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The main objective of this work is to propose some regularization techniques for modeling 
contact actions in a clutch system and to solve the obtained nonlinear dynamic problem 
by a high-order algorithm. This device is modeled by a discrete mechanical system with 
eleven degrees of freedom. In several works, the discontinuous models of the contact ac-
tions are replaced by the smoothed functions using the hyperbolic tangent. We propose, 
in this work, to replace the discontinuous model by a regularized model with new con-
tinuous functions that permit us to search the solution under Taylor series expansion. This 
regularized model approaches better the discontinuous model than the model based on 
the smoothing functions, especially in the vicinity of the zone of singularities. To solve the 
equations of motion of discrete mechanical systems, we propose to use a high-order algo-
rithm combining a time discretization, a change of variable based on the previous time, 
a homotopy transformation and Taylor series expansion in the continuation process. The 
results obtained by this modeling are compared with those computed by the Newton–
Raphson algorithm.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In contrast to gears, which are considered to be motion transmission elements by obstacles, the clutch is a complex 
mechanism commonly used in motors, for transmitting the motion by means of a high friction effect between adjacent 
disks. The clutch plays an important role, not just in the commitment and the separation between the motor and the 
gearbox, but also in the prevention of the damage of the box speed and the vibration reduction of the rest of the vehicle 
when there is a modification in the rotation frequency of the disk. During the past years, several studies [1–7] have been 
developed to describe the nonlinear dynamic behavior of the clutch system in order to study the effect of different key 
parameters that affect its movement. In many studies, the clutch is modeled by a discrete mechanical system composed of 
torsional and linear elastic springs of negligible mass and of damping elements and disks assumed to be rigid.

Walha et al. [7] have studied a defective clutch modeled by a mechanical system with eleven degrees of freedom by 
introducing nonlinearities of the dry friction, a two-stage stiffness, and a spline clearance in order to analyze the effect of 
defects in angular misalignment and in parallelism on movement. Recently, Walha et al. [8] have proposed a new two-stage 
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model involving a helical-gear clutch system with twenty-seven degrees of freedom. The differential equations are solved 
numerically by the Runge–Kutta integration scheme [9] using smoothing by the hyperbolic tangent function. Thus, they have 
showed that the eccentricity defect affects the nonlinear dynamic behavior of the studied mechanism.

The assembly of different technical components in the clutch system leads to localized contact nonlinearities and im-
portant couplings. These nonlinearities are often modeled by piecewise linear functions. To overcome the difficulty of the 
discontinuity in the numerical integration, some researchers have used a linearization technique that consists in transform-
ing the nonlinear problem into linear problems. But most authors [3,7,10–13] have used the smoothing procedure for the 
treatment of contact actions.

Kim et al. [14] have proposed four ways of smoothing discontinuous functions using the hyperbolic tangent and arc-
tangent functions that provide a good approximation with respect to the hyperbolic-cosine function and the quintic spline. 
They have proved it by studying the influence of the smoothing factor on the frequency response of a system that contains 
a clearance nonlinearity. Works by Driss et al. [6,15] and Walha et al. [7] are based on the use of the hyperbolic tangent 
function to smooth three types of singular functions of a torsional model. Duan et al. [12] have investigated the dynamics 
of a mechanical oscillator with a pre-load nonlinearity by the multi-harmonic method using the arc-tangent function for 
smoothing the non-analytical relationship. Duan et al. [3] have used the hyperbolic tangent function to approximate the 
classical function of Coulomb friction.

According to Duan et al. [10], the value of the conditioning factor should be carefully selected to ensure the appropriate 
representation of the discontinuous function. The increase in the value of the smoothing factor improves the approximation 
of the discontinuous models. However, a larger value of this parameter can lead to numerical instabilities that generate a 
considerable computation time [3]. In another work [13], it has been shown that, for small values of this parameter, the 
convergence is fast, but it is not preferred, since it induces a bad approximation and therefore the calculated response may 
not be sufficiently precise.

In this work, we are interested in the numerical simulation of nonlinear dynamics of a clutch system using a new ver-
sion of a high-order algorithm [16–20] with a new modeling of the different contact actions. Our numerical algorithm is 
essentially based on the discrete model proposed in the article [15], which represents the clutch mechanism by a spring-
mass-damper system, and whose equations of motion are solved using the numerical integration scheme of Runge–Kutta. 
In our modeling, we propose a new improved version of the modeling of different contact actions in a clutch mechanism 
existing in the literature in order to achieve a good approximation, and we try to obtain a realistic response. To show the 
effectiveness of the numerical approach to simulate the nonlinear dynamic response of the considered mechanical system, 
we have chosen as a reference the Newton–Raphson algorithm [21] coupled with the Newmark integration scheme with the 
use of the hyperbolic tangent function, and we used thereafter the regularization developed in this work. The high-order 
approach is used for the purpose of reducing the computation time. This approach, allowing the construction of the curve 
solution branch by branch, is based on coupling power series expansion and on a continuation process. In our analysis, we 
study the effect of different regularization parameters on the nonlinear dynamic responses of the considered clutch system.

