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The present paper is aimed at the application of a substructure methodology, based on 
the Frequency Response Function (FRF) simulation technique, to analyze the vibration of a 
stage reducer connected by a rigid coupling to a planetary gear system. The computation 
of the vibration response was achieved using the FRF-based substructuring method. 
First of all, the two subsystems were analyzed separately and their FRF were obtained. 
Then the coupled model was analyzed indirectly using the substructuring technique. 
A comparison between the full system response and the coupled model response using 
the FRF substructuring was investigated to validate the coupling method. Furthermore, a 
parametric study of the effect of the shaft coupling stiffness on the FRF was discussed and 
the effects of modal truncation and condensation methods on the FRF of subsystems were 
analyzed.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Transmission systems are widely used in manufacturing applications due to their power advantages, decreased cost, and 
high efficiency. The multi-stage gears generally have larger reduction ratios and greater load transmissions. Dynamic models 
of transmission systems, including parallel and planetary gears, were widely investigated in literature [1–3]. Several issues 
have made the parallel gear specially interesting. The effects of bearing flexibilities and axial vibrations of a parallel gear 
were studied in [4,5]. Planetary gears are used in transmission applications such as wind turbines and helicopters, requiring 
a higher transmission torque. A great deal of research focused on the static and dynamic models of a planetary transmission 
system, created by adopting the lumped mass method [6] and the finite element (FE) model [7]. The dynamic behavior 
of a planetary transmission system was investigated in [8,9]. The sensitivity of natural frequencies and vibration modes in 
compound planetary gears were analyzed in [10]. On the other hand, a lot of research investigated the dynamic behavior 
of a gearbox model formed by two transmission systems which are the planetary and the parallel gears [11–14]. Such 
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transmission systems are widely used in wind turbine gearboxes (WTG). Peeters et al. [15] developed the flexible multibody 
dynamics model of a wind turbine transmission system in multibody dynamics software and studied its natural frequencies 
and vibration modes. Feng and Zuo [16] investigated the vibration signal models for planetary gearbox fault diagnosis.

The dynamic analysis of complex transmission systems requires much more Central Processing Unit (CPU) and compu-
tation time. In order to simplify this analysis and save their computational time, some researchers were interested in the 
study of the substructuring method and component mode synthesis [17,18]. These methods are used to build the dynamic 
response of complex systems by assembling the dynamic models from its subsystems. These subsystems can be expressed by 
spatial mass, stiffness, damping data, modal data, or receptances (dynamic compliance). The major concept of the substruc-
turing method is to use the Frequency Response Function (FRF) for computing the vibration response of the free subsystem. 
The overall coupled system response is then composed by the dynamic compliance theory [19] thanks to the dynamic stiff-
ness terms at the coupling coordinates of the subsystems [20]. This kind of coupling can be either rigid or flexible with the 
dynamic stiffness [21]. Some techniques of substructuring, as coupling and decoupling methods were proposed in [22–24]. 
Nevertheless, the coupling method applied to gears systems is quite limited in the literature. Unlike coupling, the decou-
pling method was developed for the transmission system in [23,25]. In the literature, the coupling method was investigated 
for coupling two subsystems in other applications such as automotive ones in [21,26] and rotating systems in [22] based on 
the FRF. In this context, the analytic receptance coupling method was developed by Bishop and Johnson [18]. The greatest 
advantage of this approach is its ability to increase efficiency and decrease the computation time. Furthermore, the use of 
FRF provides a common basis to combine subsystems of numerical and experimental origins.

The condensation method and the modal truncation are used in the analysis of complex systems to reduce the compu-
tation time and the problem size. Different reduction modes approaches were proposed in the literature to construct the 
reduction basis of a subsystem such as the condensation and the truncated modes. The dynamic condensation was applied 
to investigate the influences of neighboring subsystems and coupling on the FRF of each subsystem in [25,27]. The modal 
truncation problem faced with in the responses of some applications was treated in [26,28–31], and the effect of truncation 
modes was analyzed in [28]. A modal based approach for decoupling associated with modal truncation was presented in 
[30]. In addition, Ambrogio and Fregolent [30] studied the effect of modal truncation on the natural frequencies by decreas-
ing the number of modes. Suarez [32] introduced a force derivative method to analyze the effect of the truncated higher 
modes in the representation of the response of the substructures. Only the modes located in the interesting frequency range 
were considered in the dynamic analysis. In fact, modal truncation was used to express the contribution of the out-of-range 
modes on the FRFs of each subsystem.

In this paper, the application of the substructuring technique was investigated for the analysis of the vibration signals of 
a transmission system, consisting of two gear stages, which are the parallel and planetary gear systems. The present method 
was developed in order to reduce the size of the computational problem and the complexity of the dynamic model. In fact, 
the analysis of the global system is more difficult than that of the local dynamic behavior. If one subsystem is replaced by 
another with a known FRF, this method becomes useful and allows a rapid computation of the FRF of the whole system. In 
addition, the substructuring method is interested in some applications of damage detection in gear systems [16]. The modal 
truncation was investigated to obtain a consistent basis for truncation modes of substructures in the vibratory analysis of a 
complex system.

The remaining of this paper is organized as follows. The dynamic models of planetary gear and parallel stage are de-
scribed in section 2. The theoretical principles of the substructuring method are treated in section 3. The results of the FRF 
coupling method were compared to those of the FRF of the full system in section 4. The effects of condensation and modal 
truncation were investigated in section 5 before drawing the major conclusions in the final section.

