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In aerospace industries, on-board electronics are carried during flight, and such equipment 
must be qualified to withstand the loads to which they are exposed. In this fashion, the 
knowledge of the different dynamic aspects of excitations and the behavior of structures, 
components and/or acoustic enclosures are crucial to have controlled and performing space 
systems. Passive control techniques using viscoelastic materials (VEM) are widely applied 
and their effects on space systems must be studied aiming to obtain adequate operational 
environments. The effect of damping insertion on the dynamic behavior of a vibro-acoustic 
system is assessed in this work. A coupled structural–acoustic system, composed by a VEM 
coated aluminum panel and an acoustic box, is modeled by Finite Element Method (FEM). 
On the other side, tests are preformed using the KU Leuven facilities to validate the FEM 
model. Numerical vs. experimental comparisons were done and acceptable agreement was 
obtained. On the other side, it was found that sound inside the box reduces due to the 
smaller sound radiation generated by the treated panel.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Expendable launch vehicles (ELV) carry payloads and electronics inside fairings and bays and such equipment must 
withstand the dynamic environment to which they are submitted. During flight, ELV experience loads from acoustic noises 
at lift-off, transonic and maximum dynamic pressure flights as well as vibration due to motors operation up to mechanical 
shocks generated during stage separations. Along the many years developing space systems, one could verify that these 
dynamic loads are characterized as highly intense, random and with large spectral contents. However, it is well known that 
qualification processes of space systems have high costs if intense dynamic levels are required. As a consequence, such an 
intense levels to which on-board equipment are exposed must be suppressed or attenuated.

The knowledge of the different dynamic aspects of excitations and the behavior of structures, components and/or acoustic 
enclosures are crucial to have controlled and performing space systems. Virtual prototyping supported by vibro-acoustic 
solutions is a significant tool to be used on space system developments, due to the proven cost benefits reflected into 
projects. Low-frequency deterministic methods such as Finite Element Methods (FEM) [1] and Boundary Element Methods 
(BEM) [2] have, due to increasing computer speed, been able to run deterministic models to higher and higher frequencies, 
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Fig. 1. Vibro-acoustic system.

while Statistical Energy Analysis (SEA) [3] has become an accepted method for both acoustic and vibration high-frequency 
analysis. One still may highlight mid-frequency methods as Wave Based Method (WBM) [4] and hybrid techniques (e.g., 
FEM/SEA) [5], among others.

The novelty in structures and materials and the increasing complexity of systems require new and more accurate numeri-
cal formulations as well as experimental validation procedures, to study their mechanical characteristics. Although computer 
models have evolved substantially, there are still many open issues, which impair design engineers to fully exploit virtual 
design processes. Nowadays, the demand on numerical simulations is high in the field of Noise and Vibration Harshness 
(NVH), e.g., the numerical modeling of multi-layer trim acoustic material and structural damping, largely used to attenuate 
air- and structure-borne noise. Structural damping insertion using viscoelastic materials (VEM) is a well-known passive con-
trol technique, widely applied in the aerospace industry. On the other side, the use of blankets or poro-elastic materials is 
spread as air-borne noise control technique. However, accounting vibro-acoustic systems, the structural noise radiation can 
be considered as an additional portion, when acoustic responses must be attenuated. In this framework, the effect of VEM 
insertion on the acoustic responses of coupled vibro-acoustic systems seems to be an appropriate assessment.

There is a significant motivation in the space industry to study sandwich structures (e.g., homogeneous panel + con-
strained VEM), since these systems present good NVH controlling performances as well as cost-effective mounting designs. 
This work focuses on the vibro-acoustic modeling of the KU Leuven Sound Box and an aluminum homogeneous plate treated 
with a VEM damper. In order to well characterize the frequency-dependent shear behavior of the VEM compound, measure-
ment procedures using Dynamic Mechanical Analysis (DMA) and Differential Scanning Calorimetry (DSC) tests are applied 
[6]. Since the DMA tests are limited in frequency range, Time–Temperature Superposition Principle (TTSP) is applied aiming 
at building the master curve of the rubber up to 106 Hz and the four parameters constituting the Fractional Derivative 
Model (FDM) are identified from the master curve by using a least square method [7] and accounted in the structural part 
of the FEM vibro-acoustic model.

