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In this paper, we characterize random eigenspaces with a non-intrusive method based on 
the decoupling of random eigenvalues from their corresponding random eigenvectors. This 
method allows us to estimate the first statistical moments of the random eigenvalues 
of the system with a reduced number of deterministic finite element computations. 
The originality of this work is to adapt the method used to estimate each random 
eigenvalue depending on a global accuracy requirement. This allows us to ensure a minimal 
computational cost. The stochastic model of the structure is thus reduced by exploiting 
specific properties of random eigenvectors associated with the random eigenfrequencies 
being sought. An indicator with no additional computation cost is proposed to identify 
when the method needs to be enhanced. Finally, a simple three-beam frame and an 
industrial structure illustrate the proposed approach.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Requirements on system performance are increasingly stringent, which leads us to question the design rules currently 
used in structural engineering. The use of safety factors that are often inconsistent and confusing is no longer sufficient 
in many leading-edge fields, and it is necessary to decrease the gap between the observed behavior of a structure and 
predictions from numerical simulations based on deterministic models. In order to accurately predict the real behavior of 
a structure, the variability of the observed behavior needs to be modeled. This variability is mainly due to the system 
parameter’s randomness. The probabilistic approach is adapted to numerical resolution [1,2]. This is thus the framework 
adopted for this work.

The aim is to robustly characterize the vibrational response of a structure in a random manner from a finite element 
model of the structure. We are particularly looking for the eigenspace characterization of linear systems with dynamic prop-
erties considered as random variables. Methods based on statistical sampling provide a good framework to solve the random 
dynamic problem; nevertheless, they need intensive computation to remain accurate [3,4]. The performance of this kind of 
method strongly depends on the quality of the random number generator and the total computational cost increases dra-
matically with the cost of one deterministic case. For these reasons, reduced-order models in a context such as PGD [5], for 
instance, or non-sampling methods have been introduced. Along the latter, different techniques have been developed over 
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the last few decades. Two particular approaches are mainly used in the literature to approximate the statistical properties 
of the response of a random system: the perturbation and the spectral methods.

The perturbation method is based on an approximation of the random variable of interest through the truncation of its 
Taylor expansion. Its implementation is pretty easy, but as high-order perturbation terms are computationally intensive, the 
expansion is generally limited to the second order. Moreover, variations of the system parameters should remain small to 
guarantee the accurate estimation of statistical moments [6]. Generally, random variables are expanded by their Taylor series 
about their mean value. For example, Collins and Thomson [7] estimate statistics of random eigenvalues and eigenvectors. 
Adhikari and Friswell [8] propose to expand around an optimal point in order to better approximate the first moments of 
random eigenvalues. Nair and Keane [9] use a perturbation method to define an approximation subspace and to estimate 
the system’s random eigenvectors.

The Spectral Stochastic Finite Element Method (SSFEM) was introduced by Ghanem and Spanos in [10], inspired by 
Wiener’s works [11]. The method is based on a discretization of the random variables of interest among a finite random 
space. The random variables are decomposed on the basis of orthogonal polynomials in terms of the multi-dimensional ran-
dom variable with a specific probability distribution. This basis is called the polynomial chaos. For problems with Gaussian 
random input parameters, the best-suited basis consists of a set of multidimensional Hermite polynomials [12]; it ensures 
fast convergence and accurate approximation of the random variables. If the input parameters are not Gaussian, other proper 
bases have been developed to ensure an optimal convergence [13]. Once the decomposition basis is chosen, the coefficients 
of the decomposed random variable need to be computed. For this purpose, a Galerkin-based method described in [14]
allows us to estimate the coefficients using Monte Carlo sampling. This method suffers from its sensibility to the quality 
of the random number generator [15,16] and becomes quickly computationally intensive in the case of high-order polyno-
mials or of a high number of random parameters. To overcome these drawbacks, Ghanem and Ghosh [14] propose another 
Galerkin-based method for reducing the problem to a set of deterministic non-linear equations.

In order to characterize the eigenspace of a system with random dynamic properties, polynomial chaos methods give a 
general and accurate framework, but their implementation is rather complex. On the other hand, perturbation methods are 
easy to implement, but their intrinsic assumptions limit their application to academic problems or small variations of the 
input parameters. Based on these techniques, Pascual and Adhikari [17] have proposed and compared methods hybridizing 
perturbation approach and polynomial chaos expansion applied to eigenvalue problems.

The aim of this paper is to propose a non-intrusive approach to characterize a random eigenspace with a reduced 
number of deterministic finite element computations. A simple observation is at the origin of the proposed approach: in 
some cases, the eigenvalues of a structure with random parameters are random, but the corresponding eigenvectors are quite 
deterministic. In these cases, a simple deterministic computation is sufficient to characterize the random eigenmode. For the 
remaining eigenvalues, it is then necessary to use more accurate methods. This approach, referred to as the SMR method 
for Stochastic Model Reduction approach, consists in adapting stochastic modeling to each random eigenvalue depending on 
the global accuracy requirements on the whole set of random eigenvalues. Finally, the proposed approach minimizes the 
computational cost by concentrating computational resources on particular eigendata sets according to their configuration. 
The next section describes the SMR approach and its different refinement levels. As the proposed approach relies on the 
random eigenfrequencies configuration, an appropriate indicator referred to as the “proximity factor” is also developed in 
this section. Then a three-degrees-of-freedom test case illustrates the accuracy of the method, depending on the random 
eigenfrequencies configuration. We characterize the indicator for a large number of configurations. In the fourth section, 
the approach is applied to a more realistic system consisting of a frame with different random Young’s moduli. Finally, an 
industrial structure is used to illustrate the efficiency of the SMR approach in terms of computation time and accuracy of 
statistical moments estimation.

2. Stochastic model reduction

2.1. Problem presentation

The general eigenvalue problem of undamped or proportionally damped systems can be expressed for a problem with 
nd degrees of freedom by

λk(θ)M(θ)�k(θ) = K(θ)�k(θ) (1)

where

λk(θ) ∈R, �k(θ) ∈ R
nd , M(θ) ∈R

nd×nd , K(θ) ∈R
nd×nd , θ ∈ �

λk and �k are the kth eigenvalue and the kth associated eigenvector. The relationship between the eigenvalues and the 
natural frequencies of the system is λk = ω2

k . The eigenvector �k is assumed to be mass normalized so that ��
k M�k = 1. 

(�, F , p) is the abstract probability space associated with the underlying physical experiments. θ ∈ � is a basic event 
from the complete probability space �. The space of square integrable random variables is denoted by L2(�) and forms a 
Hilbert space with the norm ‖ · ‖L2(�) . Matrices M(θ) and K(θ) represent the mass and stiffness matrices of the structure. 
Their randomness is due to the physical parameters of the structure such as mass density, Young’s modulus or geometric 
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properties. In this paper, E[·], Var[·] and σ [·] denote respectively the mathematical expectation, variance, and standard 
deviation.

To facilitate the understanding of the upcoming developments, we consider the case of a structure composed of n sub-
structures with n different Young’s moduli (Y1, Y2, ..., Yn), for example, a metallic structure provided with piezoelectric 
patches. The Young’s moduli are assumed to be the only random parameters in the considered problem. Thus the stiff-
ness matrix K(θ) is a random matrix and M remains deterministic. The global stiffness matrix can be written according to 
different stiffness matrices relating to each sub-structure:

K(θ) =
n∑

i=1

Ki(θ) =
n∑

i=1

γi(θ)Ki (2)

where γi(θ) is the random parameter corresponding to the ith Young’s modulus and defined as:

γi(θ) = Yi(θ)

Y0i
; Y0i = E[Yi(θ)] and E[γi(θ)] = 1

Ki are the sensitivity stiffness matrices of the global stochastic stiffness matrix K(θ) with respect to the parameter 
γi(θ). With this notation, the stochastic behavior is only taken into account by the coefficient γi(θ). These Rnd×nd matrices 
correspond, in this linear case, to a global sub-structure stiffness matrix obtained with the mean value of the Young modulus 
(stiffness matrix of the sub-structure reshaped in the whole basis of degrees of freedom of the considered problem). In 
addition, Ki(θ) are the global sub-structure stochastic stiffness matrices.

