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This note studies the statics of a rigid disk placed in a V-shaped groove with frictional 
walls and subjected to gravity and a torque. The two-dimensional equilibrium problem is 
formulated in terms of the angles that contact forces form with the normal to the walls. 
This approach leads to a single trigonometric equation in two variables whose domain is 
determined by Coulomb’s law of friction. The properties of solutions (existence, uniqueness, 
or indeterminacy) as functions of groove angle, friction coefficient and applied torque are 
derived by a simple geometric representation. The results modify some of the conclusions 
by other authors on the same problem.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The problem of the equilibrium of a rigid disk wedged in a V-shaped groove with frictional walls is of interest in the 
study of granular packing, as it represents an elementary model of particle contact. In [1], the disk was considered to be 
held by gravity in an inclined groove; in other studies [2,3], the groove was vertical, but the disk was subjected to more 
general forces. Both configurations lead to an indeterminate problem, because four unknowns (the components of contact 
forces) are involved, but only three equations are available.

For the frictional vertical groove, McNamara et al. [2] gave a detailed analytical discussion of the disk equilibrium under 
the action of gravity and a torque. The presence of indeterminacy was related to the applied forces, the groove angle, and 
the friction coefficient; some of the results of [2] were also summarized by Stamm [4], pp. 12–14.

The aim of this note is to propose a different and possibly simpler treatment of the configuration discussed by McNamara 
et al. [2], by using the xy-components and angles of contact forces rather than their normal/tangential projections. This 
choice leads to a trigonometric equation in two variables, whose solutions are discussed with the aid of a geometrical 
scheme.

2. Equilibrium equations

A homogeneous rigid disk of radius r, center O and weight mg lies in a groove of aperture angle 2θ ; the contacts A
and B between the disk and the groove walls have friction, with static coefficient μ < 1. In addition to gravity, the disk is 
acted upon by a torque M > 0 (torque and angles are taken positive in the counterclockwise direction). Disk equilibrium 
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Fig. 1. Scheme of disk in a groove with frictional walls.

requires that the resultant force and total moment, for instance about O, be zero. In the xy reference system of Fig. 1, the 
components of the contact forces A and B must then obey the linear equations

Ax + Bx = 0 (1a)

A y + B y − mg = 0 (1b)

(−A y + B y)r cos θ + M = 0 (1c)

Equations (1b) and (1c) determine the values of A y and B y ; by introducing the non-dimensional, normalized torque

τ = M

mgr cos θ
(2)

which is positive, since in a groove 0 < θ < π/2, the solution for A y and B y can be written in the form

A y = 1

2
mg(1 + τ ) (3a)

B y = 1

2
mg(1 − τ ) (3b)

The components Ax and Bx appear only in Equation (1a), which yields Bx = −Ax , but the value of Ax cannot be established, 
so that the problem is in general indeterminate. By converting the components of the four-dimensional contact forces used 
in [2] into their xy equivalents, it can be proved that the undetermined coefficient a0 introduced there is the same as 2Ax .

Although the contact forces A and B cannot be uniquely specified, they must still comply with Coulomb’s law of friction. 
This law sets a maximum magnitude γ to the angles of inclination α and β of these forces to the respective wall normal. 
The value μ = tanγ is the static friction coefficient: here the assumption μ < 1 entails γ < π/4. As suggested by Fig. 1, here 
both α and β must be positive or zero. In fact, for negative α (or β) the frictional force A (or B) would produce a moment 
about O with the same sense as M , in contradiction with friction’s oppositional nature (see, e.g., rule #1 in Goodman and 
Warner [5], page 286). Hence Coulomb’s law yields the inequalities:

0 ≤ tanα ≤ μ, 0 ≤ tanβ ≤ μ (4)

We now note that Bx is certainly ≤ 0, since 0 ≤ β ≤ γ (Fig. 1); from equation (1a), we have Ax = −Bx = |Bx|, hence Ax ≥ 0. 
The relation between α, β and the components of A, B then takes the form (see Fig. 1)

tan(θ + α) = A y/Ax (5a)

tan(θ − β) = B y/ |Bx| (5b)

under the assumption that Ax �= 0 (the case Ax = 0 is considered in section 4.1). By taking the ratio of equation (5b) to (5a)
and recalling that |Bx| = Ax , we can eliminate the unknown component Ax . Then we replace in this ratio the respective 
expressions for A y and B y given in (3a) and (3b), and finally get

tan(θ − β)

tan(θ + α)
= k (6)

where

k = 1 − τ

1 + τ
(7)

