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Model reduction techniques such as Proper Generalized Decomposition (PGD) are decision-
making tools that are about to revolutionize many domains. Unfortunately, their compu-
tation is still problematic for problems involving many parameters, for which one has to 
face the “curse of dimensionality”. An answer to this challenge is given in solid mechanics 
by the so-called “parameter-multiscale PGD”, which is based on Saint-Venant’s principle. 
In this article, a model problem composed of up to a thousand parameters is presented, 
showing that the method is able to overcome the “curse of dimensionality”.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Les modèles réduits, en particulier ceux basés sur la Proper Generalized Decomposition (PGD) 
sont des outils de conception qui s’apprêtent à révolutionner la simulation numérique. Mal-
heureusement, pour les problèmes à grand nombre de paramètres, la « malédiction de la 
dimensionnalité » semble être une limitation majeure. Nous proposons, avec la parameter-
multiscale PGD, une solution à ce problème basée sur le principe de Saint-Venant. Un cas 
test comprenant jusqu’à mille paramètres est présenté dans cet article et prouve que la 
méthode permet bien de s’affranchir de la « malédiction de la dimensionnalité ».

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Numerical simulation has made a forceful entry into design and analysis offices. This revolution, which is anything but 
complete, has entered a new stage, called simulation-driven “robust” design, and leads to a major scientific challenge: sim-
ulations should be performed in quasi real time. The key is a new generation of reduced-order methods that comprises 
essentially the Proper Orthogonal Decomposition (POD), the Proper Generalized Decomposition (PGD), and the Reduced-
Basis Method (RB), the basics and recent developments of which are given in [1]. Problems that must be solved may involve 
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a very high number of degrees of freedom, with multiple scales or interactions between several physics and can be as-
sociated with variable or uncertain parameters. Model reduction methods, together with the notions of offline and online 
calculations, also open the way to new approaches where simulation and analysis of structures can be carried out almost in 
real time.

This work is based on the PGD, which was introduced in [2,3] for the treatment of nonlinear time-dependent problems 
in solid mechanics. Many developments have been made over the last thirty years: multiscale, multiphysics, stochastic 
or non-stochastic parameters, acoustics, large displacements and deformations... In [4], the interested reader can find a 
synthesis of most of the developments carried out in Cachan, where the LATIN method plays a central role. A number 
of tools are now mature and have been applied to industrial cases and then, are competitors of classical computational 
methods (see book [5]). The PGD not only makes it possible to construct reduced models that can be used in real time, but 
it also reduces drastically the whole calculation time in many situations. However, a major limitation is still the number of 
parameters that can be involved (no more than a dozen, as it will be discussed in the following). This paper starts with a 
brief description of the classical PGD, highlighting its limitations for problems of high dimension.

Several attempts have been made to solve problems with a large number of parameters. For example, enhancements can 
be introduced by iterative solvers with conditioner [6] or more complex approximations of the data structure. The PGD uses 
the so-called separated variable representation, or canonical decomposition, but other compressed high dimensional field 
descriptions has been introduced: Tucker tensors, Tensor Train format or Hierarchical Tucker format [7–11]. However, the 
generic formulation of those tools can be a limitation for our applications.

On the contrary, we develop in this paper a physically based approximation introduced in [12,13]. Our proposal, named 
“parameter-multiscale” PGD is built on the Saint-Venant Principle, which works for many models in Physics. This “princi-
ple” highlights two different levels of parametric influence, which drives us to introduce a multiscale description of the 
parameters and to separate a “macro” and a “micro” scale, as it is classically done for space or time [14]. To implement this 
vision, a completely discontinuous spatial approximation is needed. Thus, we use the Weak-Trefftz Discontinuous Method 
introduced in [15] and applied in [16] for the calculation of “medium frequency” phenomena. In this paper, we first recall 
the basics of the parameter-multiscale PGD. Then, new developments are introduced, the main one being the computation 
of the algorithm on a 3D problem up to the second iteration, which leads to very small errors. This is done for problems 
with more than a thousand parameters, which shows that the method is able to overcome the “curse of dimensionality”. 
Additional results put forward the capability and the limits of the parameter-multiscale PGD for solving problems with 
numerous parameters.

2. Model problem

One considers an elastic media that occupies the domain � ⊂ R
3 divided into N subdomains or elements �E , E ∈ E. 

The parameter μE is associated with the rigidity of �E and, for the sake of simplicity, we consider that μE is a scalar 
belonging to [−1/2; 1/2]. Let us introduce μ ≡ {μE }E∈E , the corresponding space being �μ . Note that, for an isentropic 
material, the maximum number of independent parameters per subdomain or element is 2. After discretization, any spatial 
field is approximated by N degrees of freedom, and the problem to solve can be written as:

Find X(μ) ∈ X where X :
{

�μ → U = R
N

μ → X(μ)
such that:

∀μ ∈ �μ A(μ)X(μ) = F d(μ)

(1)

where A is a linear positive definite operator depending on μ. F d is a given loading that could also depend on μ, but which 
will be considered constant for the sake of simplicity.