The proposed approach relies on the observation that, considering a structure with random parameters and a set of 
random eigenvalues to be determined, some eigenvectors associated with a particular eigenvalue only vary slightly with 
respect to the input random parameters, and therefore could be considered as deterministic as a first approximation. It is 
then extremely cheap (in computational terms) to estimate the corresponding random eigenvalues. The available compu-
tational resources could be concentrated in more accurate methods to estimate the remaining random eigenvalues of the 
set of interest. When the eigenvector can not be considered as deterministic, we propose to expand it as a function of the 
input random parameters. It allows us to take into account the variability of the random eigenvector and then to deduce the 
corresponding random eigenvalue. With this approach, the randomness of the kth eigenmode (λk(θ), �k(θ)) is reduced de-
pending on the eigenmode configuration. This approach is referred to as SMR for Stochastic Model Reduction. The approach 
has at least two refinement levels that we refer to hereafter as SMR1 and SMR2.

2.2. The Stochastic Model Reduction approach

This subsection illustrates the basic assumptions of the SMR approach [18,19]. First, we present the first refinement level 
of the SMR approach. The determination of a particular couple eigenvalue–eigenvector is based on the assumption that the 
eigenvector does not vary with the random input parameters. The foundation of this refinement level is then illustrated 
with two different points of view. Then the SMR second refinement level is presented. It is based on the expansion of 
the eigenvector as a function of the input random parameters to take into account its variability and improve the random 
eigenvalue model. A method to compute the eigenvector derivatives, adapted to the SMR framework, is then proposed. 
Finally the SMR resolution approach is summarized, and a criterion is proposed to identify when the first or the second 
refinement level should be used.

2.2.1. First refinement level: SMR1
According to the first assumption of the SMR approach, it is assumed that Young’s moduli variations around an expected 

value do not change the eigenvector shapes of the structure. Therefore, the matrix of random eigenvectors corresponds to 
the matrix of eigenvectors calculated with the expected value parameters:

�(θ) = � (3)

This assumption, added to the mass normalization of eigenvectors �k , allows us to rewrite the kth random frequency as:

λk(θ) = ω2
k (θ) =

n∑
i=1

γi(θ)�k
�

Ki�k =
n∑

i=1

λkiγi(θ) (4)

where

λki = �k
�

Ki�k (5)

The coefficients of this expansion are deterministic. The randomness of the eigenvalue is only due to the input random 
parameters. This simplification could be used, for example, in the case of a structure composed of two sub-structures 
of different sizes. The variation of Young’s modulus of the smallest sub-structure around its expected value will have a 
negligible effect on the main structure.
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2.2.2. First central moments
The main advantage of this first refinement level is to obtain the closed form of the approximate eigenvalue. Therefore, 

the two first central moments of the random eigenvalues are obtained with no computational cost. Indeed, assuming that 
the n Young moduli (Yi)1≤i≤n are independent random variables, the expected value of the kth eigenvalue is obtained 
directly:

E[λk] =
n∑

i=1

E[γi]��
k Ki�k =

n∑
i=1

��
k Ki�k =

n∑
i=1

λki = λk (6)

where λk represents the deterministic eigenvalue associated with the deterministic eigenvalue problem:

K0�k = λkM�k (7)

and

K0 = K|γi(θ)=1 =
n∑

i=1

Ki (8)

The variance of the kth eigenvalue is:

Var[λk] =
n∑

i=1

λ2
ki Var[γi] =

n∑
i=1

λ2
kiδ

2
i (9)

where δi = σ [Yi]/E[Yi] is the coefficient of variation of the random parameter Yi .
It can be noticed that the estimation of the two first statistical moments is obtained with only one deterministic finite 

element computation and the knowledge of the first moment of the input random parameters. In fact, there is no need for 
stochastic computation.

2.2.3. Two illustrations of the SMR first assumption
First order Taylor expansion. The first assumption of the SMR approach could be illustrated considering a first-order Taylor 
expansion of the kth random eigenvalue λk(γ (θ)) about the mean of E[γ (θ)] = γ 0. This approach corresponds to the 
perturbation method largely covered in the literature [6,8]. Recall that γ (θ) is the random vector representing the n input 
parameters of the vibrational system. For convenience, the randomness dependency of γ (θ) will be implicit in this section, 
and we will use the following notation γ .

λk(γ ) = λk(γ 0) +
n∑

i=1

(
∂λk

∂γi

∣∣∣∣
γ =γ 0

(γi − γi0)

)
(10)

As developed by Fox and Kapoor [20], the expression of the rate of change of an eigenvalue is:

∂λk

∂γi
(γ ) = ��

k (γ )

[
∂K

∂γi
(γ ) − λk(γ )

∂M

∂γi
(γ )

]
�k(γ ) (11)

Assuming that �k is mass-normalized so that ��
k M�k = 1, the first term of the Taylor expansion is λk(γ 0) = �k

�
K�k . 

The kth random eigenvalue can be expressed using the expression of the eigenvalue derivative at γ = γ 0:

λk(γ ) = �k
�

K�k +
n∑

i=1

[(
�k

�
[

∂K

∂γi
(γ 0) − λk

∂M

∂γi
(γ 0)

]
�k

)
(γi − γi0)

]
(12)

It is then obvious that the random eigenvalue at first order depends only on the corresponding deterministic eigenvector.

Parametric approach. The basic assumption can be addressed with a parametric approach of the eigenvalue problem. The 
behavior of eigenvalues associated with a change of parameters is a problem intensively studied in the literature [21–23]. 
Systems with parameters varying over a large range often undergo frequency coalescence and/or veering. This phenomenon 
appears when two eigenvalue loci approach each other closely and suddenly veer away again, each one taking on the trajec-
tory of the other. The eigenvectors corresponding to each one of the two modes swap as the loci pass through the veering 
area. Outside this area, the eigenvectors remain constant. This phenomenon is illustrated in Fig. 1. This figure presents the 
eigenvalue loci (a) of a simple three-degrees-of-freedom (DoF) undamped spring-mass system (b). The parameters of this 
system are tuned to observe the veering effect between the second and the third eigenvalues when the stiffness k2 is vary-
ing. Other stiffness parameters are ki = [1, k2, 3, 0.1, 0.1, 0.1], and the three masses are m1 = m2 = m3 = 1. The windows 
over each eigenvalue locus represent the corresponding eigenvector for this k2 range of values.
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Fig. 1. Eigenvalue loci with the corresponding eigenvector (a) of a 3 DoF system (b).

Fig. 2. Marginal density functions of the second and third eigenvalues of a three DoF system when the pdf of the input parameter is out of the veering 
area (a) or cross it (b).

Let us consider the case of a system with a single parameter p(θ) randomly varying with a given probability density 
function (pdf ). The variability of this parameter could be compared to the eigenvalue loci of the system. Two particular cases 
could be highlighted. First, if most of the pdf of the parameter is out of the veering area, a draw of k2 will mostly induce 
eigenvalues associated with a constant eigenvector as illustrated in Fig. 2(a). The eigenvectors obtained for the deterministic 
value of the input parameter can be used to estimate the corresponding random eigenvalues. The SMR first assumption is 
then validated. On the other hand, if the pdf of the parameter overlaps the veering area (see Fig. 2(b)), the eigenvector 
corresponding to an eigenvalue will depend on the drawn value of the parameter and it is necessary to take into account 
this variability to estimate the corresponding eigenvalues.

These two observations are reinforcing the SMR1 assumption whereby eigenvectors can be assumed deterministic de-
pending on the eigenmode configuration. The kth eigenvalue is then approximated by Eq. (4). When the eigenvectors cannot 
be assumed deterministic, it is necessary to take into account their variability. A new refinement level is then proposed in 
the next section.

3. Refinement of the Stochastic Model Reduction

3.1. Improvement of SMR1: SMR2

When the eigenshapes variability increases, it is no longer possible to approximate the random eigenvectors as deter-
ministic eigenvectors. In order to accurately estimate the corresponding eigenvalues, it is proposed to take into account the 



M. Ghienne et al. / C. R. Mecanique 345 (2017) 844–867 849
eigenshapes variability with a Taylor expansion about the point γ (θ) = γ 0. This improvement is referred to hereafter as 
SMR2.