Two coupled vibro-acoustic FEM models are built: (i) bare panel + sound box and (ii) VEM coated panel + sound 
box. The responses of the structure and the acoustic cavity to a unitary point excitation are computed at selected points 
distributed along the structural and acoustic subsystems. Aiming to validate the numerical models, dynamic tests are per-
formed, by reproducing the same configurations as those modeled by FEM. The structural and acoustic responses are 
measured by accelerometers and microphones at the same geometrical observation points as those generated in the nu-
merical models, being an impact hammer used to excite the system. Numerical vs. experimental comparisons are done and 
good agreement is obtained, despite a slight under-prediction of the structural damping. It is observed that the sound inside 
the sound box cavity reduces, due to the smaller sound radiation generated by the treated panel.

2. Vibro-acoustic modeling using FEM

2.1. FEM/FEM coupled model

In a coupled vibro-acoustic system, the fluid is comprised in a bounded acoustic domain V , of which the boundary 
surface Ωa contains imposed boundary conditions as pressure Ωp , impedance Ωz and velocity Ωv as well as an elastic 
structural surface Ωs(Ωa = Ωs ∪ Ωp ∪ Ωv ∪ ΩZ ), as shows Fig. 1.

FE based models for vibro-acoustic problems are most commonly described in an Eulerian formulation, in which the fluid 
is described by a single scalar function, usually the acoustic pressure, while the structural components are described by a 
displacement vector. The resulting combined FE/FE model in the unknown structural displacements and acoustic pressures 
at the nodes of, respectively, the structural and the acoustic FE meshes are [8,9],([
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where [K c] is the cross-coupling matrix in the coupled stiffness matrix and [−ρ0 K T
c ] is the cross-coupling matrix in the 

coupled mass matrix.
In comparison with a purely structural or purely acoustic FE model, the coupled stiffness and mass matrices are no 

longer symmetrical due to the fact that the force loading of the fluid on the structure is proportional to the pressure, 
resulting in a cross-coupling term Kc in the coupled stiffness matrix, while the force loading of the structure on the fluid is 
proportional to the acceleration, resulting in a cross-coupling term Mc = −ρK T

c in the coupled mass matrix [8,9].
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Fig. 2. (a) Unconstrained, (b) constrained, (c) tuned damper, (d) support damper.

Fig. 3. Free-layer or unconstrained configuration.

2.2. Viscoelastic material

VEM treatments are well established and widespread around different areas as automotive, aerospace and naval, becom-
ing a means of passively controlling structural vibrations and/or noise radiation. The practical use in aerospace industry is 
to apply weight-efficient forms of VEM assemblage configurations as shown in Fig. 2. These materials are constituted by 
long-range molecular order and exhibit a rheological behavior between that of a crystalline solid and a simple liquid [10]. 
Of particular importance is the dependency of both stiffness and damping on frequency and temperature [11].

Unconstrained damping treatments are the simplest form of inserting vibration damping and consist in attaching a VEM 
layer to an elastic structure. The extension and compression of the material under flexural stress from the elastic structure 
causes the cyclic deformation of the VEM. As consequence, the energy transferred to the core layer is dissipated to the 
exterior as heat (Figs. 2a and 3). The dissipative capacity of the VEM is associated with its capacity of storing strain energy. 
In the case of constrained-layer damping arrangement (Fig. 2b), the VEM is constrained between the elastic structure and a 
constraining layer, and shear strain is induced in the VEM during flexural vibrations.

Many researchers have devoted themselves to describe and characterize VEM. Ungar [12] assessed the definition of the 
loss factor in terms of energy quantities, in particular when it applies to composite VEM systems. Bert [10] reviews material 
damping and presents various measures of damping proposed for homogeneous materials. Furthermore, the two-parameter 
Maxwell and Kelvin–Voigt models are described as the starting point for derivations of more realistic models such as the 
Generalized Maxwell model, the Kelvin chain model, the Biot model, and the Fractional Derivative Model.

