric solution u(Pw, v), we get an ideal power profile depicted by the red curve.

To check the efficiency of our method, this varying heat source is then used within a transient solver. The temperature 
at the point of interest (xopt, zopt) is represented by the green curve.

Thus, despite the fact of using a parametric solution computed under the stationary constraint, the control seems quite 
good because, when considering both inputs (the laser power and the line velocity), the solution to the thermal problem 
computed using a transient solver (green curve) remains very close to the target temperature.

We also showed in a former work how to improve these results using transient charts [15], especially when acceleration 
is quite important.

5. Setting up the optimal system

Another way to control the AFP process is to use optimal control theory. Within the AFP process, a heat flux provided 
by a laser melts the thermoplastic. The difficulty consists in determining the best power of the laser to reach an optimal 
temperature to melt the thermoplastic enough whilst avoiding degrading it.

Thus we consider the following cost-function J to be minimised, since the flux is applied only on �P , part of the 
boundary
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Table 3
Solving the state equation and the control system.

Input Output

Solving convection–diffusion equation (1), providing the parameter Pw

Solving optimal control system (25) providing the command cost parameter α

Table 4
Sets of parameters used for control.

Simulation V
[
m s−1

]
α h [m]

0 10−3 1 × 10−9 0.01
1 10−2 1 × 10−9 0.003
2 10−1 1 × 10−12 0.0015
3 1 1 × 10−12 0.0005

J (u,�) = 1

2

∫
�P

(u − ud)
2 + α�2 dγ (9)

where α is the command cost parameter. In addition, u and � are linked through the next state convection–diffusion 
equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−div (K∇u) + ρC pV · ∇u = 0 in �

u = 0 on �D

K∇u · �n = 0 on �N

K∇u · �n = � on �P

(10)

That way � is used as control and we want to reach ud on boundary �P . The domain of study is depicted in Fig. 2.
Denoting by p the adjoint parameter, the corresponding Lagrangian writes ([25])

L (u,�, p) = J (u,�) +
∫

p
(−div (K∇u) + ρC pV · ∇u

)
dω (11)
�
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Fig. 7. Temperature on �P .

Applying the Green–Ostrogradski’s theorem, we get∫
�

p (−div (K∇u)) dω =
∫
�

∇pK∇u dω −
∫
�

pK∇u · �n dγ

=
∫
�

u (−divK∇p) dω +
∫
�

uK∇p · �n dγ −
∫
�

pK∇u · �n dγ

=
∫
�

u (−divK∇p) dω +
∫

�\�D

uK∇p · �n dγ −
∫
�D

pK∇u · �n dγ −
∫
�P

p�dγ

ρC p

∫
�

pV · ∇u dω = −ρC p

∫
�

u∇p · V dω + ρC p

∫
�

puV · �n dγ

= −ρC p

∫
�

u∇p · V dω − ρC p v

∫
�O

pu dγ

Due to this last equation, we have to split the boundary �N as depicted in Fig. 6, where we introduce the new bound-
ary �O .

To find a stationary point of the Lagrangian, we set

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂uL (u,�, p) = 0

∂�L (u,�, p) = 0

∂pL (u,�, p) = 0

(12)

(13)

(14)
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Fig. 8. Flux on �P .

By definition, ∂uL (u,�, p) is written as lim
λ→0

1
λ

(L (u + λδu,�, p) −L (u,�, p)), for any δu. Thus

∂uL (u,�, p) =
∫
�

δu (−div (K∇p)) dω − ρC p

∫
�

δu∇p · V dω

+
∫

�\�D

δuK∇p · �n dγ −
∫
�D

pK∇δu · �n dγ − ρC p v

∫
�O

pδu dγ +
∫
�P

(u − ud) δu dγ (15)

Since this equation has to verify ∂uL (u,�, p) = 0 for any δu , with different assumptions on this last term, it is possible 
to retrieve a strong formulation on p:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−div (K∇p) − ρC pV · ∇p = 0 in �

p = 0 on �D

K∇p · �n = 0 on �N

K∇p · �n = ρC p vp on �O

K∇u · �n = − (u − ud) on �P

(16)

Similarly,

∂�L (u,�, p) = lim
λ→0

1

λ
(L (u,� + λδ�, p) −L (u,�, p)) , ∀δ�

=
∫
�P

(α� − p) δ�dγ (17)

which leads to

p = α� on �P (18)
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Table 5
Summary of key values.