2. Motion equation

The studied transmission system consists of two subsystems: a first subsystem A connected to a second subsystem B
by a rigid coupling, corresponding respectively to a parallel and to a planetary gear stage. The models of the parallel stage 
and the spur planetary gears were established by adopting the lumped parameter model (Fig. 1). The parallel stage gear is 
similar to the model proposed by Kahraman [5]. Nevertheless, eight DoFs were used to describe the gear system behavior 
rather the ten DoFs adopted by [5]. The displacements of the radial gears were not taken into account in the reference 
model. Both gears are seated on two rigid shafts, supported by flexible bearings.

The gears are modeled by rigid disks of masses m1 and m2, polar mass moments of inertia about z-axis J1 and J2 and 
diametral mass moments of inertia about the y-axis I1 and I2. The second gear is connected to the planetary gear. The 
gear-mesh is represented by linear springs along the action line. The gear mesh stiffness is assumed constant. The radial 
and the axial stiffness bearings are denoted by kyj and kzj respectively. The second shaft of the reducer is connected to the 
sun shaft by a rigid coupling of inertia I A . The shafts are supported by bearings, modeled by linear springs. The gears are 
modeled by concentrated masses. The planetary gear train components such as ring, carrier, sun, and N planets are assumed 
to be rigid bodies. Each one of these components of the planetary train has three degrees of freedom: two translations and 
one rotation. The rotation coordinates are denoted by w j = r jθ j ( j = c, r, s), where θ j is the rotation angle, r j is the base 
circle radius of the sun. In Fig. 2, ui , vi , and wi (i = c, s, r) are respectively the displacements of the sun gear, the carrier 
and the ring in two radials and rotational directions. The planetary gear system was investigated in [33]. kcu and ksu are 
the support stiffness of the carrier and the sun gears in the u direction, respectively. kcv and ksv are the support stiffness 
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Fig. 1. A stage reducer connected by a rigid coupling to a planetary gear system.

Fig. 2. Sun planet gear mesh modeling.

of the carrier and sun gears in v direction, respectively. ksw and kcw are the torsional stiffness of the carrier and sun gears. 
αs is the pressure angle of the sun/planet mesh shown in Fig. 2. Circumferential planet emplacement are determined by 
the angle ϕp , where ϕp is connected to the rotating vector i with ϕ1 = 0. The displacements δsp and δrp along the lines of 
action are formulated by [33]:

δsp = vs cosϕsp − us sinϕsp − up sinαs − v p cosαs + ws + w p

δrp = vr cosϕrp − uc sinϕrp + up sinαr − v p cosαr + wr − w p
(1)

where ϕsp = ϕp − αs , ϕrp = ϕp − αr , αs and αr are the pressure angles of ring and sun gears.
The damping is neglected when the analyses are bounded to frequency calculations. Furthermore, both the planet carrier 

and the parallel output shaft are free at their boundaries. Using the Lagrange formulation allows finding the degree of 
freedom of the system. The motion equation is expressed by:

[M]
{

Ü (t)
} + [C ]

{
U̇ (t)

} + [K ] {U (t)} = {F (t)} (2)

where [K ], [M] and [C ] are the stiffness, mass, and damping matrices, respectively. {F (t)} and {U (t)} are the excitation 
forces and the displacement vectors, respectively. t represents the time variable.

2.1. Substructure coupled method FRF

The substructure coupled method consists in dividing the global system AB into two subsystems A and B as presented 
in Fig. 1. The first subsystem is made up of the stage reducer, which is a parallel gear stage. A modeling of planetary gear 
transmission was proposed in [33]. The two subsystems are coupled with a rigid coupling. The coupling is divided into two 
equal parts as in [34]. This coupling is inspired from the technique illustrated in [35]. Both subsystems A and B are modeled 
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by a linear spring and discrete masses corresponding to the mass–spring system. The gear mesh stiffness [K (t)] is modeled 
by a linear spring on the line of action of the meshing teeth. Eq. (2) is used to determine the mass [M] and the stiffness 
[K ] of each subsystem. The stiffness matrix [K i], where i = A, B , is expressed as:

[K i] = [K bi] + [K (t)] (3)

where [K bi] presents the stiffness matrix of the bearings for each subsystem. [K (t)] is the time varying stiffness matrix, 
which is decomposed into an average stiffness matrix [km] and a time varying stiffness matrix [k(t)]. In this paper, the 
gear stiffness is assumed constant and the time variable stiffness is neglected. The generalized coordinates vector of the 
subsystem A includes 9 DoFs defined by:

U A = [A [U ]i A [U ]c]T , A [U ]i = [
r1θ(1) r2θ(2) y1 y2 z1 z2 r1ρ(y1) r2ρ(y2)

]T

A [U ]c = [θ(2,2)]T (4)

The generalized coordinates vector of the subsystem B includes 22 DoFs and can be defined by:

U B = [
B [U ]c , B [U ] j

]T
, B [U ]c = [θ(2,2)]T

B [U ] j = [
us vs ws uc vc wc ur vr wr up1 v p1 w p1 upN v pN w pN

]T (5)

The DoFs of the subsystem can be partitioned into internal and coupling DoFs A [U ]i , B [U ] j , A [U ]c and B [U ]c , respec-
tively. The mass matrix [M A] of subsystem A is expressed by:

[M A] = diag( J1/r2
1, J2/r2

2,m1,m2,m1,m2, I1/r2
1, I2/r2

2, I A/2) (6)

where m1 and m2 are the wheel and pinion mass. I1, I2 and I A are the wheel inertia, the pinion inertia and the coupling 
inertia, respectively. The rigidity matrix [K b A] of subsystem A is expressed by:

[K b A] = diag(0,0,kby1,kby2,kbz1,kbz2,kbρ y1,kbρ y2) (7)

The average stiffness matrix [km] is written as [5]:

[km] = kmoy[q][q]T (8)

where the vector [q] is given by:

[q]T = [
cosβ − cosβ cosβ − cosβ sinβ − sinβ

]T (9)

where β = 0 is the helix angle.
The mass matrix [M B ] of the subsystem B is expressed by:

[M B ] = diag (I A/2, Ms, Mc, Mr, M j, ..., MN) (10)

with [M J ] = diag (m j, m j, I j/(r j)
2 ), j = c, r, s, 1, ..., N . I j is the inertia moment for the jth element.

The stiffness matrix of subsystem B , denoted by [K B ], is expressed in Appendix A.

2.2. Full system FRF

The direct method consists in analyzing the full system without its splitting into subsystems. This method is used as a 
reference for the validation of the substructuring method. The complete system, presented in Fig. 1, consists of a planetary 
gear and a stage reducer. The behavior of the dynamics of the full system is determined in terms of Frequency Response 
Functions (FRFs). The motion equations of the subsystem are considered in the time domain. The subsystem FRF can be 
determined theoretically. Taking into account the Lagrange formalism, the differential motion equation of the full system 
can be expressed by Eq. (2) by replacing [M], [C ] and [K ] by [M AB ], [C AB ] and [K AB ] respectively. The DoFs vector [U AB ] 
of the full system is expressed by:

[U AB ] =
[

r1θ(1) r2θ(2) y1 y2 z1 z2 r1ρ(y1) r2ρ(y2) θ(2,2) us vs ws uc vc wc ur

vr wr up1 v p1 w p1 ... up N v p N w p N

]
(11)

The mass matrix [M AB ] is expressed as:

[M AB ] = diag
(

J1/r2
1, J2/r2

2, m1, m2, m1, m2, I1/r2
1, I2/r2

2, I A, Ms, Mc, Mr, Mp1, ..., MpN

)
(12)

where m1 and m2 are the pinion and wheel mass. I1, I2 and I(A) are the inertia of the wheel, the, pinion and the coupling, 
respectively.
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3. Theoretical formulation

The frequency response Function-Based Substructuring (FBS) is applied to the dynamic behavior of a rigidly coupled 
system. This method is based on the free interface Frequency Response Functions (FRFs) of the uncoupled subsystems. The 
essential concept of FBS is to combine the FRF of each subsystem to collect the FRF of the full system. In the assembly 
procedure, the FRF represents the structural dynamic stiffness of the subsystems in the frequency domain, which can be 
determined theoretically or experimentally [36].

In this section, the methodology of the coupling technique was described. Two steps were used in this technique, which 
are the determination of the FRF of each subsystem and of their coupling. The procedure of an analytical FBS coupling 
consists in the determination of the FRF of the coupling system.

3.1. Coupling Frequency Response Functions (FRFs)

The FBS technique predicts the dynamic behavior of a coupled system on the basis of free-interface FRFs of the uncoupled 
subsystems and a possible coupling stiffness. For every subsystem, the available degrees of freedom (DoFs) are classified into 
two sets, namely (1) for the coupling DoFs and (2) for the internal DoFs. These internal DoFs correspond to the excitation 
and response DoFs. The receptance matrices of subsystems A and B in the frequency domain are expressed as in [17]:[

A [U ]i

A [U ]c

]
=

[
A [H ]ii A [H ]ic

A [H ]ci A [H ]cc

][
A [F ]i

A [F ]c

]
,

[
B [U ] j

B [U ]c

]
=

[
B [H ] j j B [H ] jc

B [H ]cj B [H ]cc

][
B [F ] j

B [F ]c

]
(13)

where A [U ]i and A [U ]c (resp. B [U ] j and B [U ]c) are the displacement vectors of a subsystem A (resp. B). A [H ]ii , A [H ]ic , 
A [H ]ci and A [H ]cc (resp. B [H ] j j , B [H ] jc , B [H ]cj and B [H ]cc) denote the FRFs matrices of subsystem A (resp. B). A [F ]i and 
A [F ]c (resp. B [F ] j and B [F ]c) are the force vectors of the subsystems A (resp. B). Indices i, j and c refer to the subsystems 
A, B and the coupled DoFs, respectively. The subsystem A is rigidly connected to subsystem B at DoFs c. Using Eq. (13), the 
combined system becomes:

AB [U ] = AB [H ] AB [F ] , AB [U ] =
⎡
⎣ [U ]a

[U ]c
[U ]b

⎤
⎦ , AB [H ] =

⎡
⎣ [H ]aa [H ]ac [H ]ab

[H ]ca [H ]cc [H ]cb
[H ]ab [H ]bc [H ]bb

⎤
⎦ , AB [F ] =

⎡
⎣ [F ]a

[F ]c
[F ]b

⎤
⎦
(14)

The receptance matrix AB [H ] cannot be determined directly from the receptance matrices of the subsystems. Two natural 
conditions must be verified in the coupling method, imposing the compatibility condition at the interface and equality with 
opposite signs of the forces. The FRFs of the coupling DoFs between two subsystems A and B were expressed as in [22].