The kth random eigenvalue λk(γ (θ)) and the kth eigenvector �k(γ (θ)) given by its Taylor series expansion about the 
point E[γ (θ)] = 1 can be written as:

λk(θ) =
n∑

i=1

γi(θ)��
k (γ (θ))Ki�k(γ (θ)) (13)

�k(γ (θ)) = �k(γ 0) +
n∑

i=1

∂�k

∂γi

∣∣∣∣
γi=1

(γi(θ) − 1) (14)

The derivatives of each eigenvector remain to be determined. Many papers on the analysis and the calculation of eigen-
derivatives of dynamic systems [24–26] are based on methods developed by Fox and Kapoor [20]. The next subsection 
defines the best suitable method to compute the eigenvector derivatives for the second refinement level of the SMR ap-
proach.

3.1.1. Methods to compute eigenvector derivatives
Of particular interest for design and shape optimization, model updating or even uncertainty analysis, the eigenvalue 

and eigenvector sensitivity computation has been extensively studied in the last decades. The aim of this section is to pick 
the most suitable existing method to compute the eigenvector derivatives for the SMR2 application. For this purpose, we 
have identified four types of approach to compute the eigenvector derivatives in the literature. This classification aims to be 
adapted to the SMR framework and its implicit requirements.

First, we identify modal superposition methods initiated by Fox and Kapoor works [20]. Fox and Kapoor present two 
main results about eigenvector derivatives. The first result is an expression of the eigenvector derivative depending only 
on the eigendata of the corresponding mode. This expression suffers from the required inverse of a (nd × nd) dense matrix, 
where nd is the number of DoF of the system. To avoid the drawback of matrix inversion, Fox and Kapoor proposed a second 
expression based on the expansion of the eigenvector derivative on the eigenvector basis.

Several papers have followed the work initiated by Fox and Kapoor. Roger enlarges it to generalized non-symmetric 
eigenvalue problems [27]. Hirai and Kashiwaki focus on the case of structural modification with only a few controlled de-
sign variables [24]. The drawback of the Fox and Kapoor’s expansion on the eigenvector basis is that it requires all the 
eigenvectors of the structure to be exact, and its accuracy decreases as the eigenvector basis is truncated. To circumvent 
these problems, numerous formulations have been proposed, including static corrections or iterative approaches as men-
tioned by Alvin [28]. Lin estimates the eigenvector derivatives by just using the modal parameters of that mode [29]. 
Nevertheless, Lin’s method remains approximate and is inaccurate when the eigenvalues are too close. These methods are 
then not adapted to the SMR framework.

The second class of methods is based on a direct exact method termed Nelson’s method. Nelson’s [30] first proposed 
computing the eigenvector derivatives of nth-order symmetric or non-symmetric eigensystems by requiring only the left and 
right eigenvectors and the associated eigenvalue under consideration. The main advantage of this method is to require only 
the eigendata of the corresponding mode and to preserve the banded characteristics of the original eigensystem. Several 
works are based on the Nelson’s method. Friswell [31,32] extends Nelson’s method to eigenvalues and eigenvectors nth 
derivatives.

Ojalvo [33], Mills-Curran [34,35] and Dailey [36] have contributed to extend Nelson’s method to the case of repeated 
eigenvalues. Nevertheless, their approaches involve second-order derivatives, which is inappropriate for SMR2 implementa-
tion. Chen [37] has raised that for some particular cases of repeated eigenvalues, Ojalvo, Mills-Curran and Dailey methods 
can be avoided, but these cases can not be generalized to SMR’s scope. As mentioned by Lee [38], Nelson’s method could 
be lengthy and complicated for finding eigenvector derivatives and clumsy for programming, but it is still faster than modal 
methods such as Fox and Kapoor’s one. It could be implemented to compute the eigenvector derivatives of the SMR second 
refinement level.

Methods of the third class are iterative methods. Yoon and Belegundu [39] propose perturbing the input parameter vector 
of the system and solving the corresponding non-linear system with a Newton–Raphson technique. An iteration process is 
then used to converge toward the eigenvector derivatives. Alvin [28] uses the truncated Fox’s method to initiate an iterative 
algorithm based on Preconditioned Conjugate Projected Gradient-based technique. Andrew [40] uses a simultaneous itera-
tion technique for computing second-order partial derivatives. Nevertheless, due to the SMR framework, iterative methods 
are not favored.

The last class corresponds to semi-analytic methods. Jankovic [41] proposes calculating the exact nth eigenvalues and 
eigenvectors derivative of linear and non-linear eigenvalue problems for unrepeated eigenvalues. Olhoff and Lund [42,43]
use “exact” numerical differentiation to compute design sensitivities of simple and multiple eigenvalues of complex struc-
tures. Mateus [44] considers the non-differentiability of multiple eigenvalues using thin-plate shell structures of arbitrary 
geometry. Although these methods provide an exact calculation (except for numerical round-off errors), they need to be 
implemented at the elementary level of the finite element solver. The SMR method aims to be non-intrusive, thus this kind 
of method is then excluded.
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Particular attention could be paid to Lee’s algebraic method to compute the eigenvector derivatives of a damped system 
[45,46]. This method does not really belong to one of the four identified classes, but appears to be a promising candidate 
to be implemented in SMR. This method is applied in an intrusive manner to compute derivatives of elementary matrices 
in the French opensource software code_aster [47], developed by the French company Électricité de France. The method is 
based on the eigenproblem equation and the orthonormal condition written in a matrix format. The orthonormal condition 
is quite different between a damped and an undamped system. The proposed expression of the eigenvector derivatives given 
in the dedicated papers [45,46] is adapted below to be implemented in the SMR second refinement level. The implemented 
method is detailed in the case of multiple eigenvalues and so it could be applied to the case of distinct eigenvalues. In 
particular, this method is well adapted for dealing with close eigenvalues.

3.1.2. Implemented method to compute eigenvector derivatives
In order to compute the eigenvector derivatives, a method proposed by Lee [45,46] is used. In this section, this method 

is briefly remembered in the specific case of undamped problem with multiple eigenvalues λm with m multiplicity (the case 
of single eigenvalue will follow from this results). Especially, this approach is based on the concept of adjacent eigenvectors, 
which allows us to deal with discontinuities of the eigenvectors since a parameter changed.

Let us consider the value p0 of the parameter p corresponding to the nominal eigenvalue of multiplicity m. Associated 
with this eigenvalue, the eigenvectors X lead to an eigensubspace. Since a parameter p is varying from its nominal value 
to a value p′ , the eigenvectors X′ lead to m distinct subspaces. In this context, since p tends to p0, X′ tends to X, and 
the m distinct eigenvalues tend to the multiple eigenvalue λm . Such eigenvectors X are commonly designated as adjacent
eigenvectors. Notice that these eigenvectors depend on which parameter is varying, i.e. specific adjacent eigenvectors must 
be taken into account for each considered parameter.

Firstly, the following eigenvalue problem, where �m is the (nd × m) matrix of eigenvectors corresponding to λm and is 
defined as:

−M�m�m + K�m = 0 (15)

where

�m = λm · Im

The orthonormal condition is given by the following equation:

��
mM�m = Im (16)

Adjacent eigenvectors can be expressed in terms of �m by an orthogonal transformation such as:

X = �mT (17)

where T is an orthonormal transformation matrix of order m (T�T = Im). X also satisfies the orthonormal condition such as 
that in Eq. (16):

X�MX = Im (18)

Let us consider an other eigenvalue problem to find X and ∂�m
∂ p :

−MX�m + KX = 0 (19)

This problem is built by multiplying Eq. (15) by the matrix T.
Differentiating the eigenvalue problem (15) with respect to the design parameter p, one has

−∂M

∂ p
X�m − M

∂X

∂ p
�m − MX

∂�m

∂ p
+ ∂K

∂ p
X + K

∂X

∂ p
= 0 (20)

This equation leads to the next equation, as proposed by Lee:

(K − �mM)
∂X

∂ p
= −

(
∂K

∂ p
− �m

∂M

∂ p

)
X + MX

∂�m

∂ p
(21)

Premultiplying each side by ��
m and substituting X = �mT into it gives a new eigenvalue problem such as:

DT = ET
∂�m

∂ p
(22)

where

D = ��
m

(
−λm

∂M

∂ p
+ ∂K

∂ p

)
�m (23)

E = −��
mM�m = −Im (24)
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Henceforth, Lee’s formulation [45,46] is used: it corresponds to an algebraic equation with symmetric coefficient matrix 
added side conditions.