Field Simulation

0 1 2 3

v
[
m s−1

]
0.001 0.01 0.1 1

Pw [W] 600 1897 6000 18970
h [m] 0.01 0.003 0.0015 0.0005

Reference – K-FEM
Umax [K] 371.13 372.28 372.14 371.77
�max [W] 88495.57 280235.99 884955.75 2802359.88

Ctrl – K-FEM
Umax [K] (εU [%]) 371.12 (0.003) 372.28 (0) 372.14 (0) 371.77 (0)
�max [W] (ε� [%]) 88494.46 (0.001) 280233.1 (0.001) 884955.95 (0) 2805516.8 (0.113)

Ctrl – K-FEM Uzawa
iterations Uzawa 20 50 60 60
Umax [K] (εU [%]) 371.27 (0.038) 371.39 (0.239) 374.43 (0.615) 369.19 (0.694)
�max [W] (ε� [%]) 88496.45 (0.001) 278023.92 (0.789) 864382.42 (2.325) 2762923.79 (1.407)

Ctrl – PGD Galerkin
Umax [K] (εU [%]) 371.12 (0.003) 372.53 (0.067) 372.14 (0) 1459.59 (292.606)
�max [W] (ε� [%]) 88490.81 (0.005) 290787.3 (3.765) 886127.75 (0.132) 1108779311.18 (39465.9)

Ctrl – PGD Galerkin Uzawa
iterations Uzawa 20 50 60 60
Umax [K] (εU [%]) 371.72 (0.159) 373.59 (0.352) 403.53 (8.435) 348.57 (6.24)
�max [W] (ε� [%]) 89022.12 (0.595) 278998.68 (0.442) 858910.0 (2.943) 2396624.61 (14.478)

Ctrl – PGD IMR
iterations IMR 50 50 50 50
Umax [K] (εU [%]) 371.13 (0) 369.54 (0.736) 372.13 (0.003) 371.77 (0)
�max [W] (ε� [%]) 333.69 (99.623) 63.17 (99.977) 38.54 (99.996) 9.77 (100)

Ctrl – PGD IMR Uzawa
iterations Uzawa 20 50 60 60
iterations IMR 50 50 50 50
Umax [K] (εU [%]) 371.43 (0.081) 372.2 (0.021) 374.4 (0.607) 368.76 (0.81)
�max [W] (ε� [%]) 88560.92 (0.074) 278838.63 (0.499) 864410.58 (2.322) 2763309.57 (1.393)

Ctrl – PGD IMR-P
iterations IMR 50 50 50 50
Umax [K] (εU [%]) 370.9 (0.062) 370.31 (0.529) 371.76 (0.102) 368.61 (0.85)
�max [W] (ε� [%]) 88466.35 (0.033) 278822.02 (0.505) 878749.58 (0.701) 2734782.95 (2.411)

Lastly, writing the partial derivative of the Lagrangian according to p and setting it to 0 leads to the original state 
convection–diffusion equation (10).

Therefore, gathering all these equations gives the non-linear optimality system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div (K∇u) + ρC pV · ∇u = 0 in � (a)

−div (K∇p) − ρC pV · ∇p = 0 in � (b)

p = α� on �P (c)

u = p = 0 on �D (d)

K∇u · �n = K∇p · �n = 0 on �N (e)

K∇u · �n = 0 on �O (f)

K∇p · �n = ρC p vp on �O (g)

K∇u · �n = � on �P (h)

K∇p · �n = − (u − ud) on �P (i)

(19)

The interested reader can find more details in [25].
Given test-functions u� and p� , the weak form of system (19) above reads⎧⎪⎨

⎪⎩
∫
�

K∇u · ∇u� dω + ρC p
∫
�

V · ∇uu� dω − ∫
�P

1
α pu� dγ = 0 ∀u�∫

�
K∇p · ∇p� dω − ρC p

∫
�

V · ∇pp� dω + ∫
�P

up� dγ

−ρC p v
∫

pp� dγ = ∫
ud p� dγ ∀p�

(20)
�O �P
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Fig. 9. Temperature on �P with Uzawa.