AB [H ] =
[

A [H ] 0
0 B [H ]

]
−

⎡
⎣ A [H ]ic

A [H ]cc

B [H ] jc

⎤
⎦ (A [H ]cc + B [H ]cc)

−1

⎡
⎣ A [H ]ic

A [H ]cc

B [H ] jc

⎤
⎦

T

A [[H ]] =
[

A [H ]ii A [H ]ic

A [H ]ci A [H ]cc

]
, B [H ] = [B [H ] j j]

(15)

where AB [H ] represents the FRF matrix of the assembled system. A [H ] and B [H ] are the FRF matrices of subsystems A
and B , respectively. Subscripts i and j represent the internal DoFs and c denotes the coupling DoFs. Eq. (15) is used to 
calculate the global system coupling FRF. For the flexible joint, the Kernel matrix (A [H ]cc + B [H ]cc)

−1 in Eq. (15) must be 
replaced by (A [H ]cc + B [H ]cc + B [K ]−1

s ), where B [K s] is the coupling stiffness matrix between the coupling DoFs of both 
subsystems [26]. The two FBS formulation subsystems limitation is generalized in [36].

3.2. Determination of the FRF

The first step in the analytical FBS procedure is the determination of the FRFs. Moreover the driving points FRFs in the 
coupling points are essential for the FBS procedure. Using a Fourier transformation, the subsystem dynamic behavior can be 
expressed in the frequency domain. The format of the motion equations in the frequency domain depends on the physical 
quantity of the response parameter (i.e. displacement, velocity or acceleration) that is used in the analysis. Classically, the 
motion equation is written in displacement, which leads to:

{X(ω)} = [H(ω)] {F (ω)} , [H(ω)]−1 = [K ] − ω2 [M] + jω [C ] (16)

The FRF of a mechanical system can be determined by performing an FRF synthesis based on a finite number of mode 
shapes and natural frequencies. For proportionally damped systems, this relationship between the FRF matrix H jk(ω) and 
mode shapes is expressed by:
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H jk(ω) =
n∑

r=1

r� j r�k

ω2
r − ω2 + 2 j ξrωrω

(17)

where H jk(ω) is the steady-state displacement at coordinate j due to a harmonic force excitation at coordinate k. n denotes 
the DoFs. r� j is the mass-normalized eigenvector of the physical coordinate j and the mode number r.

3.3. The dynamic condensation

The coupled system AB can be divided as follows [25]:

AB [H ] =
[

AB [H ]MM AB [H ]M S

AB [H ]S M AB [H ]S S

]
=

⎡
⎣ [H ]aa [H ]ac [H ]ab

[H ]ca [H ]cc [H ]cb

[H ]ba [H ]bc [H ]bb

⎤
⎦ (18)

According to Eq. (31), the condensed receptance matrix of the coupled system AB becomes:

AB [H ] =
[

[H ]aa [H ]ac

[H ]ca [H ]cc

]
−

[
[H ]ab

[H ]cb

]
[H ]−1

bb

[
[H ]ba [H ]bc

]

=
[

[H ]aa − [H ]ab [H ]−1
bb [H ]ba [H ]ac − [H ]ab [H ]−1

bb [H ]bc

[H ]ca − [H ]cb [H ]−1
bb [H ]bc [H ]cc − [H ]cb [H ]−1

bb [H ]bc

] (19)

with [H ]ab = 0, AB [H ] =
[

[H ]aa [H ]ac

[H ]ca [H ]cc − [H ]cb [H ]−1
bb [H ]bc

]
.

The condensed receptance matrix of the coupled system AB can be also expressed by:

AB [H ] =
[

[H ]cc [H ]cb
[H ]bc [H ]bb

]
−

[
[H ]ca
[H ]ba

]
[H ]−1

aa

[
[H ]ac [H ]ab

]
(20)

According to Eq. (31), the condensed receptance matrix of the subsystems A and B are expressed by:

A [H ] = [H ]aa − [H ]ac ([H ]cc − [H ]cb [H ]−1
bb [H ]bc)

−1 [H ]ca (21)

B [H ] = [H ]bb − [H ]bc ([H ]cc − [H ]ca [H ]−1
aa [H ]ac)

−1 [H ]cb (22)

4. Numerical simulations and discussions

Numerical simulations based on a coupling method are used to study the vibration behavior of the spur gear system 
powered by different subsystems. Damping is neglected in this model. The natural frequencies of each subsystem are val-
idated with reference to the literature. The substructure coupled FRF is compared to the global system FRF to prove the 
performance of the substructuring method. The Frequency Response Function and the coupling methods are used to calcu-
late the transfer functions of each subsystem and of the global system. The parallel stage and the planetary gear are analyzed 
separately. This analysis is focused on the modes shapes and corresponding frequencies calculation. The eigenmodes and the 
FRF using both models are compared to the present method. The mechanical parameters of the studied system are given in 
Tables 1 and 2.

4.1. Validation of the substructuring method

The studied example is based on a synthesis of the work presented by Kahraman on parallel gear and Parker on planetary 
gear. The example of the planetary gear stage with four planets was chosen by Lin and Parker [33]. The resolution of 
the eigenproblem allows recovering the eigenfrequencies of both subsystems. The eigenfrequencies of parallel gears were 
compared to Kahraman’s results. A good accuracy between the two results was evidenced. It is assumed that the FRF 
receptance H describing the displacement/force for each subsystem is known. Fig. 3 depicts the FRF of a parallel stage. 
H yy and Hzz present the receptance magnitude of subsystem A in radial and axial directions. The natural frequencies 
are computed in the frequency range [0–4000] Hz, with a step of 1 Hz. The presented peaks correspond to the natural 
frequencies of subsystem A. These peaks present the rotation and the bending modes.