Fig. 1 shows an illustration of the model problem. This is a cube submitted to a uniaxial traction displacement, the 
opposite face sliding freely along a fixed surface. The parameters μ are proportional to the local Young modulus and could 
be interpreted as damage intensity.

3. The standard PGD

The standard parameter PGD is described in [17]. For practical details, the reader can refer to [1]. In this method, the 
“curse of dimensionality” is bypassed using a separated variable representation (2):

X(μ) = X(μ1, . . . ,μN) ≈ X M(μ1, . . . ,μN) =
M∑

j=1

X̃
j ∏

E∈E

g j
E(μE) (2)

where M is the number of modes of the approximation, X̃
j

a spatial vector and the g j
E are functions of only one parame-

ter μE .
At each iteration, a greedy procedure enriches the solution with one new mode, which is computed using a fixed-point 

algorithm, for example. The convergence of the method is illustrated in Fig. 2 for three different test cases, with respectively 
8, 27 (as in Fig. 1), and 64 parameters, using a normalized residual as an error indicator:
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Fig. 1. Model problem with 27 parameters: particular solution and highlighting of a subdomain.

Fig. 2. Convergence curve of the classical PGD for three problems with different numbers of parameters.

EM = |||A X M − F d|||
|||F d|||

with ||| • |||2 =
∫

�μ

•T A0−1 • dμ

where A0 is the value of the operator A associated with the average value of the parameters. Such an indicator will describe 
only the quality of the PGD. Other sources of error such as the FE approximation will not be taken into account.

Convergence cannot be obtained in a reasonable number of iterations when the number of parameters is more than 30, 
and a new approach must be introduced.

4. The parameter-multiscale PGD – physical analysis

First, we analyze the impact of the parameters on the solution. Let us recall the parametric problem to be solved:

A(μ)X(μ) = F d

Let us introduce A0 = A(μ
av

), the operator associated with the average value of the parameters (with the chosen definition 
of μ, we have: μ

av
= 0 = {0, 0, 0, . . . }), and let us suppose, for the sake of simplicity, that F d does not depend on μ. One 

has:

A = A0[ 1 − (1 − A0−1
A)︸ ︷︷ ︸

�

]

We set X0 = A0−1
F d . Using Neumann series, the solution can be written as:

X(μ) ≈ X0 + �X0︸︷︷︸
X (μ)

+�2 X0︸ ︷︷ ︸
X (μ)

+· · · (3)
1 2
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where X1 is linear with respect to μ, and X2 quadratic with respect to μ. For most of the industrial applications, only a few 
terms of the development (3) will give a good approximation and then, the “curse of dimensionality” disappears. This is a 
consequence of the physical origin of the operator A, which acts as a link between parameters. Let us explain this property 
in details.

On each subdomain �E , we can separate the constant and parametric dependency on μE and suppose without loss of 
generality that AE depends linearly on μE , which can be written as:

AE = A0
E + μE AE

and then

A = A
E∈E

AE

where AE∈E corresponds to the assembly operation in the finite element context. We introduce the mask operator IE , 
allowing us to compute the global spatial extension V of the local field V E through the relation V = IE V E , which is equal 
to zero everywhere except on �E . One can write: A = AE∈E AE = ∑

E∈E IE AE IT
E . It follows:

X1(μ) = −A0−1

[∑
E∈E

μE IE AE IT
E X0

]
=

∑
E∈E

−μE A0−1
IE

[
AE X0,E

]︸ ︷︷ ︸
Z E

The term IE Z E is associated with a self-equilibrated stress over �E . Therefore, from Saint-Venant’s Principle, the solution 
is localized in the neighborhood of the subdomain �E , essentially over the subdomains sharing a common point with �E

denoted as CE . Let us set:

Z 1,E = A0−1
IE Z E

which can be seen as negligible over the complement of CE . Let us define Z 1,E |CE , the restriction of Z 1,E over CE , we have:

Z 1,E 	 ICE Z 1,E |CE

and X1(μ) = − 
∑

E∈E μE Z 1,E ; X1 is then linear with respect to μ and Z 1,E is localized over the neighborhood CE of �E . A 
similar property, developed in [13], holds for X2:

X2(μ) 	
∑
E∈E

μ2
E Z 2,E +

∑
E∈E

∑
E ′∈CE
E ′ �=E

μEμE ′ Z 2,E E ′

It follows from the Saint-Venant principle that the quadratic term of X 2(μ) is such that Z 2,E is in practice localized over CE . 
The second term is linear with respect to each parameter.

