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We consider an arc-shaped conducting rigid line inclusion located at the interface between 
a circular piezoelectric inhomogeneity and an unbounded piezoelectric matrix subjected 
to remote uniform anti-plane shear stresses and in-plane electric fields. Moreover, one 
side of the rigid line inclusion has become fully debonded from the matrix or the 
inhomogeneity leading to the formation of an insulating crack. After the introduction 
of two sectionally holomorphic vector functions, the problem is reduced to a vector 
Riemann–Hilbert problem, which can be decoupled sequentially by repeated application 
of the orthogonality relations between the eigenvectors for two corresponding generalized 
eigenvalue problems.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The problem of finding stress singularities at an interface crack (including free–free, fixed–fixed, and free–fixed cracks) 
has attracted considerable attention in the literature (see, for example, Ting [1] for a review). A fixed–fixed crack is more 
commonly referred to as a rigid line inclusion or anticrack [2], whereas a free–fixed crack corresponds to a debonded rigid 
line inclusion or debonded anticrack [3]. The corresponding stress singularities can be determined using the method of 
eigenfunction expansion [4] and complex variable techniques [5,6]. The stress singularities at an interfacial crack tip in 
piezoelectric solids have also been discussed in detail (see, for example [7–9]).

In this work, we endeavor to study a debonded arc-shaped conducting rigid line inclusion at the interface between 
a circular piezoelectric inhomogeneity and an infinite piezoelectric matrix when the composite is subjected to remote 
uniform anti-plane stresses and in-plane electric fields. The conducting rigid line inclusion can be debonded either from 
the matrix or from the inhomogeneity, resulting in the formation of an insulating crack. Following the introduction of 
two sectionally holomorphic vector functions, the problem is reduced to a vector Riemann–Hilbert (R–H) problem. By twice 
applying the orthogonal relations between corresponding eigenvectors, the vector R–H problem is decoupled into four scalar 
R–H problems, the solutions to which can be obtained by evaluating the corresponding Cauchy integrals. In our discussion, 
all of the results including those involving singularities in the near tip electroelastic field are obtained analytically. In 
particular, we also derive a rigorous solution to the degenerate case of equal eigenvalues.
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Fig. 1. A debonded arc-shaped conducting rigid line inclusion located at the interface between a circular piezoelectric inhomogeneity and a piezoelectric 
matrix.

2. Problem formulation

The general solution corresponding to the anti-plane shear deformations of a hexagonal piezoelectric material exhibiting 
6-mm symmetry with its poling direction along the x3-axis is given by [10]:[

u3
φ

]
= Im

{
f(z)

}
(1)[

2ε32 + 2iε31
−E2 − iE1

]
= f′(z),

[
σ32 + iσ31
D2 + iD1

]
= Cf′(z), C = CT =

[
C44 e15
e15 −ε11

]
(2)

where u3 and φ are, respectively, the anti-plane displacement and electric potential; σ31 and σ32 are the anti-plane shear 
stresses; D1 and D2 are electric displacements; E1 and E2 are in-plane electric fields; ε31 and ε32 are mechanical strains; 
C44, e15 and ε11 are the elastic stiffness, the piezoelectric constant and the permittivity constant; f(z) is a 2D analytic vector 
function of the complex variable z = x1 + ix2. In Eq. (2), C is real symmetric, but not positive definite.

As shown in Fig. 1, we consider the anti-plane shear deformations of an infinite hexagonal piezoelectric matrix reinforced 
by a circular hexagonal piezoelectric inhomogeneity of radius R with its center at the origin when the composite is subjected 
to uniform remote anti-plane shear stresses (σ∞

31 , σ∞
32 ) and in-plane electric fields (E∞

1 , E∞
2 ). The poling directions of the 

two phases are along the x3-axis. The inhomogeneity-matrix interface L is composed of two parts: the arc Lb is perfectly 
bonded whilst the remaining arc Lc is occupied by a debonded arc-shaped conducting rigid line inclusion. The mid-point of 
the arc Lb lies on the positive x1-axis and the central angle subtended by Lb is 2θ0. We denote by a = R eiθ0 and ā = R e−iθ0

the positions of the two tips of the debonded conducting rigid line inclusion. Throughout the paper, the subscripts 1 and 2 
(or the superscripts (1) and (2)) will be used to identify the respective quantities in the inhomogeneity and the matrix.