The planetary gear model introduced by Lin and Parker [33] was used to verify the present results. These results were 
compared to the published frequency analysis [33] of planetary gear sets with various numbers of planet gears. The natural 
frequencies and their multiplicities for different numbers of planets N = 3, 4, 5 were proven. The natural frequencies of 
the planetary system were classified according to [33]. These frequencies indicate the vibration modes in three types: 
translational modes in which the sun, the carrier, and the ring have only a translational motion; rotational modes in which 
the sun, the carrier, and ring have only rotational motion around the rotation axis; and planet modes in which the sun, 
carrier, and the ring are fixed. The frequency response analysis was computed to estimate the vibration behavior of the 
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Table 1
The parameters of the parallel stage (i = 1, 2).

Wheel and pinion mass (kg) mi = 2
Wheel and pinion inertia moment (kg) Ii/(ri)

2 = 0.58
Wheel and pinion inertia moment (kg) J i/(ri)

2 = 1.16
Bearings stiffness (N/m) kyi = 3.5 × 108, kzi = 108

Torsional shaft flexibilities (N/m) kbρ yi/(ri)
2 = 108

Pressure angle α1 = α2 = 20◦
Teeth module (m) m = 4 × 10−3

Average mesh stiffness (N/m) k1moy = k2moy = 2 × 108

Inertia coupling (kg m2) I A = 4.48 × 10−8

Table 2
The planetary gear parameters.

Sun Ring Carrier Planet

Teeth number 30 70 – 20
Module 1.7 1.7 1.7
Teeth width (mm) 25 25 25
Mass (kg) 0.46 0.588 3 0.177
I/r2 (kg) 0.272 0.759 1.5 0.1
Base radius (m) 0.024 0.056 – 0.016
Helix angle (◦) 0 0 0

Gear mesh stiffness (N/M) Ksp = Krp = 2·108

Bearing stiffness (N/m) K p = Ksu,v = Kru,v = 108

Torsional (N/m) krw = 109; Ksw = 105; Kcw = 0
Pressure angle (◦) s = r = 21.34

Fig. 3. Subsystem A FRF in axial and radial directions: (a) in direction y and (b) in direction z.

planetary gear system. Fig. 4 depicts the FRF of the planetary gear with four planet gears in radial and rotational directions. 
The natural frequencies were computed in the frequency range [0–15000] Hz, with a 10 Hz step. The presented peaks 
correspond to the natural frequencies of subsystem B . The receptance magnitude H11 is given in Eq. (15). H11 is the 
translational FRF in the radial direction u, which is the sun DoF on subsystem B .

Next, the two subsystems A and B were coupled using the substructuring method. This analysis is focused on the cal-
culation of the full-system FRF using the two methods. The transfer functions obtained by both methods were compared 
and the effect of the stiffness value on the substructuring method is discussed. The natural frequencies obtained by the 
full-system method correspond to the natural frequencies of the subsystem denoted as an individual stage (Table 3). The 
changed modes are classified as global modes. The global system modes can be partitioned into parallel stage modes, plan-
etary gear modes, and global modes. The parallel stage output shaft follows the rotation of the sun input of the planetary 
stage. The shaft stiffness value of the sun is taken as ksw = 105 N/m. For the planetary stage, some natural frequencies 
remain identical to the those in the subsystem analysis, when coupled with the parallel stage.

The receptance of the system AB is obtained using the procedure described in section 3. The FRF results of system AB
using the coupling procedure and the full-system FRF are shown in Figs. 5–7.

Fig. 5 displays an FRF comparison using two methods in the radial and rotational directions u and w of the sun. The 
coupled method FRF curves were calculated from the FRF via Eq. (15). By coupling the first parallel with the second plane-
tary gear stage, we obtain FRF results that agree with those of the full-system FRF. The two curves obtained by the coupled 
substructure and the full system FRF methods are identical. The natural frequencies obtained by the two methods are in 
good agreement. Besides, the simplicity of the coupling method reduces the computational time by 70% compared to the 
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Fig. 4. Subsystem B FRF: (a) in the radial direction u and (b) in the rotational direction w of the sun.

Table 3
Full system natural frequencies.

N Global mode Planetary stage Parallel stage

Rotational mode Translational mode Planet mode

1 0
2 71
3 727(2)
4 1091(2)
5 1125(2)
6 1537
7 1566
8 1808
9 1893(2)
10 1971
11 2105
12 2202
13 2343(2)
14 2626
15 3972
16 5964
17 6981
18 7190(2)
19 7774
20 10438(2)

Fig. 5. Coupled system FRF computed by two methods: (a) in the radial direction u, (b) in the rotational direction w of the sun.

full-system FRF. Hcc denotes the coupling receptance magnitude described in Eq. (15). Fig. 6(a) depicts the receptance mag-
nitude H99 of the indirect and direct methods of the coupling torsion degree. The natural frequencies obtained by the 
coupled substructure and those obtained by the full system FRF methods are in a good agreement. Fig. 6(b) depicts the re-
ceptance magnitude H1313 in the DoF 13 radial direction corresponding to the planetary modes. Hcb presents the coupling 
receptance magnitude between the coupling degree and the internal degrees of subsystem B , which is presented in Eq. (15). 
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Fig. 6. Coupled system FRF: (a) H99 at the coupling DoF θ(2,2), (b) H13−13 at the degree of the second planet up2 in the radial direction.