2. Dynamic model of the clutch mechanism

The clutch mechanism is modeled by a physical system shown in Fig. 1. This system is comprised of two blocks. The 
first contains the flywheel and the cover (m1, I1), the diaphragm spring and the pressing plate (m2, I2), while the second 
is comprised of the friction shoes (m3, I3), the hub of the clutch (m4, I4) and the rest of the transmission (m5, I5), with 
Ii and mi being respectively the mass and the torsional inertia of the ith element of the clutch. Each block is supported 
by a flexible bearing of bending rigidity kzi and of traction–compression stiffness kxi and kyi . This bearing is connected in 
parallel with the damping elements cxi , c yi and czi , where i is the number of blocks (i = 1, 2). The contact between the 
two blocks is performed by the torques and the friction forces. The friction torque T f(δ̇2) represents the torsional friction 
between the pressing plate and friction shoes and T f(δ̇3) represents the friction torque between the flywheel and the friction 
shoes. In both cases, the movement of these blocks, in the plan xy, induces tangential friction forces F Tx1/2

and F T y1/2
that 

express the actions applied by the first block on the second in both directions x and y, respectively. The action of the spring 
diaphragm, which allows the components of the first block to turn at the same angular speed as those of the second block, 
is modeled by a torsional spring of stiffness kd and a negligible mass. The cover applies a pressure P to maintain both 
the flywheel, pressing plate, and friction shoes in permanent contact to ensure a perfect transmission. The actions of the 
torsion springs which bind the splined hub with friction shoes are represented by the term Kdss fdss(δi), with Kdss being 
the equivalent stiffness of the equivalent linear spring and fdss(δi) is the contact force. The backlash space in the splined 
attachment between the hub and the output shaft can be defined by the term Ksc fsc(δi), where Ksc represents the torsional 
stiffness of the shaft and fsc(δi) is the function that models the loss of contact. The equation of motion of this discrete 
model verified by the vector of generalized coordinates can be written in the following matrix form:

[M]{q̈} + [C]{q̇} + [K ]{q} + fdss(δ4){ϕdss} + fsc(δ5){ϕsc} + T f (δ̇2){ϕ2}
+ T f (δ̇3){ϕ3} + F Tx1/2

{ϕTx} + F T y1/2
{ϕT y } = {Fext(t)}

(1)

where [M] represents the mass matrix given by:
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Fig. 1. Modeling of the clutch system with a discrete mechanical system taking into account of the different types of contact.

[M] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1 0 0 0 0 0 0 0 0 0 0
0 M1 0 0 0 0 0 0 0 0 0
0 0 M1 0 0 0 0 0 0 0 0
0 0 0 M2 0 0 0 0 0 0 0
0 0 0 0 M2 0 0 0 0 0 0
0 0 0 0 0 M2 0 0 0 0 0
0 0 0 0 0 0 I1 + I2 0 0 0 0
0 0 0 0 0 0 0 I2 + I3 0 0 0
0 0 0 0 0 0 0 0 I1 + I3 0 0
0 0 0 0 0 0 0 0 0 I3 + I4 0
0 0 0 0 0 0 0 0 0 0 I4 + I5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

with M1 = m1 + m2 and M2 = m3 + m4 + m5 represent the masses of the two blocks, [C] is the damping matrix given by:

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cx1 0 0 0 0 0 0 0 0 0 0
0 c y1 0 0 0 0 0 0 0 0 0
0 0 cz1 0 0 0 0 0 0 0 0
0 0 0 cx2 0 0 0 0 0 0 0
0 0 0 0 c y2 0 0 0 0 0 0
0 0 0 0 0 cz2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −c34 0
0 0 0 0 0 0 0 0 0 −c34 0
0 0 0 0 0 0 0 0 0 2c34 −c45
0 0 0 0 0 0 0 0 0 −c34 2c45

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

condition contact actions with c34 and c45 are the torsional viscous damping coefficients, cxi , c yi and czi are the linear 
damping coefficients, [K ] is the stiffness matrix of the discrete model defined by:

[K ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kx1 0 0 0 0 0 0 0 0 0 0
0 ky1 0 0 0 0 0 0 0 0 0
0 0 kz1 0 0 0 0 0 0 0 0
0 0 0 kx2 0 0 0 0 0 0 0
0 0 0 0 ky2 0 0 0 0 0 0
0 0 0 0 0 kz2 0 0 0 0 0
0 0 0 0 0 0 2kd 0 0 0 0
0 0 0 0 0 0 −kd 0 0 0 0
0 0 0 0 0 0 kd 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

{Fext(t)} is the vector of external forces dependent on time, which is given by:
t{Fext(t)} =< 0,0, P ,0,0,0, Te(t),0, Te(t),0, T D > (5)

with Te(t) is an input torque applied by an asynchronous motor which is composed of mean Tm and pulsating Tp(t)
components. This input torque is given under the form of Fourier series expansion by:
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Te(t) = Tm + Tp(t) = Tm +
nmax∑
n=1