Structural damping models based on the linear theory of viscoelasticity assumes a relation between stress and strain 
based on the Boltzmann’s principle. Being σi j(t) and εi j(t), respectively, the stress and strain tensors at time t , with ε̇i j(t)
the time derivative of the strain tensor, the stress–strain constitutive equation in time domain can be written as [13]:

σi j(t) = Eijkh(0)εkh(t) +
∞∫

0

Ė i jkh(τ )εkh(t − τ )dτ (2)

where σi j(t) = 0 and ε(t) = 0, for t ≤ 0. Eijkh(t) are called relaxation functions and Eijkh(0) is the initial elasticity tensor. The 
relaxation functions are defined on [0, +∞[, are differentiable with respect to t on [0, +∞[, their derivatives are Ė i jkh(t)
and are assumed to be integrated on [0, +∞[. The relaxation functions can be written as:
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Eijkh(t) = Eijkh(0) +
∞∫

0

Ė i jkh(τ )dτ (3)

Therefore, the limit of Eijkh(t), denoted as Eijkh(∞), is finite as t tends to +∞. The tensor Eijkh(∞) is called the equilibrium 
modulus and corresponds to the usual elastic coefficients of the elastic material for a static deformation (static equilibrium 
state is obtained as t tends to infinity).

If the real functions ei jkh(t) are introduced, such that:

eijkh(t) = 0 if t < 0

eijkh(t) = Ė i jkh(t) if t ≥ 0
(4)

Since ei jkh(t) = 0 for t < 0, one deduces that ei jkh(t) is a causal function. Using equation (4), the equation (2) can be written 
as:

σi j(t) = Eijkh(0)εkh(t) +
∞∫

−∞
eijkh(τ )εkh(t − τ )dτ (5)

Equation (5) describes the most general formulation in the time domain within the framework of the linear theory of 
viscoelasticity. The usual approach of the one-dimensional stress–strain constitutive relationship that consists in modeling 
the equation in time domain by a linear differential equation in σ(t) and ε(t) corresponds to a particular case, which is an 
approximation of the general equation (5).

Several models exist to describe the time (or frequency) dependence of VEM properties. Among them, the Fractional 
Derivative Model (FDM), which describes the frequency-dependent modulus in the broadband rheological behavior of the 
material is described as:

E∗(ω) = Ee + E g(jωρ)α

1 + (jωρ)α
(6)

Ee: rubbery or long time modulus; Eg is the glassy modulus; ρ is the relaxation time, α is a constant related to the peak 
widening of loss factor. These four parameters can be identified from experimental master curves [7].

Therefore, the complex modulus can be expressed in the frequency domain as:

E∗(ω) = E ′(ω) + jE ′′(ω), for uniaxial strain conditions (7a)

G∗(ω) = G ′(ω) + jG ′′(ω), for shear strain conditions (7b)

The loss factor η(ω) may be defined as the non-dimensional quantity relating the imaginary and the real part of the 
complex modulus as:

η(ω) = E ′′(ω)

E ′(ω)
, uniaxial strain (8a)

η(ω) = G ′′(ω)

G ′(ω)
, shear strain (8b)

3. Modeling the vibro-acoustic systems (panels + sound box)

Two coupled models are built: (i) bare panel + sound box cavity (a cabin-like testing environment built to exploit both 
for noise transmission and noise insulation characterization of lightweight materials) and (ii) VEM coated panel + sound 
box cavity. Unitary excitation was applied at the center of the panels and transfer functions (acceleration/force and sound 
pressure level/force) are calculated up to 1,000 Hz. Fig. 4 shows the dimensions of the sound box as well as the set-up of 
the structural assemblage on the box.

3.1. Bare panel + sound box

A vibro-acoustic system, consisting of an aluminum (AL 5754) homogeneous plate of dimensions 0.443 m × 0.617 m ×
0.003 m and the sound box acoustic cavity (Fig. 2) is modeled in COMSOL Multiphysics version 4.3b, using FEM. The 
geometrical coordinates of the sound box is described in Table 1. More detailed descriptions about the KU Leuven-PMA 
Sound Box can be seen in [14]. Table 2 describes the main aluminum characteristics, assigned as structural material, while 
for the acoustic part, one assigned the air at 20 ◦C as material.

At least 10 elements by wavelength were considered to build the FEM vibro-acoustic mesh. The finer mesh option was 
chosen, which yielded 53,759 free tetrahedral elements (minimum and maximum element sizes of 0.0046 and 0.0633 m, 
respectively, giving minimum and maximum analysis frequencies of 5,000 Hz and 12,000 Hz, approximately). The front wall 
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Fig. 4. A sketch of the experimental set-up geometry (dimensions in mm) [12].