Fig. 7. The FRF H910 coupling between the coupling DoF θ(2,2) and the degree of the sun us .

Fig. 7 depicts the receptance magnitude H12 in the indirect method where index 1 correspond to the coupling DoF of B , 
the index 2 is the sun DoF in the radial direction and H910 in the direct method where 9 represents the coupling DoF and 
10 represents the sun DoF. The results obtained by the two methods are in good agreement for all the frequencies, except 
a small difference in magnitude. The substructuring method accuracy is also noticed in the transfer functions apart from 
the diagonal one. In order to validate the two methods, all the FRFs of the coupled system were investigated by comparing 
them to the full-system FRFs. A good agreement is presented for all FRFs. Some of the achieved results are presented in 
Figs. 5–7 for different DoFs.

4.2. Stiffness effect on the substructuring method

The effect of shaft stiffness on the coupling method is analyzed in this section. Figs. 8 and 9 present the effect of the 
shaft coupling stiffness on the substructuring method in the radial and rotational directions of the sun. This effect was 
studied for three different shaft stiffness value ksw = 105, 106, and 107 N/m. The studied cases of the sun’s radial direction 
are presented in Fig. 8a–c. The obtained results using the coupled FRF and the full FRF methods are similar in the frequency 
range [0–15000] Hz. By coupling the parallel stage with the planetary gear system, the same frequencies are found in both 
methods. Nevertheless, a small difference appears in their magnitudes. This difference becomes considerable for an increased 
stiffness of the transnational modes (see Fig. 8c). Fig. 8c depicts the appearance of a new frequency in the coupled method 
FRF. This difference is sensitive to shaft stiffness. The new frequency is not present for the second radial displacement 
FRF. Nevertheless, with decreasing shaft stiffness, the difference in magnitude became small, as shown in Fig. 8a–b. Both 
magnitude and natural frequencies are sensitive to stiffness. The difference in frequencies increased with shaft stiffness (see 
Fig. 9a–b). The coupled FRF curve is slightly higher than the full FRF curve at some frequencies. The natural frequencies 
of the overall system in substructure method are sensitive to the coupling stiffness. The rotational modes of subsystem B
computed using the full system and the coupling FRF, are shown in Table 4. The achieved results explain the frequency that 
appeared in the rotational modes. The natural frequencies obtained by the coupled substructure FRF and those obtained 
by the full system FRF methods are in good agreement in rotational degrees. In two radials directions of the planetary 
gear, some new frequencies appeared. For a decreased stiffness, the rotational mode shift frequency also decreased. The 
substructuring method is sensitive to the shaft stiffness attached to the coupling.

The eigenfrequencies of subsystem B shift to a lower frequency when using the coupling method of the system AB . This 
difference appears in rotational modes.
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Fig. 8. The sun’s radial FRF direction: (a) ksw = 105, (b) ksw = 106, and (c) ksw = 107.

Table 4
Comparison of the rotational modes.

Full-system rotational mode in the FRF Coupling method rotational mode in the FRF

0 0
1550 1537
1982 1971
2626 2626
7774 7774
10438 10438

4.3. Condensation method effect on subsystems A and B

In this section, the sensitivity of the condensation on the substructuring method was discussed. The FRF of each sub-
system was computed in the frequency range [0–4000] Hz. Fig. 10 depicts the FRF results of the condensed subsystem A
in AB and the FRF of non-condensed subsystem A in the radial and rotational directions. The two curves obtained by 
the condensed and non-condensed methods were superposed in the radial direction (see Fig. 10a). Nevertheless, a small 
differences appears in Fig. 10b in frequency and magnitude in the rotational direction. The peak located around 2000 Hz 
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Fig. 9. The sun’s rotational FRF direction: (a) ksw = 105, (b) ksw = 106 and (c) ksw = 107.

shifts rearward in the condensed subsystem under the effect of subsystem B . The peak appearing at around 70 Hz is due 
to the coupling DoF. The difference in magnitude and natural frequencies of subsystem A between the condensed and the 
non-condensed methods is due to the neighbor effects of the subsystem B and the coupling. The FRF of subsystem A in the 
rotational direction is sensitive to the neighboring subsystem B and coupling DoF.

The FRF of subsystem B in AB and the FRF of subsystem B separately are shown in Fig. 11. A new frequency has clearly 
appeared, corresponding to the coupling frequency. In the radial direction, the condensed and the non-condensed FRF of 
subsystem B are superposed (see Fig. 11a). The neighbor subsystem A is not affected by the receptance of subsystem B . 
Subsystem B FRF is sensitive to the coupling DoF. The reducer subsystem A FRF is more sensitive to condensation than the 
planetary subsystem B FRF.

The effect of stiffness on neighbor subsystems A and B was analyzed in this section using the condensation method. 
Fig. 12 shows a comparison between the condensed and the non-condensed FRF in the rotational direction of subsystem B
by varying shaft stiffness. The two curves in each figure are not superposed; a difference in frequencies and magnitude 
appeared. The frequencies that appeared in the condensed subsystem A in Fig. 12a shift to low frequencies in the case of 
a decreased stiffness value (see Fig. 12b). The difference in the FRF of the condensed and the non-condensed subsystem 
A is due to the effect of subsystem B (different transmission). Subsystem A FRF is sensitive to the subsystem B FRF. The 
appearance of some peaks in the FRF of the condensed subsystem A is due to the neighbor system.
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Fig. 10. Condensed and non-condensed subsystem A FRF: (a) in the radial direction, (b) in the rotational direction.