Tpn cos
(
ωpnt + φpn

)
(6)

with ωpn = nNe fe, Ne is the number of engine cylinders [22,23], φpn is the associated phase lag [14]; nmax is the harmonic 
order of the firing sequence, Tpn is the amplitude for the nth harmonic and fe is the frequency excitation. In this paper, 
only the fundamental term (nmax = 1) is considered for the sake of simplicity and the phase angle assumed to be zero. 
TD is the resisting torque applied by the rest of driveling system assumed equal to the average component of the motor 
torque Tm. The independent temporal vectors {ϕdss}, {ϕsc}, {ϕ2}, {ϕ3}, {ϕTx} and {ϕT y } are expressed by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t{ϕdss} = < 0,0,0,0,0,0,0,−Kdss,−Kdss,2Kdss,−Kdss >

t{ϕsc} = < 0,0,0,0,0,0,0,0,0,−Ksc,2Ksc >

t{ϕ2} = < 0,0,0,0,0,0,−1,2,1,−1,0 >

t{ϕ3} = < 0,0,0,0,0,0,1,1,2,−1,0 >

t{ϕTx} = < −2,0,0,2,0,0,0,0,0,0,0 >

t{ϕT y } = < 2,0,0,−2,0,0,0,0,0,0,0 >

(7)

The vector of the generalized coordinates {q} contains eleven degrees of freedom and it is given by:

t{q} =< x1, y1, z1, x2, y2, z2, δ1, δ2, δ3, δ4, δ5 > (8)

with xi , yi and zi are the linear displacements of bearings in the three directions x, y and z, δi (i = 1, .., 5) are the relative 
angular displacements defined by δ1 = θ1 − θ2, δ2 = θ2 − θ3, δ3 = θ1 − θ3, δ4 = θ3 − θ4, and δ5 = θ4 − θ5, θi (i = 1, ..., 5)

are the absolute rotation angles of the different elements. The quantities {q̇} and {q̈} denote the velocity and acceleration 
vectors, respectively.

3. Mathematical modeling of contact actions

3.1. Modeling of friction contacts

In many transmission mechanisms, the contact is carried out by friction between surfaces. Previous studies [5,24,25] have 
used the friction torque function of the classical Coulomb model T f(δ̇i), which depends on the relative velocity δ̇i (i = 2,3)

between the contact surfaces and is expressed as:

T f(δ̇i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ts if δ̇i > 0

[−Ts Ts] if δ̇i = 0

−Ts if δ̇i < 0

, i = 2,3 (9)

where Ts is the saturation of the friction torque. This model is an ideal case characterized by the abrupt change in the 
friction torque between sticking and sliding. It is considered the simplest [26], defining three states of contact: positive 
sliding, negative sliding, and pure collage [27].

The tangential frictions of the stock F Tx1/2
and F T y1/2

due to the translation in both directions x and y, respectively, are 
represented by Coulomb’s theorem [6,7,15] and given by:⎧⎪⎨

⎪⎩
F Tx1/2

= −μk P δ̇Tx
‖δ̇Tx ‖ , δ̇Tx = ẋ2 − ẋ1 ,

δ̇Tx
‖δ̇Tx ‖

∼= sgn (ẋ2 − ẋ1)

F T y1/2
= −μk P

δ̇T y

‖δ̇T y ‖ , δ̇T y = ẏ2 − ẏ1 ,
δ̇T y

‖δ̇T y ‖
∼= sgn ( ẏ2 − ẏ1)

(10)

where sgn is the conventional triple-valued signum function, δ̇Tx and δ̇T y are the relative velocities in the directions x and 
y and μk is the kinetic friction coefficient.

3.2. Modeling of the progression springs

The springs in the clutch disk are called torsion damper springs. Their main function is to absorb the fluctuations of the 
engine revolutions. These springs absorb the shock of clutch engagement during the acceleration. During the braking of the 
motor, the springs are compressed to reduce the deceleration shock. The alternative change of engagement of one or two 
springs into action can be described by three piecewise linear regimes defining the function f D S S(δ4) can be written as 
[23,28]:
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fdss(δ4) =

⎧⎪⎪⎨
⎪⎪⎩

δ4 − (1 − αdss)bdss if δ4 > bdss

αdssδ4 if −bdss ≤ δ4 ≤ bdss

δ4 + (1 − αdss)bdss if δ4 < −bdss

(11)

where bdss is the value of half of the gap space between the two springs and αdss is the stiffness ratio between the two 
contact states of the piecewise-linear elastic function that satisfies the condition 0 < αdss ≤ 1.