We introduce two sectionally holomorphic vector functions h1(z) and h2(z) defined by

h1(z) =
⎧⎨
⎩

f1(z) + f̄2(
R2

z ) − kz − k̄R2z−1, |z| < R

f2(z) + f̄1(
R2

z ) − kz − k̄R2z−1, |z| > R
(3)

h2(z) =
⎧⎨
⎩

f1(z) − C−1
1 C2 f̄2(

R2

z ) − C−1
1 C2kz + C−1

1 C2k̄R2z−1, |z| < R

C−1
1 C2f2(z) − f̄1(

R2

z ) − C−1
1 C2kz + C−1

1 C2k̄R2z−1, |z| > R
(4)

where k is related to the remote electromechanical loading through

k =
⎡
⎣ σ∞

32 +iσ∞
31 +e(2)

15 (E∞
2 +iE∞

1 )

C (2)
44

−(E∞
2 + iE∞

1 )

⎤
⎦ (5)

It is seen from the above definitions that h1(z) and h2(z) are continuous across the arc Lb and are analytic in |z| < R
and |z| > R , respectively, including the point at infinity; they are discontinuous only across the arc Lc . It then follows from 
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Eqs. (3) and (4) that the original analytic vector functions and their analytical continuations f1(z), f2(z), ̄f1(
R2

z ), ̄f2(
R2

z ) can 
be expressed in terms of the newly introduced h1(z) and h2(z) as follows:

f1(z) = (C1 + C2)
−1C2h1(z) + (C1 + C2)

−1C1h2(z) + 2(C1 + C2)
−1C2kz

f̄2

(
R2

z

)
= (C1 + C2)

−1C1h1(z) − (C1 + C2)
−1C1h2(z) + (C1 + C2)

−1(C1 − C2)kz + k̄R2z−1, |z| < R (6)

f̄1

(
R2

z

)
= (C1 + C2)

−1C2h1(z) − (C1 + C2)
−1C1h2(z) + 2(C1 + C2)

−1C2k̄R2z−1

f2(z) = (C1 + C2)
−1C1h1(z) + (C1 + C2)

−1C1h2(z) + kz + (C1 + C2)
−1(C1 − C2)k̄R2z−1, |z| > R (7)

In the following two sections, we will discuss in detail two configurations: (i) the inner side of the conducting rigid line 
inclusion is perfectly bonded to the piezoelectric inhomogeneity, whilst its outer side is fully debonded from the piezoelec-
tric matrix; (ii) the inner side of the conducting rigid line inclusion is fully debonded from the piezoelectric inhomogeneity, 
whilst its outer side is perfectly bonded to the piezoelectric matrix.

3. A rigid line inclusion debonded from the matrix

In the first configuration, the boundary conditions on the conducting rigid line inclusion (which is debonded from the 
matrix) can be expressed in terms of the functions f1(z), f2(z), ̄f1(

R2

z ), ̄f2(
R2

z ) as follows

f+1 (z) − f̄−1
(

R2

z

)
= 0, f−2 (z) + f̄+2

(
R2

z

)
= 0, z ∈ Lc (8)

Substitution of Eqs. (6) and (7) into the above yields the following vector Riemann–Hilbert problem:[
C2 C1
C1 −C1

][
h+

1 (z)

h+
2 (z)

]
+
[−C2 C1

C1 C1

][
h−

1 (z)

h−
2 (z)

]
= −2

[
C2
C1

]
kz + 2

[
C2

−C1

]
k̄R2z−1, z ∈ Lc (9)

In order to solve this problem, we first consider the following generalized eigenvalue problem:

C2w = ρC1w (10)

where ρ is the eigenvalue and w the associated eigenvector. The two eigenvalues and the associated eigenvectors of Eq. (10)
are given explicitly as

ρ1,2 = C (1)
44 ε

(2)
11 + C (2)

44 ε
(1)
11 + 2e(1)

15 e(2)
15 ±

√
(C (1)

44 ε
(2)
11 − C (2)

44 ε
(1)
11 )2 + 4(C (1)

44 e(2)
15 − C (2)

44 e(1)
15 )(ε

(2)
11 e(1)

15 − ε
(1)
11 e(2)

15 )

2[C (1)
44 ε

(1)
11 + (e(1)

15 )2]
(11)

w1 =
[

ρ1e(1)
15 − e(2)

15

C (2)
44 − ρ1C (1)

44

]
, w2 =

[
ρ2e(1)

15 − e(2)
15

C (2)
44 − ρ2C (1)

44

]
(12)

The two eigenvalues in Eq. (11) can be positive real or complex conjugates with positive real parts. When the two 
eigenvalues are distinct, we have the following orthogonality relations between the two eigenvectors[

wT
1

wT
2

]
C1

[
w1 w2

]=
[

δ1 0
0 δ2

]
,

[
wT

1

wT
2

]
C2

[
w1 w2

]=
[

δ1ρ1 0
0 δ2ρ2

]
(13)

where δ1 and δ2 are non-zero coefficients.
By introducing the following transform

h1(z) = [
w1 w2

]
p(z), h2(z) = [

w1 w2
]

q(z) (14)

and making use of the orthogonality relations in Eq. (13), Eq. (9) can be expressed in terms of p(z) = [
p1(z) p2(z)

]T
and 

q(z) = [
q1(z) q2(z)

]T as follows[
ρ1 1
1 −1

][
p+

1 (z)

q+
1 (z)

]
+
[−ρ1 1

1 1

][
p−

1 (z)

q−
1 (z)

]
= −2z

[
Y1(ρ1, δ1,k1,k2)

Y2(ρ1, δ1,k1,k2)

]
+ 2R2z−1

[
Y1(ρ1, δ1, k̄1, k̄2)

−Y2(ρ1, δ1, k̄1, k̄2)

]
[

ρ2 1
1 −1

][
p+

2 (z)

q+
2 (z)

]
+
[−ρ2 1

1 1

][
p−

2 (z)

q−
2 (z)

]
= −2z

[
Y1(ρ2, δ2,k1,k2)

Y2(ρ2, δ2,k1,k2)

]
+ 2R2z−1

[
Y1(ρ2, δ2, k̄1, k̄2)

−Y2(ρ2, δ2, k̄1, k̄2)

]

z ∈ Lc (15)
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where

Y1(ρ, δ,k1,k2) = ρ

δ

[
k1
(
C (2)

44 e(1)
15 − C (1)

44 e(2)
15

)+ k2
(
C (1)

44 ε
(2)
11 + e(1)

15 e(2)
15

)]− k2

δ

[
C (2)

44 ε
(2)
11 + (

e(2)
15

)2]
Y2(ρ, δ,k1,k2) = ρk2

δ

[
C (1)

44 ε
(1)
11 + (

e(1)
15

)2]+ k1

δ

(
C (2)

44 e(1)
15 − C (1)

44 e(2)
15

)− k2

δ

(
C (2)

44 ε
(1)
11 + e(1)

15 e(2)
15

)
(16)

It is seen from Eq. (15) that the vector R–H problem for 
[

p1(z) q1(z)
]T

is completely decoupled from that for [
p2(z) q2(z)

]T
. We next consider the following generalized eigenvalue problem:[−ρ 1

1 1

]
v = λ

[
ρ 1
1 −1

]
v (17)

where λ is the eigenvalue and v the associated eigenvector. The two eigenvalues and the associated eigenvectors of Eq. (17)
are determined as