The parameter-multiscale PGD that we propose is based on these properties. Thus we introduce two scales, “micro” and 
“macro”, to describe the parameter space �μ . The new representation that is proposed is:

X E(μ) =
N∑

i=1

X̃
(i)
E

∏
E ′′ /∈CE

f M(i)
E ′′ (μE ′′)

∏
E ′∈CE

gm(i)
E E ′ (μE ′) (4)

where f M and gm are respectively “macro” and “micro” functions. It is essential to note that this description is given 
independently on each subdomain �E . CE denotes a chosen neighborhood of �E defining the “micro” impact in space 
of the parameter μE . For example, one can take the elements having a common point with �E (i.e. CE = CE ), but other 
solutions have been tested in Section 6. Here, we will choose a linear discretization of the “macro” functions f M

E ′′ , and thus 
consider only their value on two points, μE ′′ = {±1/2}.

The main difficulty of such a representation is the discontinuity of X(μ) from one subdomain to another. To handle 
discontinuous displacements, the solver we have proposed is the so-called Weak-Trefftz Discontinuous Galerkin method 
(WTDG) introduced in [15] and extended to quasi-static loadings in [12] for the spatial discretization of our problem.

5. The parameter-multiscale PGD – computation

We are looking for the solution to (1), applied to the model problem of Section 2. The chosen parameters μE are 
associated with the stiffness of the material on the subdomain �E . As an example, we can suppose that the stiffness matrix 
K E coming from the Hooke law depends linearly on μE , and thus can be described by two variables ε and K 0

E :

K E = K 0 (1 + εμE) (5)
E
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Initialization: The “average” problem is solved for the average value μ
av

of the parameters:

A(μ
av

)X0 = F d

On each subdomain �E , a strain ε0
E and a stress σ 0

E = K 0
Eε

0
E are defined. The local residual associated with the constitutive 

relation is:

R0
E = σ 0

E − K Eε
0
E

The local energetic norm of this residual, integrated over the parametric space, is normalized by the average deformation 
energy and will be used as an error indicator:

N 2
E (R0

E) =
∫
�μ

R0
E K 0

E
−1

R0
E dμ

σ 0
E K 0

E
−1

σ 0
E

Iteration n + 1: After n iterations, the current approximated solution will be denoted by Xn , and the residual will be of the 
form:

Rn
E =

NR∑
r=1

f (r)
E (μ)σ (r)

R E

This residual could be compensated on the subdomain by:

ε̃n+1
E = K −1

E Rn
E (6)

However, if we impose this strain brutally on the element �E , the resulting stress field will not be equilibrated at the 
interface. Thus, we construct the operator H E such as:

σ E = H EεE

where the stress σ E comes from the reaction of all the domain when any strain εE is imposed on �E . Now, the residual 
will be perfectly compensated over the element �E by εn+1

E if:

H Eε
n+1
E = K Eε

n+1
E − Rn

E

The influence of H E is very small compared to K E and the strain field given by (6) gives very acceptable results. By adding 
locally the correction εn+1

E to the solution, the strain on the subdomain �E will be exact. However, this local strain will 
also have a global influence XεE

, which can be determined by solving problem (7):⎧⎨⎩ A(μ)
[

Xεn+1
E

− Xn
]

= F

IεE Xεn+1
E

= εn+1
E

(7)

which is as difficult to solve as the initial problem (1) due to the parametric dependency of A . Thus, we will simply compute 
the spatial influence of εn+1

E through the average operator. For each component ε(r)
E , r ∈ {1, . . . , NR} of εn+1

E , we note f ′ (r)
E

the parametric dependency of the component. The simplified problem (8) is solved, with no parametric dependency:

∀r ∈ {1, . . . , NR}
⎧⎨⎩ A0

[
X̃

(r)
εR E

− Xn
]

= F 0

IεE X̃
(r)
εR E

= ε(r)
R E

(8)

Then, the solution can be globally updated:

Xn+1 = Xn +
NR∑

r=1

f ′ (r)
E (μ) X̃

(r)
εR E

To compute a complete iteration, this process is applied to every subdomain �E of the space. This new correction will 
introduce a new residual on each element E ′ �= E:

Rn+1
E ′ = Rn

E ′ +
NR∑

r=1

f ′ (r)
E (μ)(K 0 − K E) X̃

(r)
εR E |εE′

This residual is then developed as a sum of PGD modes of C E -type respecting the formulation (4).
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Table 3
Convergence of the first two steps of the algorithm.

Residual of the average solution Residual after the first iteration Residual after the second iteration

From 125 to 1000 parameters 29% 3.5–3.7% 0.49–0.55%

Fig. 4. Local residual after one complete iteration, cross-section of the cube (1000 parameters).