3.3. Contact modeling in the splined hub

It is well known that the contact between the splined shaft and the coupling hub requires an inevitable clearance. It is 
defined as the excess space whose value must not be excessive for the operating requirements. For this, it must be fixed 
carefully to respect the typical tolerances of the manufacturing and of the operation. This backlash space in the splined 
attachment induces minor movements between the output shaft and the hub. This undesirable behavior is represented 
mathematically by the function fsc(δ5) and described by the following equation [6–8,15]:

fsc(δ5) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ5 − bsc if δ5 > bsc

0 if −bsc ≤ δ5 ≤ bsc

δ5 + bsc if δ5 < −bsc

(12)

where bsc represents the half of the spline clearance.

4. Regularization technique of the various contact actions

In this section, we recall the various smoothing functions existing in the literature, which model the different contact 
actions in the studied mechanism and we give the steps leading to the regularization of these actions according to our 
modeling [29]. In the works [3,7,10–13], the authors have used a smoothing technique based on the hyperbolic tangent 
function. The reason to use the regularizing technique in this work is, on the one hand, the applicability of the technique of 
Taylor series expansions [30,31] and, on the other hand, the improvement of the approximations existing especially in the 
vicinity of the singularity points.

In order to explain our regularization technique, let us consider the non-regularized law (11) that models the progression 
springs stiffness. This law has been used by several authors [6,8,14,15] in a smooth shape using the hyperbolic tangent 
function defined as follows:

f̄dss(δ4) = δ4 + (1−αdss)
2 ((δ4 − bdss) tanh(σdss(δ4 − bdss))

− (δ4 + bdss) tanh(σdss(δ4 + bdss)))
(13)

where σdss is the smoothing parameter. In this paper, we propose to replace the non-regularized double stage stiffness 
function f̄dss(δ4) of (13) by the following regularized function given by:

f̃dss(δ4) = δ4 + 1

2
(hdss(δ4) − gdss(δ4)) (14)

where hdss(δ4) and gdss(δ4) are square root of a polynomial function given by:

hdss(δ4) =
√

((1 − αdss)(δ4 − bdss))
2 + 4η2

dssb2
dss

gdss(δ4) =
√

((1 − αdss)(δ4 + bdss))
2 + 4η2

dssb2
dss

(15)

where ηdss is the regularized parameter. In Fig. 2, we represent the influence of different smoothing and regularization 
parameters on the quality of the approximation. According to Figs. 2a and 2b, one can conclude that the proposed regular-
ization, in this work, approximates perfectly the singularity zones when the used parameter is small. Indeed, the curve of 
the regularized law fits better with the shape of the singularity of equation (11).

Similarly, to regularize the law modeling the actions in the clearance of splines (12), it suffices to take αdss = 0 in the 
previous regularization. Then, we obtain the following regularized law:

f̃sc(δ5) = δ5 + 1

2
(hsc(δ5) − gsc(δ5)) (16)

where hsc(δ5) and gsc(δ5) are given by:
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Fig. 2. Effect of the smoothing parameter σdss and of the regularization parameter ηdss on the abruptness of transition of the approximated function of 
two-stage stiffness.

Fig. 3. Effect of the smoothing parameter σsc and of the regularization parameter ηsc on the abruptness of transition of the approximated function of 
splined clearance.⎧⎪⎨

⎪⎩
hsc (δ5) =

√
(δ5 − bsc)

2 + 4η2
scb2

sc

gsc (δ5) =
√

(δ5 + bsc)
2 + 4η2

scb2
sc

(17)

and ηsc is the regularization parameter. In Fig. 3, we present a comparison between the proposed regularization and the 
law obtained by smoothing [11] using the hyperbolic tangent function, which is given by:

f̄sc(δ5) = δ5 + 1

2
((δ5 − bsc) tanh(σsc(δ5 − bsc)) − (δ5 + bsc) tanh(σsc(δ5 + bsc))) (18)

where σsc is the smoothing parameter. Here we retain the same comments as before.
Similarly, we present below the various regularized laws of torque and forces of friction that are represented by 

Coulomb’s law. The graph of the classical Coulomb model (10) of equation (9) is an irregular function, because it has 
singularities at the point δ̇i = 0. The smoothed form [6,8,25] of the torsional friction torque is:

T̄ f(δ̇i) = Ts tanh(σi δ̇i), i = 2,3 (19)

Here, we propose as a regularization of the classical model (10), the following function:
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Fig. 4. Effect of the smoothing parameter σi and of the regularization parameter ηi on the abruptness of the transition of the approximated function of 
torsional frictions.

T̃ f (δ̇i) = 1

2
(hi(δi) − gi(δi)) (20)

where hi(δi) and gi(δi) are given by:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

hi(δi) =
√(

Ts
εi

)2 (
εi + δ̇i

)2 + 4η2
i T 2

s

gi(δi) =
√(

Ts
εi

)2 (
εi − δ̇i

)2 + 4η2
i T 2

s

, i = 2,3 (21)

and ηi , (i = 2, 3) are the regularization parameters. Fig. 4 shows that the two studied techniques allow one to have a good 
approximation.