In Eq. (20), fields u and p are coupled. The computation of such a problem can be achieved using mixed formulation, 
within a standard FEM as well as in the PGD framework as described thereafter.

The discrete form of the state variable u (x, z) and the adjoint parameter p (x, z) are expressed in tensor product form

U =
∞∑
i

U i
x ⊗ U i

z and P =
∞∑
i

P i
x ⊗ P i

z (21)

The vector Ψ, which brings together nodal values of u and p, takes the form

Ψ=
[

U
P

]
=

∞∑
i

[
U i

x ⊗ U i
z

P i
x ⊗ P i

z

]
(22)

The discretised weak form of Eq. (19) is written Ψ�ᵀAΨ =Ψ�ᵀB, with the test function defined by

Ψ� =
[

U �
x ⊗ U z + Ux ⊗ U �

z
P �

x ⊗ P z + P x ⊗ P �
z

]
(23)

Tensors A and B read

A =
[
K

u +A
u −1

α B
up
P

B
up
P K

p −A
p −B

p
O

]
and B =

[
0

B
p
P ud

]
(24)

where the elements of these tensors are defined in Table 2.
However, as we really want to reach the desired state on �P , we have to set α, the command cost parameter, at a very 

low value (of the order 1 × 10−10, depending on the velocity). Consequently, tensor A is highly non-symmetric.
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Fig. 10. Flux on �P with Uzawa.

In order to retrieve the classical form of the saddle point problem, we introduce ψ = −p
α , leading to the weak form⎧⎪⎨

⎪⎩
∫
�

K∇u · ∇u� dω + ρC p
∫
�

V · ∇uu� dω + ∫
�P

ψu� dγ = 0 ∀u�

−α
∫
�

K∇ψ · ∇ψ� dω + αρC p
∫
�

V · ∇ψψ� dω + ∫
�P

uψ� dγ

+αρC p v
∫
�O

ψψ� dγ = ∫
�P

udψ
� dγ ∀ψ�

(25)

Adapting the integrals definitions in Table 2, this system can be written in the discretised form

[
U �ᵀ ψ�ᵀ ][

K
u +A

u
B

uψ
P

B
uψ
P −α

(
K

ψ −A
ψ −B

ψ
O

)][
U
ψ

]
= [

U �ᵀ ψ�ᵀ ][
0

B
ψ
P ud

]
(26)

In what follows, tensors A and B and vector Ψ are defined from this Eq. (26).
We use this last formulation to solve Eq. (19) with both K-FEM and PGD, for the four considered simulations.
In addition, we tried the Ideal minimal residual-based proper generalized decomposition (IMR) introduced in [26,27]. 

This solver computes the solution to AΨ = B iteratively, through the system given in Eq. (27).{
AAᵀ y = B − AΨk

Ψk+1 = Ψk + Aᵀ y
(27)

Let us recall that � is initially provided as an input of the K-FEM solver and leads to reference solutions. From these 
results, we extract the temperature on boundary �P defining the desired state ud in Eq. (25).

Using these techniques, we solve Eq. (19) in order to obtain, not only the temperature field, but also the required flux �.
This is illustrated in Table 3. On every temperature and flux plots, the abscissa corresponds to the boundary �P .
Moreover, Pw is no longer an input parameter: the four simulations take their parameters in Table 4, where the indices 

of simulations refer to the same speed and height as in Table 1.
We gather in Fig. 7 (respectively Fig. 8) the solutions (resp. the fluxes) on boundary �P for each considered simulation.
We report in Table 5 some key values compared to references. In this table, fields εU and ε� give the relative errors on 

the maximum temperature and maximum power, expressed in percent and computed as
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Fig. 11. Temperature on �P with modified IMR.