Differentiating the orthonormal condition (Eq. (18)) of the adjacent eigenvectors gives:

X�M
∂X

∂ p
= −1

2
X� ∂M

∂ p
X (25)

One can then write the following single matrix equation combining Eqs. (21) and (25):[
K − λmM MX

X�M 0

][
∂X
∂ p

0

]
=

⎡⎣−
(

∂K
∂ p − �m

∂M
∂ p

)
X + MX ∂�m

∂ p

− 1
2 X� ∂M

∂ p X

⎤⎦ (26)

The coefficient matrix can be decomposed into upper and lower triangular forms, and then a forward and backward substi-
tution scheme may be used to evaluate the components of ∂X

∂ p .
Finally, Lee’s algorithm could be summed up:

1) compute D = ��
m

(
−λm

∂M

∂ p
+ ∂K

∂ p

)
�m and E = −Im;

2) solve the eigenproblem DT = ET
∂�m

∂ p
and normalize so that T�T = Im;

3) let the columns of X = �mT be the new eigenvectors;

4) define A =
[

K − λmM MX
X�M 0

]
;

5) compute F =
{

−
(

∂K
∂ p − �m

∂M
∂ p

)
X + MX ∂�m

∂ p

− 1
2 X� ∂M

∂ p X

}
;

6) compute 
[

∂X
∂ p
0

]
= [A]−1 F .

The proof of the numerical stability (i.e. the non-singularity of the matrix A) of this algorithm is detailed analytically in 
[45] in the case of distinct eigenvalues and in [46] in the case of multiple eigenvalues.

3.1.3. Comparison with the second-order perturbation method
The first refinement level of the SMR approach could be seen as a first-order perturbation method as shown in sec-

tion 2.2.3. The second-order perturbation method is also widespread in the literature [8]. This section enables us to compare 
the second-order perturbation method and the second refinement level of the SMR approach.

Let us consider the random eigenvalue problem as defined in Eq. (1). The mass matrix M(γ ) : Rn �→ R
nd×nd and the 

stiffness matrix K (γ ) : Rn �→ R
nd×nd are assumed to be smooth, continuous and at least twice differentiable functions of 

a random vector γ ∈ R
n representing the n input parameters of the vibrational system. According to the second–order 

perturbation method, the kth random eigenvalue λk(γ ) could be approximated through its second-order Taylor expansion 
about the mean point γ = γ 0. This approximation is referred as λpert.2:

λk(γ ) ≈ λ
pert.2
k = λ(γ 0) +

n∑
i=1

(
∂λk

∂γi

∣∣∣∣
γ =γ 0

(γi − γi0)

)
+

n∑
i=1

n∑
j=1

(
1

2

∂2λk

∂γi∂γ j

∣∣∣∣
γ =γ 0

(γi − γi0)(γ j − γ j0)

)
(27)

The eigenvalue’s first derivative is presented in Eq. (11). This derivative involves only the sensitivity of the mass and 
stiffness matrices at the mean value of the input random vector γ . Providing the eigenvalues are distinct, Plaut and Huseyin 
[48] have shown that the expression of the second derivative is:

∂2λk

∂γi∂γ j
(γ )

= �k(γ )�
[

∂2 K (γ )

∂γi∂γ j
− λk(γ )

∂2 M(γ )

∂γi∂γ j

]
�k(γ ) −

(
�k(γ )� ∂M(γ )

∂γi
�k(γ )

)(
�k(γ )�Gkj(γ )�k(γ )

)
−

(
�k(γ )� ∂M(γ )

∂γ j
�k(γ )

)(
�k(γ )�Gki(γ )�k(γ )

)
+ 2

N∑
r=1
r �=k

(
�r(γ )�Gki(γ )�k(γ )

) (
�r(γ )�Gkj(γ )�k(γ )

)
λk(γ ) − λr(γ )

(28)

where
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Fig. 3. SMR approach for eigenvalue problem resolution.

Gki(γ ) =
[

∂ K (γ )

∂γi
− λk(γ )

∂M(γ )

∂γi

]
(29)

This expansion could be rewritten as a second-order polynomial of the input random parameters:

λ
pert.2
k = ak +

n∑
i=1

bkiγi +
∑

(i, j)∈[[1;n]]2

cki jγiγ j (30)

With the second refinement level of the SMR approach, the kth random eigenvalue is approximated by taking into 
account the variability of the kth eigenvector with a first-order Taylor expansion.

λSMR2
k =

n∑
i=1

γi�
�
k (γ )Ki�k(γ ) (31)

=
n∑

i=1

γi

⎛⎝�k(γ 0) +
n∑

j=1

∂�k

∂γ j

∣∣∣∣
γ j=1

(γ j − 1)

⎞⎠�
Ki

⎛⎝�k(γ 0) +
n∑

j=1

∂�k

∂γ j

∣∣∣∣
γ j=1

(γ j − 1)

⎞⎠ (32)

On this basis, the approximated eigenvalue λSMR2
k could be written as a polynomial of the input random parameters:

λSMR2
k = ek +

n∑
i=1

fki jγi +
∑

(i, j)∈[[1;n]]2

gki jγiγ j +
∑

(i, j,l)∈[[1;n]]3

hkijlγiγ jγl (33)

As shown in section 3.1.2, the eigenvector derivatives require only the eigendata of the corresponding mode, the mass 
and stiffness matrices and their sensitivities. On the other hand, the second-order perturbation method involves the first 
and second derivatives of the mass and stiffness matrices, and all the eigenvectors of the system need to be computed. 
The computation of λSMR2

k is then cheaper than λpert.2
k . Moreover, in comparison with the λpert.2

k approximation, the eigen-
value λSMR2

k is described with a polynomial of higher degree. The SMR2 approximation will better fit the response surface 
corresponding to the exact random eigenvalue.

3.2. The SMR resolution approach

For real structures, the set of random eigenvalues will contain either eigenvalues corresponding to almost deterministic 
eigenvectors and eigenvalues corresponding to random eigenvectors. The two refinement levels of the SMR method have to 
be jointly used to ensure the best estimation of the whole set of random eigenvalues. To this purpose, a simple resolution 
approach is summarized in Fig. 3. This approach consists in adapting the invested computational resources to each random 
eigenvalue. First, all random eigenvalues are approximated with SMR1, assuming that all eigenvectors are deterministic. 
This first step provides an initial estimation of all eigenvalues. The issue is then to identify when the SMR1 assumption is 



M. Ghienne et al. / C. R. Mecanique 345 (2017) 844–867 853
validated or it is necessary to refine the approximation. The idea, which appears in different papers about the perturbation 
methods [8], eigendata sensitivity [29] or eigenloci curve veering [22,23], is to distinguish well-separated eigenvalues from 
close ones. In the case of well-separated eigenvalues, the eigenshape sensitivity with respect to the input parameters is 
small [22], the SMR1 assumption is then validated and the corresponding random eigenvalues will be accurately estimated 
with SMR1. In the case of random eigenvalues not clearly identified as well separated, SMR2 is used to estimate a better 
approximation of the eigenvalues. Thus, the SMR2 method is applied on a reduced set of eigenvalues. Notice that, the 
first-order Taylor expansion of one eigenvector using Lee’s algorithm [45,46] presented in section 3.1.2 is used to compute 
the eigenvector derivatives.

As with SMR1, the quality of the SMR2 estimation decreases when random eigenvalues are getting closer. So the use 
of first-order Taylor expansions could be insufficient to estimate random eigenvectors because their randomness is not 
adequately taken into account. A second-order Taylor expansion seems to be inappropriate due to the second-order deriva-
tion of the random eigenvectors. In order to overcome this drawback, the random eigenvectors could be modeled by their 
polynomial chaos (PC) expansions. The coefficients of the eigenvector PC expansion are rather complex to determine [14]. 
Therefore, the PC expansion is used only for the last random eigenvalues for which the SMR2 accuracy is questionable.