Table 1
KU Leuven-PMA Sound Box geometry.

Point Coord. X Coord. Y Coord. Z

1 0 0 0
2 0 0.815 0
3 1.15 0.815 0
4 1.15 0 0
5 0 0.001 0.982
6 0 0.778 0.981
7 1.082 0.783 0.848
8 1.082 0 0.849

Table 2
Al 5754 material characteristics.

Aluminum AL5754

Density 2700 kg/m3

Young’s modulus 70e–9 N/m2

Poisson’s ratio 0.33

of the vibro-acoustic system was modeled, with a symmetrically positioned A2 footprint area window, where the bare panel 
was positioned. The clamped boundary condition was applied at all edges of the aluminum panel, while the walls of the 
sound box were considered as rigid. Figs. 5a and 5b show the generated geometry and the respective FE mesh.

In view of assessing the structural responses, observation points were generated along the structural panel and inside the 
sound box. The coupled modal analysis was calculated to determine the first 200 modes (up to 1,570 Hz, approximately) of 
this vibro-acoustic system. Furthermore, an excitation of 1 N was applied in the middle of the plate, allowing us to calculate 
the transfer functions (acceleration/force and pressure/force) up to 1,000 Hz, in steps of 1 Hz, using the modal superposition 
principle.

3.2. VEM coated panel + sound box

The FDM, described in section 2.2, is used to simulate the VEM insertion on the aluminum homogeneous plate, studied 
as the structural part of a vibro-acoustic system. Before proceeding with the vibro-acoustic modeling, the VEM compound 
added to the aluminum panel must be characterized. In order to well represent the shear modulus of the referred self-
adhesive rubber, Dynamic Mechanical Analysis (DMA) test campaigns were performed and the rubber master curve was 
built. As a consequence, the four FDM parameters to be considered in equation (6) were identified, as described in Table 3. 
Experimental vs. FDM master curves comparison is done and the good correlation verified in Fig. 6 is a fair indication that 
these parameters can represent the VEM shear behavior in the FEM model of the sandwich structure [7].

As a second step, the structural behavior of the sandwich panel (VEM + aluminum panel) was assessed by using FEM 
models, where the FDM parameters (identified by DMA) were considered to model the shear behavior of the constrained 
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Fig. 5. Sandwich panel + KU Leuven-PMA Sound Box.

Fig. 6. Master curves of the self-adhesive synthetic rubber at 20 ◦C fitted by a FDM.

Table 3
FDM parameters.

Relaxed modulus Ge 9.87e–4 Pa
Unrelaxed modulus Gg 6.06e–7 Pa
Relaxation time ρ 9.85e–5 s
Order of derivation α 0.70

VEM layer up to 1,000 Hz, in different panel treatments and boundary conditions. In addition, an extensive experimen-
tal campaign was carried out to validate these pure structural models, in which experimental set-ups were assembled to 
simulate the same numerical model configurations built by FEM. Numerical vs. experimental comparisons were done and, 
despite slight under predictions of damping by the FEM models, good agreement was achieved [7].

The sandwich structure is composed of a homogeneous aluminum panel of dimensions 0.66 m × 0.86 m × 0.003 m, 
coated with a constrained VEM layer over an A2 footprint area (0.42 m × 0.594 m × 0.0015 m), and the damping treatment 
consists of a 1.373-mm-thick VEM layer, constrained by a 127-μm-thick aluminum layer, as shows Fig. 7a. Notice in Fig. 7b 
that 52 holes provide the sandwich panel coupling with a rigid frame and, as consequence, with the sound box cavity, 
where only the coated area (Fig. 7a) is the elastic structural surface in contact with the fluid of the acoustic cavity.

The modeling of sandwich structures is challenging: due to the strong variations of in-plane strains through the thickness 
of the core layer, shell elements cannot be used to model the VEM layer. A classical approach is to consider shell elements 
for the stiff elastic layers (i.e. the base plate and the constraining layer) and solid elements for the core layer of the VEM, 
as depicted in Fig. 8.

The frequency-dependent shear modulus of the VEM layer is described by FDM, whose identified parameters are given 
in Table 3, while a constant Poisson’s ratio ν = 0.45 is assumed and the density of the VEM is 1,100 kg/m3. FDM can be 
introduced in COMSOL through the analytical expression of the complex frequency-dependent shear modulus (Eq. (6)). On 
the other side, the material properties of the AL5754 constituting the base panel and the constraining layer are given in 
Table 2.