Fig. 11. Condensed and non-condensed subsystem B FRF: (a) in the radial direction, (b) in the rotational direction.

Fig. 12. Condensed and non-condensed subsystem A FRF in the rotational direction of the sun: (a) ksw = 107, (b) ksw = 105.

4.4. Modal truncation influence on the planetary and reducer systems FRF

In this section, the effect of modal truncation was investigated by decreasing the number of modes taken into account. 
The interest frequency range is assumed to be between 0 and 4000 Hz, and the corresponding response models are gener-
ated by truncating each mode. The FRF of subsystem B without truncation is compared to the truncated FRF by considering 
only the frequencies inside the range [0–4000] Hz. The analysis of the modal truncation was investigated mode by mode 
until the last nine modes outside of the frequency range. The curves of the truncated FRF of subsystem B from one to nine 
modes are superposed in Fig. 13 in the radial and rotational directions. On the one hand, a small difference in frequencies 
and magnitude between the FRF of subsystem B without truncation and the FRF truncated was shown. On the other hand, 
the two curves are superposed in the two studied cases, which are the coupling mode and the last nine modes outside the 
frequency range. It can be concluded that the coupling mode is sensitive to the modal truncation approach. Truncated high 
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Fig. 13. FRF of the truncated and non-truncated subsystem B: (a) in the translational, (b) in the rotational direction of the sun.

Fig. 14. The FRF of truncated subsystem B .

modes affect the FRF results of subsystem B . The FRF of subsystem B is sensitive to the modal truncation, depending on 
how many and which modes are truncated [30]. The appearance of some frequencies around 1400, 1800, 2500, and 2650 Hz 
in the radial and rotational directions function FRF is due to the modal modes selected. It depends on unmeasured coupling 
DoF (see Fig. 15) and the frequency of subsystem A due to the dynamic condensation equation.

Some peaks appear in Fig. 13, corresponding to the frequencies of subsystem A. Fig. 14 shows that the parameters of 
subsystem A affect the FRF of the truncated subsystem B . The FRF of subsystem B with the truncated coupling mode and 
the sun shaft stiffness change is compared with the FRF of the truncated subsystem B without changing the stiffness of 
subsystem A. The difference in the frequencies between both FRFs is shown in Fig. 13. The FRF of subsystem B is sensitive 
to the shaft stiffness of subsystem A. Except the coupling mode, the truncation of modes outside the frequency range does 
not affect the FRF response in the translational and rotational directions. The truncated FRF is sensitive to the connection 
DoF. The truncated 9 modes do not affect the FRF response.

The effect of truncation on the FRF of subsystem B without condensation was investigated. Fig. 15 depicts a comparison 
between the FRF of subsystem B without and with all truncated modes located beyond 4000 Hz. All the obtained curves 
without and with modal truncation were superposed for all the frequencies in the rotational direction. No effect appears 
on the truncated FRF of subsystem B in the rotational direction (see Fig. 15a). But the effect is observed in Fig. 15b, so the 
coupling degree FRF is sensitive to the coupling truncation degree. The modal truncation is sensitive to the FRF of subsystem 
B in the range of interest.

Fig. 16 depicts the FRF of subsystem A without and with the truncated mode of subsystem B outside the frequency range. 
The effect of truncated mode of subsystem B on the FRF of subsystem A is presented in radial and rotational directions. 
Fig. 16(a) shows some difference in frequencies between the two curves without truncation and with the coupling degree 
truncation. Nevertheless, FRF in the radial direction is not sensitive to truncation. Also the truncated of all modes outside the 
frequency range corresponds to the same difference as the coupling mode truncation. Some clearly seen peaks correspond 
to the rotational frequency of subsystem B . The frequencies of subsystem B are shown in the FRF of subsystem A when 
truncating the coupling DoF. It should be noticed that the truncated coupling mode affects the FRF of subsystem B .

As a conclusion on modal truncation, all modes outside of the frequency range except the coupling DoF can be neglected. 
The modal truncation does not affect the substructuring method outside the frequency range. The modal truncation affects 
the transmission reducer and the planetary system. The truncation mode of B on the FRF of subsystem A is more sensitive 
than on the FRF of subsystem B . The use of the modal truncation leads to results whose accuracy depends on the selected 
eliminated modes. The choice of the truncated modes should be carried out according to the higher modes. The FRF is 
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Fig. 15. The FRF of truncated modal of subsystem B without condensation: (a) in the rotational direction, (b) in the direction of the coupling DoF.

Fig. 16. Truncated subsystem A: (a) in the rotational direction, and (b) in the radial direction.

sensitive to the coupling DoF truncation. In contrast, other modes truncated outside the frequency range of interest preserve 
the dynamic properties of the two subsystems A or B .