The function modeling the tangential friction, which is given by the equation (10), is approximated, here, as that of the 
Coulomb model, by:⎧⎨

⎩
F̄ Tx1/2

(δ̇Tx) = −μk P tanh(σxδ̇Tx)

F̄ T y1/2
(δ̇T y ) = −μk P tanh(σy δ̇T y )

(22)

The regularized functions corresponding to those of the equation (10) are given by:⎧⎨
⎩

F̃ Tx1/2
(δ̇Tx) = −μk P

2 (hTx(δ̇Tx) − gTx(δ̇Tx))

F̃ T y1/2
(δ̇T y ) = −μk P

2 (hT y (δ̇T y ) − gT y (δ̇T y ))
(23)

where hTx(δ̇Tx ), gTx(δ̇Tx ), hT y (δ̇T y ) and gT y (δ̇T y ) are expressed by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hTx(δ̇Tx) =
√

( 1
εx

)2(εx + δ̇Tx)
2 + 4η2

x

gTx(δ̇Tx) =
√

( 1
εx

)2(εx − δ̇Tx)
2 + 4η2

x

hT y (δ̇T y ) =
√

( 1
εx

)2(εy + δ̇T y )
2 + 4η2

y

gT y (δ̇T y ) =
√

( 1
εx

)2(εy − δ̇T y )
2 + 4η2

y

(24)

Fig. 5 shows the influence of the different parameters that determine the two regularization techniques on the quality 
of the approximation of the tangential friction action according to the x direction. According to the figures presented above, 
we note that the value of the regularization parameter that provides good adjustment depends on the shape of the curve 
of the standard model in the vicinity of singularity points; for example, ηx = 0.1 for the regularization given in Fig. 5b 
and ηdss = 0.001 for the regularization given in Fig. 2b. Referring to Figs. 2, 3, 4 and 5, we remark that the proposed 
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Fig. 5. Effect of the smoothing parameter σx and of the regularization parameter ηx on the abruptness of transition of the approximated function of 
tangential frictions.

regularization gives a better approximation than when replacing by the hyperbolic tangent functions, especially near the 
singular points.

5. Description of the used algorithm

This section explains the different steps of the algorithm used to solve the nonlinear equation (1) governing the move-
ment of the clutch system via the discrete model. The aim is to use a more realistic approximation of the different contact 
actions through our regularization and thereafter reducing the computation time expressed here in terms of number of 
inversions of the tangent matrix compared to incremental iterative methods integrating the regularization of the various 
contact actions. This technique of regularization allows us, first, to search the solution to the considered problem in the 
form of a Taylor series expansion and, secondly, to ameliorate the solution to the problem in the vicinity of the singularity 
zone. The algorithm used is based on the following stages.

5.1. Time discretization

In our modeling, we use the time scheme of Newmark [32] to express the velocity and acceleration vectors at time 
tn+1 = tn + �t as follows:{ {q̈n+1} = a0({qn+1} − {qn}) − {ωn}

{q̇n+1} = �tβa0({qn+1} − {qn}) + {ψn}
(25)

where the vectors {ωn} and {ψn} are defined by:

{ωn} = a1{q̇n} + a2{q̈n}
{ψn} = (1 − a1�tβ){q̇n} + (�t(1 − β) − a2�tβ){q̈n}

(26)

with a0 = 1
�t2γ

, a1 = 1
�tγ , a2 = 1

2γ − 1, �t is the time step, the values of coefficients β and γ that ensure the stability 
of the temporal scheme are given by β = 0.5 and γ = 0.25. Taking into account equation (25), the equation of motion (1)
written at time tn+1 becomes:

[K L]({qn+1} − {qn}) + f n+1
sc {ϕsc} + f n+1

dss {ϕdss} + T n+1
f {ϕ2} + T n+1

f {ϕ3}
+ F n+1

Tx1/2
{ϕTx} + F n+1

T y1/2
{ϕT y } = {F n+1}

(27)

where [K L] = a0[M] + �tβa0[C] + [K ], {F n+1} = {F n+1
ext } + [M]{ωn} − [C]{ψn} − [K ]{qn} and {qn+1} is the unknown vector at 

time tn+1. The different linearization approaches defined with respect to the previous time tn = n�t which are used in our 
algorithm are presented in the following condensed form:
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{�U } = {un+1} − {un} (28)

where the vector {un+1} at time tn+1 and the increment vector {�U } are given by:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t{un+1} = < {qn+1}, δn+1
dss ,hn+1

dss , gn+1
dss , δn+1

sc ,hn+1
sc , gn+1

sc , δ̇n+1
2 ,hn+1

2 , gn+1
2 ,

δ̇n+1
3 ,hn+1

3 , gn+1
3 , δ̇n+1

Tx
,hn+1

Tx
, gn+1

Tx
, δ̇n+1

T y
,hn+1

T y
, gn+1

T y
>

t{�U } = < {�Q },�Ddss,�Hdss,�Gdss,�Dsc,�Hsc,�Gsc,�Ḋ2,�H2,

�G2,�Ḋ3,�H3,�G3,�ḊTx ,�HTx ,�G Tx ,�ḊT y ,�HT y ,�G T y >

(29)