The vibro-acoustic system is, therefore, built by clamping the sandwich panel to the sound box. The clamped boundary 
condition has significant impact on the dynamic response of lightweight panels. In such an assemblage configuration, local 
stresses are added to the structure, impacting its behavior. Test campaigns of different configurations of purely structural 
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Fig. 7. Geometry of the sandwich panel.

Fig. 8. Modeling of the sandwich plate.

coated panels were carried out to build a benchmark for lightweight structures numerical validations. Such model valida-
tions have shown that numerical vs. experimental comparisons present disagreements in the natural frequencies of around 
10%, when the A2 footprint area (0.420 × 0.594 m) dimensions are considered in the FE models [7]. A more detailed eval-
uation of the assemblage set up shows that the mounting frame effect on the panel response is not accounted when the 
model of the A2 footprint dimensions panel is considered [14]. In this way, a model updating was done to better represent 
the clamped boundary condition in the panel assemblage configuration. Different panel dimensions were assessed and a 
good updating condition was obtained by increasing the panel geometry to 0.443 × 0.617 m, instead of 0.420 × 0.594 m
and keeping the A2 footprint VEM coated area (0.420 m × 0.594 m).

The acoustic cavity was built up by adopting the sound box geometry (Table 1) and the assigned acoustic environment 
is the air at 20 ◦C (mass density 1.225 kg/m3 and speed of sound 343 m/s). At least ten elements by wavelength were 
considered, and the finer mesh option was chosen, which yielded 53,682 elements (minimum and maximum element sizes 
of 0.00461 and 0.0634 m, respectively), with 83,476 degrees of freedom.

In the same way, as done in section 3.1, the front wall of the vibro-acoustic system was modeled, with a symmetrically 
positioned A2 footprint area window, where the updated sandwich panel was added. The clamping condition was applied 
at all edges of the base plate (the VEM and constraining layer were modeled as free boundary condition), while the walls 
of the sound box were considered as rigid. Fig. 9a shows the vibro-acoustic FEM mesh.

In view of assessing the structural and acoustic responses, observation points were generated along the structural panel 
and inside the cavity of the sound box (Fig. 9b). A point excitation of 1 N was applied in the middle of the panel, allowing 
calculating the transfer functions at the observation points. Frequency response analysis was done up to 1,000 Hz, in steps 
of 1 Hz, using the direct frequency response method.

4. Experimental validation

In order to validate the vibro-acoustic FEM models, an experimental campaign was conducted, where two set-ups were 
built to simulate the numerical models described in sections 3.1 and 3.2. The bare and sandwich panels were attached to 
the front wall of the KU Leuven-PMA Sound Box. Afterwards, the attachment was done by positioning the structural set 
(front wall + panel + frame) close to the open part of the Sound Box. Notice that the panel geometry in contact with the 
inner cavity is nominally identical to a width of 0.420 m and a length of 0.594 m, for an A2 footprint area. Accelerometers 
and microphones were installed at the same positions as those observation points generated in the numerical models. The 
system excitation, in the middle of the structural panel, was provided by an impact hammer. This hammer is equipped with 
a force transducer, which measured the transient input signal. Fig. 10a shows the base plate and the coated A2 footprint 
area, while Fig. 10b shows the referred sandwich panel attached to the KU Leuven-PMA Sound Box.
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Fig. 9. Vibro-acoustic mesh and observation points.

Fig. 10. Sandwich structure (A2 footprint area) and vibro-acoustic system.

The panels were instrumented with five accelerometers (Fig. 11a), which captured the structural responses and allowed 
calculating the transfer functions between structural responses and excitation. For the acoustic part, the inner cavity re-
sponses were gathered by ten microphones, installed as shown in Fig. 11b. Both, structural and acoustic transfer functions, 
were measured up to 1,000 Hz.

5. Analyses and results

In the sections below, the structural and acoustic responses for numerical and experimental models are discussed. Trans-
fer functions ((g/N) for structural part and (dB/N) for acoustic part) are presented and the damping insertion effect is 
assessed by comparing the structural and acoustic responses of the bare and coated panel configurations. Model validations 
are also done by numerical vs. experimental comparisons.