3.3. Definition of a proximity factor

The efficiency of the proposed approach now depends on the ability to qualify the proximity of two random eigenvalues. 
The notion of “close eigenvalue” appears in different papers about eigenvalue curve veering [22,23], statistical energy anal-
ysis [49], eigenvalues and eigenvectors derivatives [29] and, a fortiori, random eigenvalue problems [8]. In a most general 
statistics framework, the use of a specific distance measure could be used such as the Mahalanobis distance [50,51]. Even if 
both close and well-separated cases are dealt with systematically, the limit between these two configurations is not always 
handled for random eigenvalue problems. Du Bois et al. [23] propose a modal coupling factor analogous to the coupling 
factor of Perkins and Mote [21]. This factor is based on the stiffness and mass matrix sensitivities, which are deterministic 
and available from commercial software, but it relates the coupling between two eigenvalues only when a single parameter 
is varying. An indicator could be constructed on this basis in order to take into account the whole set of input random pa-
rameters, but it would be the object of future work. Although the correlation between eigenvalues could be considered [52], 
the implicit assumptions of SMR1 lead to uncorrelated eigenvalues. Therefore the proximity indicator between two random 
eigenvalues should be built without correlation terms (see Eq. (34)). In this paper, an indicator inspired by the statistical 
overlap factor of Manohar and Keane [49] seems to be more suitable because of a low computational cost. The statistical 
overlap is defined as the ratio between the standard deviation of the ith natural frequency and the mean modal spacing. In 
order to take into account a potential difference between the standard deviation of two random eigenvalues, the proximity 
factor (PF) of two random eigenvalues λi, λi+1 is defined as:

PF(λi) = 2(σ [λi] + σ [λi+1])
E[λi+1] − E[λi] (34)

As the expectation and the standard deviation of every random eigenvalue are estimated through the SMR methods, the 
proximity factor is obtained directly. The proximity factor allows us to qualify the quality of the estimation computed with 
the SMR methods. When the proximity factor is greater than a limit value, initially assumed as PF > 1, the corresponding 
eigenvalues are assumed to be closely spaced and the SMR assumptions (random eigenvectors are deterministic for SMR1 
and have small variations for SMR2) are not valid. As a result, the confidence in the SMR results must be studied depending 
on the value of the proximity factor.

3.4. Stochastic modeling of the parameters

The SMR methods have been established, it now remains to construct, as objectively as possible, the probability law of 
the input parameters, for example their probability density function (pdf ). Denoting a random parameter by X(θ), some 
available information has to be taken into account [53], for instance,

• X(θ) has to be a positive-valued random variable (Young’s modulus),
• X(θ) has to be a second-order random variable, i.e. E[X2(θ)] < ∞,
• the mean value of X(θ) is given and denoted by E[X(θ)] = x > 0,
• the solution to the problem, here λ(θ), has to be a second-order random variable

When other information is available, for example experimental data, the pdf of the parameter could be constructed 
through the maximum likelihood principle. Otherwise, if no other information is available, the pdf could be constructed 
through the maximum entropy principle [54]. For example, according to the maximum entropy principle, a real-valued 
random variable X such as Supp(X) =]0, +∞[, E[X] = mx and Var[X] = σ 2

x follows a Gamma distribution.
For a given material, Young’s modulus is randomly varying, its expectation and standard deviation are known and its 

support is positive. Young’s moduli can be modeled as random variables with Gamma distribution. If Yi � Gamma(αi, βi) =

(αi, βi), then E[Yi] = αiβi and Var[Yi] = αiβ

2. Therefore, αi and βi are given by:
i
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Fig. 4. Three-degrees-of-freedom undamped spring-mass random system.

αi =
(

E[Yi]
σYi

)2

and βi = σ 2
Yi

E[Yi] (35)

The scaling property of the Gamma distribution, whereby if Yi � Gamma(αi, βi) = 
(αi, βi), then for any c > 0, cYi �
Gamma(αi, cβi), allows us to write the input random variables of the problem γi as a function of the coefficient of variation 
δi = σYi

E[Yi ] of Young’s moduli:

γi � Gamma

(
1

δ2
i

, δ2
i

)
(36)

The summation property gives the distribution of the sum of independent random variables (Yi)1≤i≤n with Gamma(αi, β)

distributions for i = 1, ..., n and same scale parameter β:

n∑
i=1

Yi � Gamma

(
n∑

i=1

αi, β

)
(37)

4. First application: a three-DoF system

4.1. System modeling

In order to illustrate the SMR method, a simple three-degrees-of-freedom (DoF) undamped spring-mass system is con-
sidered. This example is taken from [32] and [8], and presented in Fig. 4. The advantage of this example is to easily drive 
the system eigenvalues with only one of the input random parameters. This allows us to characterize the quality of the SMR 
method when eigenvalues are well separated or close.

The mass and stiffness matrices of this three-DoF system are given by:

M =
⎡⎢⎣m1 0 0

0 m2 0

0 0 m3

⎤⎥⎦ and K =
⎡⎢⎣k1 + k4 + k6 −k4 −k6

−k4 k2 + k4 + k5 −k5

−k6 −k5 k3 + k5 + k6

⎤⎥⎦ (38)

It is assumed that only spring stiffnesses ki with i = {1, . . . , 6} are randomly varying and the vector of the random 
stiffnesses is noted x = [k1, . . . , k6]� . Each random stiffness is assumed to have a Gamma distribution with expectation 
ki = 1 N·m−1 for i = {1, . . . , 5}. The mean value of the k6 random stiffness is fixed at k6 = 3 N·m−1 for simulations with 
well-separated eigenvalues, and k6 = 1.275 N·m−1 in the case of close eigenvalues. The standard deviation of each random 
stiffness is σki = 0.15 N·m−1 for i = {1, . . . , 6}.

A Monte Carlo simulation allows us to compute the pdf and the two first statistical moments of the random eigenvalues. 
The samples of the six independent Gamma random variables ki for i = {1, . . . , 6} are generated and the eigenvalues are 
computed from the eigenvalue problem (1). A simulation with 30000 samples guaranties the estimation of the two first 
statistical moments with an error range of ±0.1%. The results from this Monte Carlo simulation are considered as reference 
to evaluate the quality of the SMR method.

4.2. All eigenvalues are well separated

First, the case of well separated eigenvalues is considered. This assumption corresponds to ki = 1 N·m−1 for i = {1, . . . , 5}
and k6 = 3 N·m−1. In this case, the random eigenshapes are assumed to be deterministic and the two first moments of the 
random eigenvalues are directly obtained through expressions (6) and (9). The relative error of the ith statistical moment 
estimated with SMR1 and denoted m̂SMR1

i is given by:

Error
(

m̂SMR1
i [λk]

)
= ε

(
m̂SMR1

i [λk]
)

=
∣∣∣∣∣m̂SMR1

i [λk] − m̂MC
i [λk]

m̂MC [λk]

∣∣∣∣∣ (39)

i
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Table 1
Relative error in the estimation of the two first moments with SMR1.

λ1 λ2 λ3

Expectation relative error 3.6 · 10−3 1.9 · 10−3 1.4 · 10−3

Standard deviation relative error 6.1 · 10−3 6.6 · 10−3 2.2 · 10−3

Fig. 5. Superposition of all eigenvalue marginal density functions. (a) All eigenvalues are well separated. (b) Two eigenvalues are close.

The relative error in the estimations of the first two statistical moments with SMR1 for the 3-DoF system are provided in 
Table 1. It can be noticed that the error is less than 0.4% for the expectation estimation of each random eigenvalue and 
less than 0.7% for the standard deviation. The reference moments from the Monte Carlo simulation need 30000 resolutions 
of the eigenvalue problem corresponding to each realization of the set of input random stiffness values. The SMR1 method 
requires only one deterministic resolution of the eigenvalue problem for the same accuracy. Note that SMR1 is sufficient to 
estimate the two first statistical moments of all eigenvalues, because all eigenvalues are well separated.

4.3. Two close eigenvalues

By fixing the expectation of the sixth random stiffness to k6 = 1.275 N·m−1, the first random eigenvalue of the three-DoF 
system remains significantly identical to the previous case but the second and third random eigenvalues are now closely 
spaced. Thus the SMR1 method could be applied to close random eigenvalues and the benefits of the enhanced method 
SMR2 could be illustrated. The marginal density functions of the three random eigenvalues of the system are plotted on 
a same graph (Fig. 5b). It should be noted that this representation is used to illustrate the proximity of two random 
eigenvalues.

The relative error in the estimation of the two first statistical moments with SMR1 and SMR2 is presented in Fig. 6. This 
figure illustrates the degradation of the SMR1 results when the eigenvalues are close. The relative error on the estimation of 
the statistical moment of the second and third random eigenvalues with SMR1 is nearly 10 times greater than in the case 
of well-separated eigenvalues. The enhancement of the SMR2 method allows us to decrease the relative errors respectively 
to 5.9 · 10−3 and 5.1 · 10−3 for the estimation of the second and third eigenvalue expectations. For the standard deviation 
estimation of the second and third eigenvalues, the relative errors with SMR2 are, respectively, 5.7 · 10−3 and 7.1 · 10−3.