In equation (6) the contact forces at A and B appear through the angles α and β , and the forces imposed on the disk are 
condensed into the parameter k of (7), with τ given by (2). The absolute value of k is always less than 1; k is near unity 
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Fig. 2. Plot of the functions ξ(u, t) and η(v, t) for given t > 1.

for τ << 1, and approaches −1 for large τ . The correspondence τ -k of (7) is one to one, and is inverted by exchanging τ
and k. The single equation (6) for α and β , associated with the limitations (4) for tanα and tanβ , describes the equilibrium 
conditions of the disk.

3. Solution method

To take into account the restrictions (4) on the variables α and β of equation (6), we first use the angle addition formula 
for the tangent functions appearing there. By setting t = tan θ (t > 0 since θ < π/2), u = tanα, v = tan β , we obtain

tan(θ + α) = t + u

1 − tu
= ξ(u, t) (8a)

tan(θ − β) = t − v

1 + tv
= η(v, t) (8b)

having introduced the functions ξ(u, t) and η(v, t). Thus equation (6), with k given by (7), and the conditions (4) lead to 
this problem in the unknowns u and v

η(v, t)

ξ(u, t)
= k (9a)

0 ≤ u ≤ μ, 0 ≤ v ≤ μ (9b)

For a given t , a couple of values (u, v) that satisfy equation (9a) and the inequalities (9b) can be seen as coordinates of a 
“solution point” in the uv-plane. This geometric view suggests a method to find the related solution set; preliminarily, the 
graphs of ξ(u, t) and η(v, t) are examined.

3.1. The functions ξ(u, t) and η(v, t)

Fig. 2 displays the graph of the functions ξ(u, t) and η(v, t) as defined in equations (8a) and (8b), for a fixed t > 1, in 
the relevant ranges of u, v; the plot for t < 1 is analogous, but with t < 1/t . Both ξ and η are strictly monotone and hence 
invertible functions u and v , respectively; their definition shows that ξ(u, t) = η(−u, t). Equation (5a) defines tan(θ + α) as 
the ratio of two positive quantities, hence ξ(u, t) = tan(θ + α) > 0; therefore, only values of u smaller than 1/t are allowed 
[see (8a) and Fig. 2]. For a given t , the couple of invertible functions ξ(u, t), η(v, t) establishes a one-to-one transformation 
of points in the uv-plane into points of the ξη-plane. Thus, the solution set S to the problem defined by equations (9a)
and (9b) is mapped bijectively to a set Σ in the ξη-plane. The identification of Σ then specifies S , i.e. it establishes the 
existence, non-existence, and indeterminacy of solutions for the original problem; here Σ is identified by simple analytic 
geometry.

3.2. Geometric interpretation

The mapping defined by the functions ξ(u, t), η(v, t) transforms lines parallel to the axes in the uv-plane into lines 
parallel to the ξη-axes, since constant u (or v) implies constant ξ (or η). Thus, the square of side μ in the uv-plane, as 
defined by the inequalities (9b), will in general go into a rectangle R in the ξη-plane (Fig. 3). The square’s vertices at (0, 0)

and (μ, μ) are mapped to those of R at Ω ≡ (t, t) and Q ≡ [ξ(μ, t), η(μ, t)], which are sufficient to specify R . The points 
(if any) of R that obey the condition (9a) η/ξ = k (or, equivalently, that lie on the straight line η = kξ ) constitute the set Σ
mentioned before and correspond to solution points in the uv-plane.