εU =
∣∣U K-FEM

max − Umax
∣∣

U K-FEM
max

; ε� =
∣∣�K-FEM

max − �max
∣∣

�K-FEM
max

(28)

As we can see, the PGD algorithm does not provide the relevant solution, at least for the computed flux, when convection 
increases. Actually, the optimality system leads to the right temperature on boundary �P , but the needed heat flux to reach 
it is far away from the reference one.

The IMR solutions provide the right temperature on boundary �P (corresponding to the desired state ud). However, the 
required fluxes are very far from the reference ones, even at low speed.

6. Unmixing the optimality system

As seen previously, applying the PGD framework on the optimality system (19) can produce weird results, not only 
because of the value of velocity, but also due to the command cost parameter.

In this section, we propose to solve this system uncoupling its equations. For this purpose, we use Uzawa’s technique 
[28,29].

Given an initial guess ψ(0) for ψ , Uzawa’s method consists, in our case, of the following coupled iteration:{(
K

u +A
u
)

u(k+1) = B
uψ
P ψ(k)

ψ(k+1) = ψ(k) + ω
(
B

uψ
P u(k+1) − α

(
K

ψ −A
ψ −B

ψ
O

)
p(k) − ud

) (29)

where ω > 0 is a relaxation parameter.
This coupled iteration is computed within a fixed-point loop, each field u and ψ being solved by PGD.
As in the previous section, we gather in Fig. 9 (respectively Fig. 10) the solutions (resp. the flux) on boundary �P for 

each considered speed, computed with any of the methods (excepted with the PGD applied on the optimality system).
Table 5 summarises the previous simulations, collecting some key values.
As we can see, the Uzawa’s technique drastically improves the results, even if there is no perfect match with the reference 

solutions at the higher speed. In addition, this method increases the computational cost, since it uses an extra loop, which 
is quite prohibiting coupled with the IMR formulation. For instance, instead of 50 IMR iterations, we need these 50 steps 
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Fig. 12. Flux on �P with modified IMR.

within every 20 Uzawa’s iterations. As we need approximately two minutes to compute about thirty PGD modes, this PGD 
IMR Uzawa solver takes 50 × 20 × 2 min ≈ 33 h, while the PGD Uzawa solver leads to the solution in less than one hour.

7. Modifying the IMR method

We have seen in the previous results that the IMR algorithm is not usable here, since it requires the computation of 
AAᵀ , which is ill-conditioned because of the particularly low value of the command cost parameter α.

We propose here an adaptation of this technique, called IMR-P for “preconditioner”. Actually, instead of solving{
AAᵀ y = B − AΨk

Ψk+1 = Ψk + Aᵀ y
(30)

we now write{
ÃÃᵀ y = B − AΨk

Ψk+1 = Ψk + Ãᵀ y
(31)

where Ã is an “approximation” of A. In this paper, we solve Eq. (31) with

Ã =
[
K

u +A
u 0

0 −βMψ

]
(32)

M
ψ being the mass matrix on ψ and β = 100 a relaxation parameter ensuring the convergence of the algorithm.
Figs. 11 and 12 show the temperatures and the fluxes computed on boundary �P for each considered simulation.
Thus, this technique avoids the use of Uzawa’s loop and its cost, whilst providing good results compared to the reference. 

Moreover, with the IMR formulation, there is no link between the number of iterations needed and the velocity of the heat 
source.
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8. Conclusion

This paper shows that it is possible to solve an optimal problem with the so-called Proper Generalised Decomposition, 
not directly, but through a kind of relaxation method, leading to a computational extra cost. This drawback can be avoided 
by slightly modifying the operator in the Ideal minimal residual-based proper generalized decomposition.

Future work will be the exploration of other approximations of tensor A in the writing of the IMR-P method. We plan, for 
instance, to use the nearest Kronecker product, since this technique allows the reduction of the operators in the expression 
of A, leading to a theoretical speed up in the PGD computation.

Moreover, for now the objective function is simply taken as a temperature profile within the heated zone. It is clear that 
this function has to take into account the physics about reticulation of the composite, as we aim to deal with the in situ
consolidation.
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