For this test case, the first statistical moments of the random eigenvalues are also estimated with the second-order 
perturbation method. The estimation of the expectation with the second-order perturbation method is better than the es-
timation with SMR2. Nevertheless, as the expectation is estimated with an error less than 1% with the two methods, we 
can be satisfied with the SMR2 estimation. Concerning the estimation of the standard deviation, the second-order pertur-
bation method is by far the less accurate one. While the standard deviation is estimated with an error less than 1% with 
SMR2, the error with the second-order perturbation method is up to 5%. This is due to the shape of the exact eigenvalue 
response surface, which is better fitted by the SMR2 approximation than the second-order perturbation, as illustrated in 
Fig. 7. This figure presents the exact response surface of the second and third eigenvalues when the first five stiffness pa-
rameters k1, . . . , k5 are fixed at their mean value ki = 1 N·m−1 and k6 varies between 0 and 2 N·m−1. The exact response 
surface, named Ref for reference, is compared to the approximated response surface obtained with SMR1, SMR2, and the 
second-order perturbation method. This agrees with the conclusion of section 3.1.3. In order to approximate the random 
eigenvalue, the second-order perturbation method is equivalent to a second-order polynomial function of the input random 
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Fig. 6. Relative error on the estimation of the two first statistical moments.

Fig. 7. Response surface of the second and third eigenvalues computed with the exact resolution (Ref ), SMR1, SMR2 and second-order perturbation method.

parameters. On the other hand, with SMR2, the random eigenvalues are approximated with higher -order polynomial func-
tions and, due to the shape of the exact eigenvalue loci, the SMR2 approximation is a better fit. Fig. 7 is equivalent to a 
slice of the eigenvalue response hyper-surfaces obtained with the exact resolution and the three approximated methods. The 
eigenvalues response hypersurfaces are dependent on six parameters. Representing it on a plane figure is quite unwieldy, 
that is why the development is limited to the case of a single varying parameter. Nevertheless, the conclusion still stand for 
more than one variable.

4.4. Proximity factor characterization

4.4.1. Indicator of the SMR methods quality
In order to illustrate the quality of the method (with only one deterministic calculation) for the case of close or well-

separated random eigenvalues, the proposed methods have been applied to the three-DoF system for different eigenvalue 
configurations. The input random parameters keep the same characteristics (expectation and standard deviation) as defined 
in section 4.1, except for the k6 expectation, which is varying between 1,275 N·m−1 and 3 N·m−1. This allows us to bring 
the second and third random eigenvalues closer. Fig. 8 represents the relative error in the estimation of the expectation and 
the standard deviation of the 2nd and 3rd random eigenvalues of the three-DoF system. It illustrates the decrease in the 
quality of the SMR1 and SMR2 methods when the proximity factor is increasing.

It can be noticed that, when the proximity factor is increasing, the quality of the first moments’ estimation decreases. 
For proximity factors less than 1, the relative error of the SMR1 method is less than 0.7% for the expectation estimation and 
less than 3% for the standard deviation. The same quality is obtained for higher proximity factors with the SMR2 method; 
then, for a given quality, the limit value of the proximity factor should be adapted to the employed method.

We can then conclude that the proximity factor is a good quality indicator for the SMR1 and SMR2 methods.
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Fig. 8. Error on the estimation of the first moments when PF increases.

4.4.2. Error on the estimation of the proximity factor
The proximity factor qualifies the quality of the SMR methods; nevertheless, the error of the first moments’ estimation 

leads to a certain approximation of the proximity factor itself. Two eigenvalues are considered close depending on their 
expectation and on their standard deviation. It is now proposed to study the estimation of the proximity factor with SMR1 
and SMR2 when the expectation and the standard deviation of the corresponding random eigenvalues are varying.

Fig. 9 shows the proximity factor of the second and third random eigenvalues estimated with the SMR1 and SMR2 
methods when the two random eigenvalues are getting closer. In order to characterize the proximity factor, a set of 120 con-
figurations has been simulated. For each simulation, the random input stiffness k6(θ) is defined as a Gamma random variable 
with expectation E[k6], which assumes 10 values between 1.275 and 4, and the coefficient of variation δ[k6] = σ [k6]/E[k6]
assumes 12 values between 0.05 and 0.3. The reference values of PF are obtained through Monte Carlo simulations with 
30000 samples, and are extrapolated to obtain the blue surface (PFexact

2 ) in Fig. 9. It can be observed that for PF < 1, corre-
sponding to the red plane of the equation z = 1, the estimations of PF with SMR1 and SMR2 are close to reference values. 
In order to quantify the error in the estimation of PF, Fig. 10 presents the relative error between the reference proximity 
factor and its estimations obtained with SMR1 and SMR2. The limit criterion PF = 1 is represented by the line with the 
equation y = x. To illustrate the trend of the relative error of PF, a cubic interpolation is used to map the field of study, 
which explains the lack of information in the upper left area.

As might have been expected, over the limit value PF = 1, the estimation of PF is less accurate. Nevertheless, the purpose 
is to identify the validity domain of the SMR1 and SMR2 methods, i.e. to identify with a certain precision the limit value of 
PF above which the method used to compute the random eigenvectors has to be refined. It can be noticed that the error 
in the estimation of the limit value PF = 1 with SMR1 is less than 10%, while the error is around 1% with SMR2. It could 
therefore be considered that PF estimated with SMR1 allows us to identify when SMR2 needs to be used. The PF estimated 
with SMR2 is more reliable and could allow us to identify a higher limit value of PF above which the SMR2 method needs 
to be refined, for example by considering the eigenvector polynomial chaos expansion [14].

4.4.3. Discussion
It should be kept in mind that, by definition, the PF estimation is more sensitive to the random eigenvalue proximity 

than the estimation of the two first moments themselves. Nevertheless, it is not critical, because the main purpose is to 
choose the best suitable method to estimate the first moments. Considering the SMR1 results, the PF limit value PF = 1 is 
estimated with an error close to 8%, but the corresponding expectation and standard deviation are estimated with relative 
errors respectively less than 0.8% and 3%. Even if the PF is not estimated with a good precision, the error in the first 
moments estimated with SMR1 is acceptable. The same argument can be made for the PF estimation with SMR2.

To ensure a better estimation of PF, the limit value criterion could be decreased. In Fig. 10, this is equivalent to a decrease 
in the slope of the given red line. Nevertheless, the number of random eigenvalues considered to be close would increase, 
and it would be the same for the global computational cost, increased by refining the method more often.

The PF limit value criterion is then a key point of the SMR method. Decreasing the limit value of PF allows us to increase 
the quality of the solution by refining the method used to compute the random eigenvector for a larger number of random 
eigenvalues, but it implies a bigger investment in computational cost. As a partial conclusion, even if it is based on statistical 
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Fig. 9. Estimation of the proximity factor when λ2 and λ3 are getting closer.

Fig. 10. Relative error of the proximity factor respectively computed with SMR1 and SMR2.

moments’ estimations, the proximity factor is able to identify a validity domain of the two SMR methods. Its capability is 
based on the choice of the limit value, which depends on the required quality or the available computation resources.

5. Application to a frame

In this section, an application of the SMR approach is proposed on a structure consisting of several sub-structures with 
Young modulus and mass randomly varying. This example could be extended to a bolted assembly including piezoelectric 
devices. Before applying the SMR approach to an industrial test case (See section 6), this example will be an opportunity to 
apply it on a simple structure solved using finite element analysis and containing only a few degrees of freedom.

5.1. System modeling

The studied structure, presented in Fig. 11, is a frame comprised of three substructures with two random Young’s moduli, 
denoted by Y1(θ) and Y2(θ), and one deterministic, denoted by Y3. The three substructures are beams with the same 
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Fig. 11. Definition of the three beams frame.

geometrical properties: length 250 mm, width 10 mm, and thickness 1 mm. The three beams are assumed to have the 
same density ρ = 2800 kg·m−3. The Young’s moduli expected values are Y1 = 75 GPa, Y2 = 75 GPa and Y3 = 20 GPa. The 
frame is modeled by finite elements with 30 beams elements and 3 DoF at each node. The base of the frame is assumed to 
be clamped, the DoF of the corresponding nodes are then set, and the complete system has 87 DoF.