Taking into account equation (28), the problem (27) discretized in time verified by new incremental unknowns is written in 
the following reduced form:

[K n
T ]{�Q } + {F ({�Q }, {�Q })} = {Sn+1} (30)

where [K n
T ] is the tangent matrix evaluated at time tn given by:

[K n
T ] = a0[M] + �tβa0[C] + [K ] + [K n

Tdss
] + [K n

Tsc
] + [K n

Tx1/2
]

+ [K n
T y1/2

] + [K n
T2

] + [K n
T3

] (31)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[K n
Tdss

] = (1 + (1−αdss)
2

2 (
(δn

dss−bdss)

hn
dss

− (δn
dss+bdss)

gn
dss

)){ϕdss} < χdss >

[K n
Tsc

] = (1 + 1
2 (

(δn
sc−bsc)

hn
sc

− (δn
sc+bsc)

gn
sc

)){ϕsc} < χsc >

[K n
T2

] = 1
2 (

( Ts
ξ

)2(ξ+δ̇n
2)

hn
2

+ ( Ts
ξ

)2(ξ−δ̇n
2)

gn
2

)�tβa0{ϕ2} < χ2 >

[K n
T3

] = 1
2 (

( Ts
ξ

)2(ξ+δ̇n
3)

hn
3

+ ( Ts
ξ

)2(ξ−δ̇n
3)

gn
3

)�tβa0{ϕ3} < χ3 >

[K n
Tx1/2

] = −μk P
2 (

( 1
� )2(�+δ̇n

Tx
)

hn
Tx

+ ( 1
� )2(�−δ̇n

Tx
)

gn
Tx

)�tβa0{ϕTx}(< νx2 > − < νx1 >)

[K n
T y1/2

] = −μk P
2 (

( 1
� )2(�+δ̇n

T y
)

hn
T y

+ ( 1
� )2(�−δ̇n

T y
)

gn
T y

)�tβa0{ϕT y }(< νy2 > − < νy1 >)

(32)

the quadratic form {F ({�Q }, {�Q })} is defined by:

{F ({�Q }, {�Q })} = {Fdss({�Q }, {�Q })} + {Fsc({�Q }, {�Q })}
+ {F2({�Q }, {�Q })} + {F3({�Q }, {�Q })}
+ {F Tx1/2

({�Q }, {�Q })} + {F T y1/2
({�Q }, {�Q })}

(33)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{Fdss({�Q }, {�Q })} = 1
4 ((1 − αdss)

2( 1
hn

dss
− 1

gn
dss

)�D2
dss − �H2

dss
hn

dss
+ �G2

dss
gn

dss
){ϕdss}

{Fsc({�Q }, {�Q })} = 1
4 (( 1

hn
sc

− 1
gn

sc
)�D2

sc − �H2
sc

hn
sc

+ �G2
sc

gn
sc

){ϕsc}

{F2({�Q }, {�Q })} = 1
4 (( Ts

ξ
)2( 1

hn
2

− 1
gn

2
)�Ḋ2

2 − �H2
2

hn
2

+ �G2
2

gn
2

){ϕ2}

{F3({�Q }, {�Q })} = 1
4 (( Ts

ξ
)2( 1

hn
3

− 1
gn

3
)�Ḋ2

3 − �H2
3

hn
3

+ �G2
3

gn
3

){ϕ3}

{F Tx1/2
({�Q }, {�Q })} = −μk P

4 (( 1
� )2( 1

hn
Tx

− 1
gn

Tx
)�Ḋ2

Tx
− �H2

Tx
hn

Tx
+ �G2

Tx
gn

Tx
){ϕTx}

{F T y1/2
({�Q }, {�Q })} = −μk P

4 (( 1
� )2( 1

hn
T y

− 1
gn

T y
)�Ḋ2

T y
− �H2

T y

hn
T y

+ �G2
T y

gn
T y

){ϕT y }

(34)

and the right-hand side {Sn+1}, which depends on the solution at time tn = n�t , is given by:

{Sn+1} = {F n+1} − {Sn
dss} − {Sn

sc} − {Sn
2} − {Sn

3} − {Sn
Tx

} − {Sn
T y

} (35)

1/2 1/2
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with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{F n+1} = {F n+1
ext } + [M]{ωn} − [C]{ψn} − [K ]{qn}