Fig. 3 suggests that, for η(μ, t) ≥ 0, the existence of intersections between the line η = kξ and R can be established by 
comparing k with the slope k2 of the straight line from the origin to Q :
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Fig. 3. Diagram used to characterize the solutions to the equilibrium problem. The hatched rectangle R is the ξη-transform for η(μ, t) > 0 of the square 
0 ≤ u ≤ μ, 0 ≤ v ≤ μ in the uv-plane. When η(μ, t) < 0, R extends down to T . The straight lines from the origin are used to specify the solution set.

k2 = η(μ, t)/ξ(μ, t) (10)

If k > k2, the line η = kξ has a segment in common with R and the problem has an infinite number of solutions, i.e. 
is indeterminate. For k = k2 the intersection occurs only at Q , so that there is a unique solution; for k < k2, there are 
no intersections and hence no solutions. The explicit form of k2 can be given by means of equations (8a) and (8b), with 
u = v = μ, but it is more interesting for later discussions to write out the expression for the corresponding τ = τ2, as 
obtained by inverting the relation (7). With some algebra, we get

τ2 = 1 − k2

1 + k2
= 2μ

1 + μ2
× 1 + t2

2t
(11)

In this expression, we can recognize the sine double-angle formula as a function of the tangent, with t = tan θ and 
μ = tanγ , hence τ2 may be given the alternative form

τ2 = sin(2γ )/ sin(2θ) (12)

For η(μ, t) < 0, R extends below the ξ axis and the appropriate comparison is between k and the slope k3 of the straight 
line from the origin to T (see Fig. 3)

k3 = η(μ, t)/t (13)

4. Equilibrium conditions

Fig. 2 indicates that t and 1/t represent special values of the variables u and v , which are restricted to the interval (0, μ)

(see equation (9b)). Therefore, the comparison of relative magnitudes of t , 1/t and μ is relevant, and leads to three possible 
locations of μ with respect to t and 1/t . Equivalently, t can be compared with μ and 1/μ, also for easier reference to the 
results of McNamara et al. [2]. We recall that t = tan θ gives a measure of the groove’s aperture, which is referred to in the 
heading of the next subsections.

4.1. Large aperture: t > 1/μ

The initial assumption μ < 1 yields in this case t > 1/μ > 1 and the plot of Fig. 2 applies. Moreover, the condition 
t > 1/μ is equivalent to μ > 1/t , but u must be restricted to the interval (0, 1/t) (see section 3.1). For u → 1/t , ξ(u, t)
approaches infinity, and we can write Q ≡ [∞, η(μ, t)], with η(μ, t) > 0, since μ < t (see Fig. 2). In this case, R becomes 
a stripe starting from Ω and extending to +∞, with thickness t − η(μ, t). The definition (10) now yields k2 = 0, and the 
discussion of section 3.2 shows that, for k > 0 (τ < 1), the problem is indeterminate; for k = 0 (τ = 1), it has just one 
solution and for k < 0 (τ > 1) it does not admit solutions.

The unique solution of the equilibrium problem for τ = τ1 = 1 yields a special set of contact forces. Equations (3a) and 
(3b) give A y = mg and B y = 0: we show that Bx = 0 as well. In fact, if Bx �= 0, B would be parallel to the x-axis, hence 
β = θ and v = t; here t > 1/μ > μ, from which v > μ, but this result is in contrast with the condition (9b) v ≤ μ. Therefore, 
Bx = 0 and by (1a) we get Ax = 0, with the conclusion that A = −mg and B = 0: in this case, equilibrium is maintained by 
the contact force at A, which balances both the disk weight and applied torque (see equation (14) of [2]).

4.2. Intermediate aperture: μ ≤ t ≤ 1/μ

In this case, R is the hatched rectangle of Fig. 3, with η(μ, t) > 0 (for t �= μ) and finite ξ(μ, t) (for t �= 1/μ) (see 
equations (8a) and (8b) with u = v = μ). As discussed in section 3.2, for k > k2 (τ < τ2) the problem is indeterminate, for 
k = k2 it has a unique solution and for k < k2 (τ > τ2) is without solutions. When t = μ or t = 1/μ we have η(μ, t) = 0 or 
ξ(μ, t) = ∞, respectively; in either case k2 = 0, τ2 = τ1 = 1 (see equation (11)) and the discussion of section 4.1 applies.
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4.3. Small aperture: t < μ

For t < μ, we have η(μ, t) < 0, finite ξ(μ, t), and R extends below the ξ axis; the solutions behave as in the previous 
section, but with k3 as the discriminating parameter. It is interesting to examine the case k3 ≤ −1, when k can be arbitrarily 
close to −1 and solutions for arbitrarily large τ exist (see comments after equation (7)). Using equations (8b) and (13), we 
obtain

k3 = t − μ

(1 + tμ) t
≤ −1 (14)

which yields

2t/(1 − t2) ≤ μ (15)