5. Conclusions

The present work is based on substructuring method of two rigid connected transmission subsystems, which are the 
parallel stage and the planetary gear system. The FRF of each subsystem was determined separately and then the coupled 
system is obtained using the coupling method. To verify the coupling procedures, the results were compared to those of 
the full system. It is observed that the natural frequencies obtained by the FRF of the global system and those of the 
coupled system are in good agreement. However, a small difference appears in magnitude and frequency, which is due to 
the shafts stiffness. The effect of shaft stiffness on the substructuring method is investigated. It was noted that the coupling 
method reduces the computational time compared to the FRF of the full system. The effect of coupling and neighboring 
subsystems is shown in the condensed method. The substructure method was verified by comparing the solutions obtained 
by truncating all modes located outside the analyzed frequency range to the corresponding solutions obtained by the direct 
approach. The solutions obtained through modal truncation are superposed on exact solutions for a direct comparison, 
except in the coupling mode. The FRF of each subsystem is sensitive to the coupling DoF truncation.

Appendix A. Stiffness and mass matrix of subsystem B

The bearings stiffness matrix KbB is written as:

KbB =
⎡
⎣ Ksb 0 0

0 Kcb 0
0 0 Krb

⎤
⎦ (23)

where Ksb =

⎡
⎢⎢⎣

0 0 0 0
0 Ksu 0 0
0 0 Ksv 0
0 0 0 0

⎤
⎥⎥⎦, K jb =

⎡
⎣ K ju 0 0

0 K jv 0
0 0 K jw

⎤
⎦ , j = r, c.
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K ju , K jv , K jw are the bearing stiffnesses along the tree degree of freedom.
The shaft stiffness matrix Kss is written as:

Kss = [Kss1, zeros(4,18); zeros(6,22); zeros(3n,10), zeros(3n,3n)] (24)

where Kss1 =

⎡
⎢⎢⎣

Ksw 0 0 −Ksw

0 0 0 0
0 0 0 0

−Ksw 0 0 Ksw

⎤
⎥⎥⎦.

The matrix of the mean gear stiffness KmB is written as:

KmB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
K n

s1 0 0 K 1
s2 . . . K n

s2

0
∑

K n
c1 0 K 1

c1 . . . K n
c2

0 0
∑

K n
r1 K 1

r1 . . . K n
r2

K 1
s2 K 1

c2 K 1
r2 K 1 0 0

...
...

...
...

. . .

K N
s2 K N

c2 K N
r2 0 0 K N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

K n
c1 = kp

⎡
⎣ 1 0 − sinϕp

0 1 cosϕp

− sinϕ cosϕp 0

⎤
⎦

K n
r1 = krp

⎡
⎢⎣ sin2 ϕrp − cosϕrp cosαr sinϕrp

− cosϕrp cosαr cos2 ϕrp cosϕrp

sinϕrp cosϕrp 1

⎤
⎥⎦

K n
s1 = ksp

⎡
⎢⎢⎢⎣

0 0 0 0

0 sin2 ϕsp − cosϕsp cosαs − sinϕsp

0 − cosϕsp cosαs cos2 ϕsp cosϕsp

0 − sinϕsp cosϕsp 1

⎤
⎥⎥⎥⎦

K N
c2 = kp

⎡
⎣ − cosϕp sinϕp 0

− sinϕp − cosϕp 0
0 1 0

⎤
⎦ , K N

r2 = krp

⎡
⎣ − sinϕrp sinαr − cosϕsp cosαs − sinϕsp

− cosϕsp cosαs cos2 ϕsp cosϕsp

− sinϕsp cosϕsp 1

⎤
⎦

K N
s2 = ksp

⎡
⎢⎢⎣

0 0 0
sinϕsp sinαs sinϕsp cosαs − sinϕsp

− cosϕsp sinαs − cos2 ϕsp − cosϕsp

− sinϕs − cosϕs 1

⎤
⎥⎥⎦

The matrices given in Eq. (25) are expressed by:

K N = K p
s3 + K p

c3 + K p
r3 (26)

K p
c3 =

⎡
⎣ K p 0 0

0 K p 0
0 0 0

⎤
⎦ , K p

s3 = kp

⎡
⎣ sin2 αs cosαs sinαs − sinαs

cosαs sinαs cos2 αs − cosαs

− sinαs − cosαs 1

⎤
⎦

K p
r3 = kr

⎡
⎣ sin2 αr − cosαr sinαr − sinαr

− cosαr sinαr cos2 αr cosαr

− sinαr cosαr 1

⎤
⎦

The stiffness matrix is expressed as:

KB = KmB + Kss + KbB (27)

Appendix B. The dynamic condensation

The dynamic behavior of a subsystem (r) is given by

[H (r)] f (r) = u(r) (28)
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where [H (r)] is the (N × N) inverse of dynamic stiffness, u(r) is the (N × N) displacement and f (r) is the (N × N) of applied 
forces. The degree of freedom can be partitioned into retained (master) DoFs û(r) and discarded (slave) DoFs ŭ(r) .

By assuming that no external force is applied at the slave, Eq. (28) can be partitioned in the form:

[
[H ]MM [H ]M S
[H ]S M [H ]S S

]{ {
f̂

(r)}
{0}

}
=

⎧⎨
⎩

{
û(r)

}
{

ŭ(r)
}

⎫⎬
⎭ (29)

By eliminating the slave DoFs ŭr it is obtained

([H ]MM − [H ]M S [H ]−1
S S [H ]S M)

{
f̂

(r)} =
{

û(r)
}

(30)

The condensed receptance matrix [H ] can be identified as[
Ĥ (r)

]
= [H ]MM − [H ]M S ([H ]−1

S S ) [H ]S M (31)

The submatrices [H ]MM , [H ]Ms , [H ]S M and [H ]S S can be built by using Eq. (17).
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