{Sn
dss} = fdss(δ

n
dss){ϕdss}

{Sn
sc} = fsc(δ

n
sc){ϕsc}

{Sn
2} = Tf (δ̇

n
2){ϕ2} + 1

2 (
( Ts

ξ
)2(ξ+δ̇n

2)

hn
2

+ ( Ts
ξ

)2(ξ−δ̇n
2)

gn
2

)(−δ̇n
2+ < χ2 > {ψn}){ϕ2}

{Sn
3} = Tf (δ̇

n
3){ϕ3} + 1

2 (
( Ts

ξ
)2(ξ+δ̇n

3)

hn
3

+ ( Ts
ξ

)2(ξ−δ̇n
3)

gn
3

)(−δ̇n
3+ < χ3 > {ψn}){ϕ3}

{Sn
Tx1/2

} = F n
Tx1/2

{ϕTx} − μk P
2 (

( 1
� )2(�+δ̇n

Tx
)

hn
Tx

+ ( 1
� )2(�−δ̇n

Tx
)

gn
Tx

)(−ẋn
2 + ẋn

1

+ (< νx2 > − < νx1 >){ψn}){ϕTx}

{Sn
T y1/2

} = F n
T y1/2

{ϕT y } − μk P
2 (

( 1
� )2(�+δ̇n

T y
)

hn
T y

+ ( 1
� )2(�−δ̇n

T y
)

gn
T y

)(− ẏn
2 + ẏn

1

+ (< νy2 > − < νy1 >){ψn}){ϕT y }

(36)

5.2. Homotopy transformation

In order to apply the perturbation technique, we transform, firstly, problem (30) into an artificial problem obtained by 
homotopy transformation [16,20,33]. The homotopy transformation used here consists in introducing, on the one hand, a 
perturbation parameter ε , and, on the other hand, an arbitrary invertible matrix [K ∗] as follows:

[K ∗]{�W } + ε([K n
T ] − [K ∗]){�W } + ε{F ({�W }, {�W })} = {Sn+1} (37)

where {�W (ε)} is the new unknown vector of the artificial problem (37), which depends on the perturbation parameter ε
in such a way that, for ε = 0, we obtain a problem simple to solve, and, for ε = 1, we obtain the solution to problem (30).

5.3. Series expansion and continuation procedure

The solution to the artificial problem (37) is sought in the series expansion form [34,35] truncated at order p with 
respect to a perturbation parameter ε as follows:

{�W } = {�W0} +
p∑

k=1

εk{�Wk} (38)

The validity range of this series expansion is defined by the criterion [18,20,35,36] given by:

εmax =
(
κ

‖{�W1}‖∥∥{�W p}∥∥
) 1

p−1

(39)

where κ is a given tolerance parameter. Taking into account the series expansion (38), the problem (37) is transformed into 
a succession of linear problems of the same tangent matrix [K ∗] as:

Order 0 : [K ∗]{�W0} = {Sn+1}
Order 1 ≤ k ≤ p : [K ∗]{�Wk} = −([K n

T ] − [K ∗]){�Wk−1}
− ∑k−1

r=0{F Q ({�Wr}, {�Wk−1−r})}
(40)

If (εmax ≥ 1) then the solution to the initial problem (30) at time tn+1 is given by:

{qn+1} = {qn} + {�W (ε = 1)} (41)

If (εmax < 1), the continuation process functions with a matrix [K ∗] = [K n
T ] evaluated as the starting solution to each step to 

build a new branch solution. Let us note that the computation of each branch solution is achieved using a single inversion 
of the arbitrary matrix [K ∗].
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Table 1
Parameters used for simulating the studied clutch system.

Parameters and excitation Values

Torsional inertias (kg·m2) I1 = 0.2, I2 = 12·10−3, I3 = 83·10−4, I4 = 2·10−4, I5 = 18·10−2

Masses (kg) m1 = 10, m2 = 1.17, m3 = 0.8, m4 = 0.2, m5 = 9

Torsional damping (N·m·rad/s) c34 = 0.1, c45 = 0.1

Linear damping (N·s/m) cxi = c yi = czi = 0.1 (i = 1,2)

Bearing stiffness (N/m) kxi = kyi = kzi = 1010 (i = 1,2)

Torsional spring stiffness (N·m/rad) kd = 8·105, Kdss = 17500, Ksc = 3·105

Saturation friction torque (N·m) Ts = 350

Torque excitation amplitude (N·m) Tm = 300, Tp = 250

Excitation frequency (Hz) Fe = 30

Receiving torque (N·m) TD = Tm

The static friction coefficient μs = 0.3

The kinetic friction coefficient μk = 0.75μs

P = 5·105 N/m2, bsc = 0.2 rad, bdss = 0.125 rad, αdss = 0.167

6. Results and discussions

To demonstrate the efficiency and effectiveness of the used approach to simulate the nonlinear dynamic response of 
a clutch mechanism, we take the same application as that made in the work of Driss et al. [15] with the same data as 
that listed in Table 1. The values of the time step and those of the coefficients used in the time scheme Newmark are: 
�t = 4·10−7 s, γ = 0.25 and β = 0.5. To define the optimal regularization parameters, we have opted for a numerical 
experimentation with the used algorithm and the Newton–Raphson method. In a first time, we will carry out a numerical 
study with the Newton–Raphson method while comparing the two approximation types for the considered contact: the 
proposed regularization operations and smoothed functions (hyperbolic tangent). In a second time, the same numerical 
study will be done with the used algorithm to reduce computation time. This study will be our objective in the following 
paragraphs.