5.1. Bare panel + sound box

Uncoupled and coupled numerical modal analyses were done to investigate the vibro-acoustic behavior of the set bare 
panel + sound box. The coupled modal analysis shows that additional modes corresponding to the coupling of the elastic 
part (panel) are present in this model. The simple frequency comparisons with pure (uncoupled) structural and acoustic 
modal analyses show the influence of the coupling in the panel as well as the cavity responses.

Table 4 presents the eight first frequencies calculated for purely structural, purely acoustic and coupled modal analyses. It 
is worthy to highlight that differences in the structural natural frequencies of the coupled vibro-acoustic model are noticed, 
in comparison with a simple structural model, due to the coupling effect. As an example, see that the first structural bending 
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Fig. 11. Structural (accelerometers) and acoustic (microphones) sensors positions.

Table 4
Purely structural vs. purely acoustic vs. coupled modal analyses.

Frequency (Hz)

Structural modal analysis Acoustic modal analysis Coupled modal analysis

1 106.03 1.32e–5 2.15e–5
2 172.43 152.29 103.55
3 253.36 186.95 152.85
4 282.70 213.74 167.97
5 314.70 242.22 185.72
6 418.61 262.41 212.27
7 433.77 284.08 243.15
8 476.60 307.42 245.84

Fig. 12. Structural and acoustic modes.

mode is found at 106.03 Hz for the uncoupled analysis, while for the coupled modal analysis this first bending mode is at 
103.55 Hz. For the acoustic cavity, the uncoupled and coupled models present the rigid Bode acoustic modes, once both 
models represent the closed sound box cavity. Furthermore, notice, in the coupled modal analysis, the influence of the 
acoustic oscillations on the structural responses and vice-versa, due to the coupling effect.

Fig. 12 shows the coupled numerical modes, calculated by modal analysis. See in Fig. 12b the influence of the acoustic 
mode at 152.8 Hz on the panel response. On the other side, Fig. 12c shows the impact of the structural displacements at 
103.5 Hz on the cavity’s acoustic pressure.

The FRF calculated by the numerical model are compared with those measured during the experimental campaign (see 
section 4). Fig. 13, shows the comparisons for both, structural (at accelerometer P5) and acoustic parts (at microphone L4).

The visual analysis of the Fig. 13a shows the impact of the acoustic pressure oscillations on the structural responses as 
seen at 152.29 Hz and 186.95 Hz. See that the coupling effect is more pronounced in the numerical model (black curve). 
One can still notice in Fig. 13a that the panel comparison responses present the same shape in the low-frequency range, 
with differences above 450 Hz. However, the magnitudes are not in good agreement, even in the low-frequency ranges.
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Fig. 13. Numerical vs. experimental comparisons.

Fig. 14. Structural and acoustic modes.

Concerning the acoustic responses, the comparisons are pretty acceptable up to 500 Hz, with high modal density above 
this frequency range, as seen in Fig. 13b. Notice in this figure that the acoustic modes, at frequencies 152.8 Hz, 186.95 Hz 
and 307.42 Hz, present good agreement. On the other side, at 213.74 Hz, one notices a big difference in the pressure 
magnitude.

A better approximation of these numerical vs. experimental comparisons could be obtained by updating the vibro-
acoustic model, rather than a purely structural model updating, as described in section 3.2.

5.2. Coated panel + sound box

In section 3.2, the frequency response analysis was calculated up to 1,000 Hz, in steps of 1 Hz. Fig. 14 shows the 
deformed shapes corresponding to the sandwich panel vibration and cavity modes. Notice in Figs. 14b and 14c the influence 
of the acoustic oscillations on the structural responses, at 152 Hz and 215 Hz, respectively. Pure structural bending modes 
are illustrated in Figs. 14a and 13d (modes (1,1) and (1,3), respectively). On the other side, the influence of the structural 
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Fig. 15. Numerical vs. experimental comparisons.

displacements on the cavity responses are shown in Figs. 14e and 14h, at 118 Hz and 312 Hz, respectively. The pure acoustic 
longitudinal modes on planes Y Z and X Z are shown in Figs. 14f and 14g, respectively.