In terms of θ and the friction angle γ , this inequality becomes tan(2θ) ≤ tanγ , which leads to the simple relation

2θ ≤ γ (16)

Therefore, equilibrium for arbitrary τ is possible only if the aperture angle 2θ of the groove does not exceed the Coulomb 
friction angle γ of its walls. Since γ < π/4 (μ = tanγ < 1), we see that in any case 2θ must be smaller than π/4. The 
condition (16) of unrestricted disk equilibrium is also found to hold when only one wall the groove has friction [6]. In that 
configuration, there are only three unknown force components and the equilibrium problem is determinate.

5. Discussion and conclusions

Most of the results obtained here agree with those of McNamara et al. [2], as can be recognized by converting the aper-
ture half-angle θ into their slope angle φ = π/2 −θ , and removing the torque normalization of equation (2) by multiplying τ
by the factor mgr cos θ = mgr sin φ. The non-normalized torque is denoted here by τ̄ . Thus, we see that the value τ1 = 1 be-
comes τ̄1 = mgr sin φ, as given in equation (13) of [2], and the expression for τ2 of (11) turns into τ̄2 = mgrμ secφ/(1 +μ2)

(see equation (16) of [2]). The results of sections 4.1 and 4.2 concerning indeterminacy, uniqueness of the solution, or its 
nonexistence are the same as those of [2].

However, for small groove aperture (t < μ, and hence θ < γ ) McNamara et al. [2] found disk equilibrium for any torque, 
whereas here the condition of equilibrium for any τ is the stronger inequality 2θ ≤ γ of equation (16). A possible explana-
tion of this disagreement is given below.

According to the authors of reference [2], when t < μ, the equilibrium is determined by two inequalities, which are 
given in their equations (9a) and (9c), and with the present symbols read

2Ax ≥ mg(1 + τ )/ξ(μ, t) (17a)

2Ax ≥ mg(1 − τ )/η(μ, t) (17b)

These inequalities set a lower bound for a0 = 2Ax and can therefore be satisfied by making 2Ax sufficiently large; this 
argument led to the conclusion that, for t < μ, there is equilibrium for an arbitrary value of the torque τ .

However, 2Ax is also constrained by an upper bound, which must be satisfied for any τ as well. In fact, from equations 
(3a), (5a) and (8a), we get 2Ax = mg(1 + τ )/ξ(u, t); Fig. 2 shows that ξ(u, t) ≥ t , hence 2Ax ≤ mg(1 + τ )/t . By combining 
this result with (17b), we get the condition (1 − τ )/η(μ, t) ≤ (1 + τ )/t , or

η(μ, t)/t ≤ 1 − τ

1 + τ
(18)

because η(μ, t) is negative for t < μ. The inequality (18) will hold for any τ if η(μ, t)/t ≤ −1, since (1 −τ )/(1 +τ ) is always 
larger than −1. The condition η(μ, t)/t ≤ −1 is seen to coincide with equation (14) if η(μ, t) is written explicitly through 
(8b), with v = μ. In summary, when t < μ, the equilibrium condition of [2] departs from that of section 4.3, because in 
that study the proper upper bound to a0 = 2Ax was not added to the lower bounds of (17a) and (17b).

Moreover, according to McNamara et al. [2], if t < μ (i.e. θ < γ ) both static and moving solutions coexist for τ > τ2, 
i.e. it cannot be decided whether the disk is in equilibrium or not. This ambiguous outcome also seems to arise from the 
conclusion that for θ < γ there is equilibrium for any torque. But for γ /2 < θ < γ and sufficiently large τ , the disk cannot 
be in equilibrium, i.e. there is no static solution. Equilibrium exists for any value of τ only for θ ≤ γ /2 (see equation (16)); 
in either range of θ values, the disk state is definite.

This study has provided an analysis of the equilibrium problem for a disk in a groove with frictional walls within the 
framework of the rigid-body model and Coulomb’s law of friction. The use of angles as variables provided a simplification 
of the discussion and led to a geometric method to visualize the existence, uniqueness, or indeterminacy of solutions. By 
this procedure, the reason for some conflicting results obtained by other authors was explained, and a new condition of 
unrestricted equilibrium was given.
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