6.1. Numerical study with Newton–Raphson method

In order to determine the optimum values of the regularization parameters, which allow us to have a good approxi-
mation, a preliminary numerical experimentation has been performed. According to this numerical experimentation, the 
optimum values of these parameters are: ηx = ηy = 10−2, ηsc = ηdss = 10−4, η2 = η3 = 10−3, εx = εy = 8, ε2 = 0.08, 
ε3 = 0.008. Regarding the smoothing parameters, we adopted those used in reference [8]: σx = σy = 50, σsc = σdss = 100, 
σ2 = σ3 = 50. The tolerance parameter used in the Newton–Raphson method is fixed at κ = 10−4. In this section, we will 
use the Newton–Raphson method to compare the two types of approximations: smoothing functions and regularized func-
tions. This study is the subject of the first original idea for this article: Comparison between the tangent hyperbolic and the 
proposed regularizations by using the Newton–Raphson Method. In the following, the solution will be searched for so that 
the residue is less than 10−4.

In Fig. 6, we represent the relative angular displacements δ4 and δ5 with respect to time in the cases of smoothed 
and regularized functions. From this figure, we can see that there is a difference between the curves using the regularized 
functions and those using smoothing functions. This difference shows that smoothing functions do not represent well the 
discontinuity conditions (see Fig. 7). The obtained solutions require 595391 inversions of tangent matrix for the regularized 
functions and 605054 inversions of tangent matrix for the smoothing function. In Fig. 6e, we notice that the duration 
of the contact loss is greater in the case of the regularized functions that in the case of smoothing functions. To reduce 
the computation time, we will use the high-order algorithm detailed above in the following paragraph for the regularized 
functions only.

6.2. Numerical study with the used algorithm

In this section, we will discuss and compare the used algorithm and the Newton–Raphson method in the case of regu-
larized functions. The solution’s quality will be examined by computing the residue of equation (1). The used algorithm is 
applied to simulate the problem of equation (1) with the same values of the regularization parameters as those that were 
used in the previous section. In the following, we will study the influence of the truncation order on the number of length 
steps required to compute the solution on the considered time interval by fixing the tolerance parameter κ = 10−9. In Ta-
ble 2, we report the number of steps for truncation orders p = 12, 13, 14, 16, 20, 25. From this table, we remark that the 
used algorithm starts functioning from truncation order p = 13 and that the number of steps decreases when the truncation 
order increases.
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Fig. 6. Relative angular displacements δi , i = 1 ...5 with respect to time in the cases of smoothed and regularized functions.



776 Y. Hilali et al. / C. R. Mecanique 345 (2017) 764–778
Fig. 7. Different contact actions in the cases of smoothed and regularized functions.
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Table 2
Influence of the truncation order on the number of steps for the tolerance parameter κ = 10−9.

Truncation order 12 13 14 16 20 25

Number of steps Diverge 546 520 488 441 405

Fig. 8. Decimal logarithm of the residual norm with respect to time for the case of regularized functions and comparison of results obtained by the used 
algorithm and by the Newton–Raphson method.

Thereafter, we will adopt truncation order p = 14 and tolerance parameter κ = 10−9 for the used algorithm and the 
tolerance parameter κ = 10−4 for the Newton–Raphson method. In Fig. 8, we represent the solution quality represented by 
the decimal logarithm of the residual vector norm versus time. According to this figure, we remark that the solution quality 
is always less than 10−4 so that we can compare the two methods.

In Fig. 8c, we represent the evolution of δ1 with respect to time for the case of regularized functions obtained by both 
algorithms. These solution curves require 520 inversions of matrix [K ∗] with the used algorithm and 598480 inversions of 
tangent matrix with the Newton–Raphson method. This comparison confirms the robustness, accuracy, and efficiency of the 
used algorithm.

7. Conclusion

In this work, we have used a high-order algorithm for simulating the nonlinear dynamic behavior of the clutch system. 
This algorithm combines the high-order implicit technique based on developments in Taylor series coupled with New-
mark’s integration scheme in a continuation procedure. The original idea is the proposition of new continuous functions 



778 Y. Hilali et al. / C. R. Mecanique 345 (2017) 764–778
which approximate the singular functions of the contact actions. The obtained results are convincing compared to the 
Newton–Raphson method with two types of approximation: smoothing function and regularized functions. The used algo-
rithm requires no correction and one inversion of the iteration matrix allows us to get a good part of the solution. The 
key points in this high-order implicit algorithm are first a high-order solver based on developments in Taylor series, second 
the possibility of choosing the tangent matrix [K ∗], which limits the number of matrices to be triangulated. Let us recall 
that the used algorithm solves the nonlinear dynamic behavior of the clutch system with a high-order predictor without 
any correction. This comparison confirms the robustness, accuracy and efficiency of the used algorithm. Compared to the 
Newton–Raphson method, the used algorithm is found competitive in terms of computational cost versus accuracy and 
benefit from a simple implementation. According to the obtained results, the proposed regularized functions have yielded 
encouraging results.
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