λ1 = 1 + i
√

ρ

1 − i
√

ρ
, λ2 = 1 − i

√
ρ

1 + i
√

ρ
(18)

v1 =
[

1
i
√

ρ

]
, v2 =

[
1

−i
√

ρ

]
(19)

In addition, we have the following orthogonality relations between the two eigenvectors[
vT

1

vT
2

][
ρ 1
1 −1

][
v1 v2

]=
[

2(ρ + i
√

ρ) 0
0 2(ρ − i

√
ρ)

]
[

vT
1

vT
2

][−ρ 1
1 1

][
v1 v2

]=
[

2(−ρ + i
√

ρ) 0
0 2(−ρ − i

√
ρ)

]
(20)

Upon introduction of the following transform,[
p1(z)
q1(z)

]
=
[

v(1)
1 v(1)

2

][
ξ1(z)
η1(z)

]
,

[
p2(z)
q2(z)

]
=
[

v(2)
1 v(2)

2

][
ξ2(z)
η2(z)

]
(21)

(with superscripts (1) and (2) indicating the quantities associated with ρ1 and ρ2, respectively) and application of Eq. (20), 
Eq. (15) can be decoupled into the following four independent scalar R–H problems:

ξ+
j (z) + λ

( j)
1 ξ−

j (z) = −z
Y1(ρ j, δ j,k1,k2) + i

√
ρ j Y2(ρ j, δ j,k1,k2)

ρ j + i
√

ρ j

+ z−1 R2[Y1(ρ j, δ j, k̄1, k̄2) − i
√

ρ j Y2(ρ j, δ j, k̄1, k̄2)]
ρ j + i

√
ρ j

η+
j (z) + λ

( j)
2 η−

j (z) = −z
Y1(ρ j, δ j,k1,k2) − i

√
ρ j Y2(ρ j, δ j,k1,k2)

ρ j − i
√

ρ j

+ z−1 R2[Y1(ρ j, δ j, k̄1, k̄2) + i
√

ρ j Y2(ρ j, δ j, k̄1, k̄2)]
ρ j − i

√
ρ j

, z ∈ Lc, j = 1,2 (22)

By evaluating the corresponding Cauchy integrals, the solutions to the above are found to be

ξ ′
j(z) = − Y1(ρ j, δ j,k1,k2) + i

√
ρ j Y2(ρ j, δ j,k1,k2)

(1 + λ
( j)
1 )(ρ j + i

√
ρ j)

{
1 − χ

( j)
1 (z)

[
z − Re{a} + 2ε

( j)
1 Im{a}]}

− R2[Y1(ρ j, δ j, k̄1, k̄2) − i
√

ρ j Y2(ρ j, δ j, k̄1, k̄2)]
(1 + λ

( j)
1 )(ρ j + i

√
ρ j)

[
1

z2
− χ

( j)
1 (z)

χ
( j)
1 (0)z2

+ χ
( j)
1 (z)χ ′ ( j)

1 (0)

[χ( j)
1 (0)]2z

]

η′
j(z) = − Y1(ρ j, δ j,k1,k2) − i

√
ρ j Y2(ρ j, δ j,k1,k2)

(1 + λ
( j)
2 )(ρ j − i

√
ρ j)

{
1 − χ

( j)
2 (z)

[
z − Re{a} + 2ε

( j)
2 Im{a}]}

− R2[Y1(ρ j, δ j, k̄1, k̄2) + i
√

ρ j Y2(ρ j, δ j, k̄1, k̄2)]
(1 + λ

( j)
2 )(ρ j − i

√
ρ j)

[
1

z2
− χ

( j)
2 (z)

χ
( j)
2 (0)z2

+ χ
( j)
2 (z)χ ′ ( j)

2 (0)

[χ( j)
2 (0)]2z

]
, j = 1,2 (23)

where
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χ
( j)
k (z) = (z − a)−

1
2 −iε( j)

k (z − ā)−
1
2 +iε( j)

k , ε
( j)
k = − lnλ

( j)
k

2π
, j, k = 1,2 (24)

The branch cuts for χ( j)
k (z) are taken along Lc(z) such that χ( j)

k (z) ∼= z−1 as |z| → ∞. Once ξ ′
j(z) and η′

j(z) are known, 
p′

j(z) and q′
j(z) can be determined from Eq. (21). Consequently, h′

1(z) and h′
2(z) are arrived at from Eq. (14), and the original 

analytic vector functions f′1(z) defined in the inhomogeneity and f′2(z) defined in the matrix are ultimately determined from 
Eqs. (6)1 and (7)2.