Table 5
Neighborhood influence: 125 parameters.

Residual of the 
average solution

Residual after 
the first iteration

Residual after the 
second iteration

Chosen representation: micro function on neighboring elements 29% 3.6% 0.78%

Large number of micro functions (2 layers of neighbors) 29% 3.5% 0.49%
CE = E , micro function only on element �E 29% 4.2% 0.82%

6. First results

The procedure of Section 5 has been applied to the model problem (1) with a stiffness variation of 50% around its average 
value, which is equivalent to choose ε = 1 in Eq. (5). In the following problem, each subdomain is associated with a single 
element of the spatial decomposition, but the size of each subdomain could be increased without slowing the convergence 
of the algorithm. The space is meshed using cubic elements and the WTDG method has been applied to discretize the 
spatial fields, using a linear interpolation (WP1 elements).

After initialization, the residual associated with the average solution is equal to 29%, which can be analytically verified. 
Then two full iterations have been computed for a group of problems of different sizes, going from 125 subdomains to 1000. 
For each test case, the method gives sensibly identical global residuals for every number of parameters, as represented in 
Table 3.

As shown in [13], in one dimension, this method is strictly independent of the number of parameters. Fig. 4 shows that 
the repartition of the residuals is quasi-uniform.

Neighboring elements and macro–micro description
The choice of the number of neighboring elements is crucial in term of accuracy. In Fig. 6, we can see that the influence 

of each element is really localized in its neighborhood, as predicted by the Saint-Venant Principle. Several sizes of neighbor-
hoods have been tested, and it appears that the micro description can be limited to one layer of elements without loosing 
too much accuracy. The first “layer” of elements CE is here composed of all the elements sharing a full face with �E and 
�E itself, the second layer of all the elements sharing a face with CE , and so on.

Table 5 shows the order of magnitude of the influence of CE . Even with only one layer of neighboring elements, the 
accuracy keeps the same order of magnitude, which means in this 3D case that no more than seven micro functions are 
required per mode on each element. The representation (4) is well suited to this problem. We can even go further by 
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Fig. 6. Residual associated with the solution to the global problem (8) for a central element.

Table 7
125 parameters: norm of the residual for different levels of parametric variation.

Parametric variation Residual of the 
average solution

Residual after the 
first iteration

Residual after the 
second iteration

10% 5.8% 0.08% 1.5e-3%
50% 29% 3.4% 0.43%
80% 46% 10% 3.8%
95% 55% 23% 14.5%

neglecting completely the influence of the parameter outside the first two layers, and save a lot of computational time with 
no noticeable loss of accuracy.

Influence of the parametric variations
By changing ε in formulation (5), we can change the variation range of the stiffness. As we can see in Table 7, this has 

an important influence on the convergence of the algorithm. For comparatively small variation (10%), the problem is much 
easier to solve than for a 50% variation, and the first iteration would provide a satisfactory solution. On the contrary, for 
very large parametric variations, a reduced model of the solution cannot be built easily. Indeed, the problem becomes very 
difficult to approximate, as it has to take into account fields that are very far from the average solution. For example, in a 
homogeneous cube (μ constant), a stiffness variation of 95% (i.e. ε = 1.9) gives a strain field associated with the minimum 
stiffness (μ = −0.5) 20 times bigger than its average value. This value can be interpreted as a damage value of 0.95 over the 
whole material. Our algorithm cannot approximate such a solution, which is really hard to build as a sum of local variations, 
but the solution for a variation range of 80%, corresponding to a maximum damage value of 0.75, can still be approximated 
with a precision of about 4%. It is important to notice that, to reach this level of precision, the discretization level of the 
micro function must be high enough. For example, to get the results of Table 7, 100 points are used for each micro function. 
With only 20 points, the hardest cases such as the 95% one would not be corrected after the first iteration.

7. Conclusion

The proposed procedure provides an efficient way to compute an approximated solution for mechanical problems with a 
high number of local parameters. This procedure is very general and overcome one major limitation of the classical greedy 
procedures such as the standard PGD: no optimization problem has to be solved on the whole parametric domain. However, 
a large storage space is needed, as on each subdomain a full set of modes is locally defined in the parameter-multiscale 
PGD. The method can be easily extended to more global parameters. This can be done by considering that any parameter, 
local or global, can be discretized spatially on local subdomains.

The parameter-multiscale PGD seems to be a very promising reduced-order modeling technique for problems involving 
a large number of parameters. Further work will be devoted to the derivation of verification tools and to the extension to 
nonlinear problems such as viscoplastic ones. To take into account parameter values involving 0-rigidity elements is also a 
challenging question.
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