Fig. 15, shows the numerical vs. experimental comparisons for both, structural (at accelerometer P3) and acoustic parts 
(at microphone L1). As for the bare panel (section 3.1), the frequencies regarding the acoustic modes affect the structural 
responses (Fig. 15a), with more pronounced effect in the numerical model (black curve). Notice in this figure that the 
shear modulus behavior of VEM constrained layers with FDM is not well seized in higher frequencies. As recommended in 
section 5.1, these numerical vs. experimental comparisons could be improved by updating the vibro-acoustic model. Notice 
in Fig. 15a that only the frequencies up to 300 Hz present acceptable correlation.

For the acoustic responses (Fig. 15b), the comparisons are acceptable up to 450 Hz, with a significant difference in 
magnitude at 215 Hz, where the measured response is much smaller. Above 450 Hz, the high modal density suggests 
a statistical analysis to assess the numerical vs. experimental agreement; however, a qualitative analysis shows that the 
differences are more evident from 800 Hz to 950 Hz.

In comparison with the bare panel + sound box configuration, the coated panel + sound box model presents frequency 
shifts, due to the constrained VEM layer addition. As an example, the first bending mode of the set bare panel + sound 
box is found at 103.5 Hz, while for the coated panel + sound box the first bending mode is at 118 Hz, approximately. 
This suggests that the VEM addition, in temperatures around 20 ◦C, has a stiffness-driven effect, rather than an added-mass 
effect as one could usually expect.

Fig. 16 presents the effect of the damping addition on the structural and acoustic responses, for both, numerical and 
experimental surveys. Comparisons are done for the bare plate and coated panel configurations.

Notice in Figs. 16a and 16b that the damping insertion reduces significantly the structural displacements, yielding smaller 
radiation to the acoustic cavity. In addition, see that high-frequency structural response attenuations are more pronounced, 
making the constraining layer dampers effective tools to control structural vibrations. See that peak attenuations of around 
20 dB are obtained.

For the acoustic part, numerical and experimental models present sound pressure level reductions as seen in Figs. 16c 
to 16d. Observe the first acoustic coupled frequency (at 118 Hz) and see that a noise reduction of 20 dB, approximately, is 
obtained with the coated panel. A visual analysis over the whole frequency range shows the overall noise reduction inside 
the sound box, evidencing that VEM can be a complementary control technique (to porous-elastic materials) to attenuate 
internal sound pressure levels.

6. Conclusions

Coupled vibro-acoustic numerical models have been built to assess the effect of structural damping insertion with VEM 
on acoustic responses. The VEM was firstly characterized and the FDM was adopted to model the shear behavior of the 
constrained VEM applied on an aluminum homogeneous plate. The sandwich panel was attached to the acoustic model 
of the sound box. Structural and acoustic responses were calculated up to 1,000 Hz. In a second step, vibro-acoustic tests 
were done, with two experimental set ups, in which the lightweight panels (bare and sandwich) were connected to the 
KU Leuven – PMA Sound Box facility. These experimental set-ups allowed us to couple the vibro-acoustic subsystems and 
structural displacements and acoustic cavity responses up to 1,000 Hz were measured.

The coupling effect was verified in both elastic and acoustic sub-systems (Figs. 12 and 14), being the numerical model 
more sensible to this effect, as seen in Fig. 13a.
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Fig. 16. Damping effect comparisons (numerical and experimental).

Theoretical vs. experimental comparisons were done and acceptable agreement was observed for the acoustic part. On 
the other side, the structural part presented differences, showing that the FDM under-predicts the added damping, mainly 
in the higher order modes.

Excellent vibration control of the constrained VEM panel was noticed, in higher frequencies (above 300 Hz), consequently 
generating lower sound radiation reduction. For the acoustic part, one observes that the cavity responses were attenuated, 
mainly due to the portion reduction concerning the structural vibration.

As an important passive control technique, the use of porous-elastic materials to reduce the transmission loss in launch-
ers fairings is well known. However, the noise due to the structural vibration radiation remains a significant portion that 
may still be attenuated and, as a consequence, reduce fairings and the internal vibration of space compartments induced 
by acoustics and vibration. As an efficient passive control technique, VEM addition can be a complementary technique (to 
porous-elastic materials) to attenuate internal sound pressure levels and appropriate to be applied in space systems.

As the next steps, the vibro-acoustic model updating, presented in this work, may be done to improve the numerical vs. 
experimental comparisons. Furthermore, vibro-acoustic models of a space system with combined VEM and porous-elastic 
materials may be built.
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