The two input random parameters of the structure, Y1(θ) and Y2(θ), are modeled as independent random variables with 
Gamma distribution. Their expectation and standard deviation are respectively E[Y1] = E[Y2] = 75 GPa and σ [Y1] = σ [Y2] =
5 GPa (corresponding to a coefficient of variation δ = σ [Yi]/E[Yi] = 1/15) and correspond to small variations of the Young 
moduli.

A Monte Carlo simulation with 30000 samples allows us to compute the pdf of each random variable of interest. It 
constitutes the reference framework to compare the results from the SMR method.

5.2. Numerical results

5.2.1. Preliminary observations: illustration of the SMR founding assumption
The Monte Carlo simulation allows us to estimate the first five random eigenfrequencies through 30000 draws of the two 

input Young’s moduli. Fig. 12 shows the marginal density functions of the first five random eigenvalues and corresponding 
eigenvectors of the frame. It can be noticed that the first, second, and fifth eigenshapes do not vary significantly, while the 
third and fourth eigenshapes have high variations. This illustrates the SMR1 assumption that, under certain conditions, the 
random eigenvectors of the structure could be considered as deterministic. The behavior of the 3rd and 4th random eigen-
modes should be related to the relative “location” of the random eigenvalues. An overlap could be observed, representing 
their marginal pdf on the same axis.

5.2.2. First five random eigenvalues of the frame
Fig. 13 shows the marginal pdf obtained with SMR1 and SMR2 in comparison with the marginal pdf from the 

Monte Carlo simulation. For the three well separated eigenfrequencies, the SMR1 and SMR2 methods properly fit the refer-
ence marginal pdf. In the case of two close eigenfrequencies, as illustrated by the 3rd and 4th eigenfrequencies, the SMR1 
method does not accurately estimate the marginal pdf whereas the SMR2 method is still fitting the reference results.

The relative errors of the first two statistical moments are presented in Figs. 14 and 15. It can be noticed that, for the 
three random eigenfrequencies that are well separated, the relative error in the estimation of the two first moments with 
the SMR1 method is less than 0.5%. The SMR2 method obviously gives better results, but it is not necessary to invest in 
more complex computations, while SMR1 results are sufficient. The table below the error diagrams 14 and 15 presents 
the approximation of the proximity factor computed from the first moments estimations of the SMR1 and SMR2 methods 
compared to the reference proximity factor from Monte Carlo simulation. The proximity factor between the first and second 
random eigenfrequencies corresponds to the cell between these two eigenfrequencies and so on. The cell color is purple if 
the proximity factor is under the limit value PF = 1, and is orange when it is over this limit. It can be noticed that PFSMR1
correctly identifies the two close random eigenfrequencies for which the method has to be refined.

5.2.3. First twenty-five random eigenvalues of the frame
The frame application allows us to test the SMR methods on higher eigenfrequencies. The estimations of the first two 

statistical moments of the 25 first random eigenfrequencies are presented in Figs. 16 and 17. It can be noticed that the 
relative error of the expectation is less than 1.5% for SMR1 and 1.1% for SMR2, and the relative error of the standard 
deviation is less than 20% for SMR1 and 14% for SMR2. Globally, the relative error increases with the frequency. Some 
random eigenvalues deserve detailed examination.

• The 6th and 19th random eigenfrequencies present an error in the estimation of their first two statistical moments 
with SMR1, whereas SMR2 gives much better results. The error in the expectation ω6 estimated with SMR1 is about 
0.3%, while the error obtained with SMR2 is 0.03%, which is equivalent to a gain of 95% in accuracy. For ω19, the gain 
in accuracy is about 75% on the standard deviation estimation between SMR1 (error is 16%) and SMR2 (error is 4%). 
Regarding their PF, it can be noticed that they are higher than 0.5. Fig. 18 illustrates the number of random eigenvalues 
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Fig. 12. Marginal density of the first five random frequencies (a) and the corresponding eigenshapes (b).

Fig. 13. Marginal density functions of the first five eigenfrequencies estimated with SMR1 and SMR2.
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Fig. 14. Relative error of the expectation estimated with SMR1, SMR2 and the second-order perturbation method.

Fig. 15. Relative error of the standard deviation estimated with SMR1, SMR2 and the second-order perturbation method.

considered to be close depending on the limit value of PF. For a limit value PF = 1, there are 13 random eigenvalues 
identified to be close where SMR1 is not sufficient to estimate their first moments. For a limit value PF = 0.5, there are 
16 close random eigenvalues, including ω6 and ω19. This illustrates the importance of the choice of the PF limit value 
criterion.

• For the 10th–11th eigenfrequencies, Figs. 16 and 17 show a difference between the indication of the proximity factor 
computed with SMR1 and the two other ones. This is because the three values are close to the limit value, but two are 
less than the limit, while the third one is slightly over. The proximity factor computed with SMR1 indicates that one 
needs to refine the method to get a more accurate result, while the reference proximity factor would have validated a 
less accurate estimation of the random eigenvalue. This particular case could be an advantage as well as a disadvantage, 
depending on the designer’s point of view. The estimation accuracy is increased because the method used for this 
random eigenvalue will be refined. Nevertheless, it implies an additional computational cost for a low gain in accuracy. 
The criterion to choose if the method needs to be refined is an “all-or-nothing” criterion, while the proximity of two 
random eigenvalues is a concept more “fuzzy”. Particular attention should be paid to PF values close to the limit value 
depending on the designer’s objectives.

• For the case of the 23rd–24th eigenvalues, the two first moments estimations are not accurate either with SMR1 or 
with SMR2. This can be explained by the closeness of this couple of random eigenvalues. Indeed, the value of the 
corresponding proximity factor is far above the limit value PF = 1. The assumptions of the SMR1 and SMR2 methods 
are no longer valid, and the variability of the random eigenvectors is not well modeled. For this couple of random 
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Fig. 16. Relative error in the estimation of the expectation for the first 25 random eigenfrequencies.

Fig. 17. Relative error in the estimation of the standard deviation for the first 25 random eigenfrequencies.

eigenvalues, it appears appropriate to estimate their corresponding random eigenvectors through a polynomial chaos 
expansion, for example [14].

6. Application to an industrial structure: the Ariane 5 payload adapter

This section presents the application of the SMR approach on an industrial structure corresponding to the Ariane 5 
payload adapter. This is the occasion to apply the SMR approach coupled with a commercial finite element software. Ariane 
5 is a heavy-lift launcher able to carry up to two loads to geostationary transfer orbit. Payloads are located under the 
fairing and positioned one under the other. Each payload is clamped on a frame named Payload Adapter System (PAS), 
which ensures an interface with the launcher. Fig. 19 presents the Ariane 5 launcher and one kind of PAS. Different kinds 
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Fig. 18. Impact of the limit value of PF on the number of eigenvalues to be refined.

Fig. 19. Ariane 5 launcher and one of its payload adapter systems [55].

of PAS are available depending on the mission’s profile. For the purpose of this work, we have chosen to study the PAS 
1666MVS [55].

6.1. System modeling

The PAS 1666MVS consists of a conical structure with an upper interface compatible with the spacecraft and a bottom 
bolted interface compatible with the launcher. The lower cone of the PAS 1666MVS, as shown in Fig. 20a, is made of 
composite material. For the purpose of the SMR application case, it is assumed that the material is carbon epoxy composite 
with an isotropic homogenized Young modulus of expected value Y Composite = 350000 MPa. The Poisson ratio is 0.28 and 
the density is 1590 kg·m−3. The upper cone is a monolithic aluminum part with a Young modulus of expected value 
Y Alu = 70000 MPa, a Poisson ratio of 0.3, and a density of 2800 kg·m−3. An intermediate aluminum ring is included as 
a structure element of the lower composite cone. The bolted interface of the lower composite cone is made with another 
aluminum ring.

In a first approach, we assume that the Young moduli of the two different materials are independent random vari-
ables with Gamma distribution. Their expectation and coefficient of variation are respectively E[YComposite] = Y Composite =
350000 MPa, E[YAlu] = Y Alu = 70000 MPa, δ[YComposite] = δ[YAlu] = 0.20.

The PAS is axisymmetric, all the eigenmodes of the structure are then double eigenmodes. The framework of this paper is 
limited to the case of simple eigenmodes more or less close to each other. The SMR approach could be adapted to the case of 
multiple eigenmodes, but it is beyond the scope of this paper. To make the PAS test case dissymmetric, we propose to apply 
asymmetrical boundary conditions: PAS 1666MVS is clamped with the launcher through 72 regularly spaced bolted joints, 
and some angular portions of the bolted interface have been chosen unclamped. This is equivalent to a bound fault due to 
a link failure or an improper assembly. The requirement on the clamped solution enables us to obtain at least ten simple 
modes. A preliminary study has raised that the PAS with a single unclamped portion of π/6 rad has seven well-identified 
simples modes. To obtain at least ten simples modes, the selected configuration has three free portions: two small portions 
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Fig. 20. Definition of the Ariane 5 Payload Adapter PAS 1666MVS. (a) Section of the PAS 1666MVS. (b) Definition of the clamped boundary conditions of 
the lower cone.

Fig. 21. Relative error of the expectation estimation of the PAS first 10 random eigenfrequencies.

of π/6 rad spaced with π/2 rad and a large portion of π/3 rad at π/6 rad from one of the small portions as defined in 
Fig. 20b. With this configuration, the first deterministic multiple mode is the twelfth one.

The finite element analysis of the PAS was achieved with the commercial software MSC Nastran. Shell elements have 
been used, and to avoid extreme computational time, the model is limited to 20000 degrees of freedom. A Monte Carlo 
simulation with 10000 samples allows us to compute the pdf of the first ten random eigenvalues of the PAS. It constitutes 
the reference framework to compare the results from the SMR method. This simulation has been performed on a quad-core 
computer Intel® Xeon® CPU E5507 − 2.27 GHz and 16 Gb DDR3-1066. It takes about 16 h.

6.2. Numerical results

The first ten random eigenvalues of the PAS are computed with SMR1, SMR2 and the second-order perturbation method. 
Figs. 21 and 22 show the relative errors of the two first statistical moments. The table below the error diagrams presents 
the proximity factor computed with SMR1, SMR2 and the reference from the Monte Carlo simulation.

Using only the SMR first refinement level, the expectation and the standard deviation of the first ten random eigen-
values of the PAS are estimated respectively with a maximum error of 3.0% and 12%. With the same computer as for the 
Monte Carlo simulation, this estimation is performed within a minute. The SMR second refinement level allows us to reduce 
the expectation and standard deviation maximum errors, respectively, to 1.6% and 9.2%. The computation of the first ten 
random eigenvalues with SMR2 takes less than 18 min. It can be noticed that the second-order perturbation method is 
again less accurate than SMR2 to estimate the standard deviation. Although the estimation of the expectation obtained with 
SMR2 is not always better than the estimation obtained with the second-order perturbation method, the relative error on 
the expectation estimation remains very satisfying (lower than 1.6% in any case), which does not contradict the use of SMR2. 
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Fig. 22. Relative error of the standard deviation estimation of the PAS first 10 random eigenfrequencies.

This can be explained by the variability of the input parameters (δ = 0.20). Indeed, the validity domain of the perturbation 
method is known to be bounded by coefficient of variation less than 20%.

The SMR approach recommends using the SMR second refinement level only when it is necessary. For this test case, the 
proximity factor suggests refining the method for almost all the random eigenvalues. Nevertheless, for the eigenfrequencies 
ω3, ω4 and ω8 this refinement seems to be unnecessary. The proximity factor raises then some false-positive that does not 
ensure an optimized computational time. Inspired by the work of Perkins and Mote [21] and that of Du Bois [23], a way to 
overcome this issue could be to improve the proximity factor by taking into account the curvature of the reference response 
surface to identify when the response surface is sufficiently “plane” to be approximated with SMR1.

7. Conclusion

A non-intrusive approach to estimate the first two statistical moments of the random eigenvalues of a structure is pre-
sented. Referred to as SMR for Stochastic Model Reduction approach, it requires only a single deterministic finite element 
computation. This approach is based on the assumption that, in the vicinity of a given natural eigenfrequency, the dy-
namical behavior of a system is mainly characterized by the modal property of the considered eigenfrequency if all other 
eigenfrequencies are well separated. This leads one to assume the eigenvectors of the problem to be deterministic in the 
first approximation. This assumption is no longer valid when eigenvalues become closely spaced. In this case, the system 
becomes more coupled. So it is proposed to refine the method by considering the eigenvectors’ randomness through their 
first-order Taylor expansion. To decide when the method should be refined, an indicator referred to as Proximity Factor, 
based on the first two statistical moments, is proposed. Computationally free, the efficiency of this indicator relies on the 
choice of its limit value criterion.

A first case of a three-degrees-of-freedom system is used to validate the approach and to characterize the behavior of 
the proximity factor. This example highlights the criticality of the choice of the limit value of this indicator over which 
the method needs to be refined. In a second application case, a frame with random Young’s moduli allows us to apply 
the SMR approach to a wide range of random eigenfrequencies. We illustrate the SMR basis assumption by plotting the 
random eigenshapes of the frame. The ability of the proximity factor to identify when the method needs to be refined is 
demonstrated, and the criticality of its limit-value criterion is discussed. Finally, the approach is applied on an industrial 
structure modeled with a commercial software: the Ariane 5 payload adapter. This illustrates the SMR efficiency in com-
parison with Monte Carlo simulation. The first two statistical moments of the PAS first ten random eigenfrequencies are 
accurately estimated with a computational time reduction from 16 h to 18 min (i.e. a time reduction of 98%).

We conclude that the SMR method is an efficient method due to its ratio accuracy/computational-time. The proximity 
factor is a key parameter of the method, allowing one to refine only when it is necessary. Particular attention should be 
paid to the choice of the proximity factor limit value depending on the tradeoff accuracy/computational-time imposed by 
the designer.

Future works will focus on the improvement of the proximity factor. Indeed, the proposed proximity factor may give rise 
to a false positive, which may increase the global computation time of the approach without any significant accuracy im-
provement. It could then be improved, for example, by taking into account non-statistical quantities such as the curvature of 
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the eigenvalues response surfaces or by considering the correlation between two eigenvalues [52]. For this second approach, 
the computation of the complete covariance matrix has to be considered, which can not be obtained currently with SMR1. 
In addition, comparison with classical distances used in statistics such as the Mahalanobis distance [50,51] will be achieved 
to study the performance of the proximity factor. As the computational gain of the SMR method is even greater for large 
degree-of-freedom systems, the method could then be applied to more complex examples from industrial structures. Of 
particular interest is the case of bolted assembly where the stiffness of each bolted joint would be considered as a random 
variable. Bolted joints involve nonlinear phenomena as friction or contact. Future works will also focus on the application 
of the SMR approach to these kinds of nonlinear problems.

Appendix A. Calculation of the eigenvalue derivatives

In this section, the method for computing the eigenvalue derivatives introduced by [20] is briefly remembered.
λk(p) and �k(p) are the kth eigenvalue and eigenvector of the general undamped eigenvalue problem:

Hk(p)�k(p) = 0 (40)

where Hk(p) = K(p) − λk(p)M(p). M(p) and K(p) designate respectively the mass and the stiffness matrices. All quantities 
of this problem depend on parameters pi that are regrouped in the p vector.

By premultiplying the previous equation by �k(p)� , the following equation could be considered:

�k(p)�Hk(p)�k(p) = 0 (41)

Differentiating Eq. (41) with respect to a parameters pi leads to the following equation:

∂�k(p)�

∂ pi
Hk(p)�k(p)︸ ︷︷ ︸

E1(p)

+�k(p)� ∂Hk(p)

∂ pi
�k(p) + �k(p)�Hk(p)

∂�k(p)

∂ pi︸ ︷︷ ︸
E2(p)

= 0 (42)

Due to Eq. (40) and the symmetric property of matrix Hk(p), terms E1(p) and E2(p) vanish. So Eq. (42) becomes:

�k(p)� ∂Hk(p)

∂ pi
�k(p) = 0 (43)

In addition, the calculation of 
∂Hk(p)

∂ pi
using the derivatives of M(p) and K(p) with respect to pi leads to

∂Hk(p)

∂ pi
= ∂K(p)

∂ pi
− λk(p)

∂M(p)

∂ pi
− ∂λk(p)

∂ pi
M(p) (44)

If the eigenvectors are assumed to be M-orthogonal (�k(p)�M�k(p) = 1), the use of Eqs. (42) and (44) leads to the deriva-
tives with respect to pi of the kth eigenvalue:

∂λk(p)

∂ pi
= �k(p)�

[
∂K(p)

∂ pi
− λk(p)

∂M(p)

∂ pi

]
�k(p) (45)
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