When ρ1 = ρ2 in Eq. (11) and C1 is not proportional to C2 (this situation corresponds to the degenerate case), it is more 
convenient to consider the following transform[

h1(z)
h2(z)

]
= [

y1 y2 y3 y4
]

g(z) (25)

where g(z) = [
g1(z) g2(z) g3(z) g4(z)

]T
is a 4D analytic vector function, and the generalized eigenvectors y1, y2, y3, y4

are determined by[−C2 C1
C1 C1

]
y j = λ j

[
C2 C1
C1 −C1

]
y j[−C2 C1

C1 C1

]
y j+1 = λ j

[
C2 C1
C1 −C1

]
y j+1 +

[
C2 C1
C1 −C1

]
y j, j = 1,3 (26)

where

λ1 = 1 + i
√

ρ1

1 − i
√

ρ1
, λ3 = 1 − i

√
ρ1

1 + i
√

ρ1
(27)

The following quasi-orthogonal relationships among the four generalized eigenvectors are shown to be true:⎡
⎢⎢⎢⎣

yT
2

yT
1

yT
4

yT
3

⎤
⎥⎥⎥⎦
[

C2 C1
C1 −C1

][
y1 y2 y3 y4

]=

⎡
⎢⎢⎣

d1 d2 0 0
0 d1 0 0
0 0 d3 d4
0 0 0 d3

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

yT
2

yT
1

yT
4

yT
3

⎤
⎥⎥⎥⎦
[−C2 C1

C1 C1

][
y1 y2 y3 y4

]=

⎡
⎢⎢⎣

d1 d2 0 0
0 d1 0 0
0 0 d3 d4
0 0 0 d3

⎤
⎥⎥⎦
⎡
⎢⎢⎣

λ1 1 0 0
0 λ1 0 0
0 0 λ3 1
0 0 0 λ3

⎤
⎥⎥⎦ (28)

where d1, d2, d3, d4 are non-zero coefficients. It is deduced from Eqs. (26)–(28) that

y3 = ȳ1, y4 = ȳ2, λ3 = λ̄1, d3 = d̄1, d4 = d̄2 (29)

By considering Eqs. (25) and (28), Eq. (9) can be rewritten in the following form[
g+

1 (z)

g+
2 (z)

]
+
[

λ1 1
0 λ1

][
g−

1 (z)

g−
2 (z)

]
= −2

[
1

d1
yT

2 − d2
d2

1
yT

1
1

d1
yT

1

]{[
C2
C1

]
kz −

[
C2

−C1

]
k̄R2z−1

}
[

g+
3 (z)

g+
4 (z)

]
+
[

λ3 1
0 λ3

][
g−

3 (z)

g−
4 (z)

]
= −2

[
1

d3
yT

4 − d4
d2

3
yT

3
1

d3
yT

3

]{[
C2
C1

]
kz −

[
C2

−C1

]
k̄R2z−1

}
, z ∈ Lc (30)

The above can be solved by means of the following quasi-decoupling method: g′
2(z) and g′

4(z) can first be determined 
by solving two independent scalar R–H problems, g′

1(z) and g′
3(z) can then be determined by inserting the expressions for 

g′
2(z) and g′

4(z), and solving the resulting two independent scalar R–H problems. The final results are then

g′
j(z) = 2

d j(1 + λ j)

[(
d j+1

d j
+ 1

1 + λ j

)
yT

j − yT
j+1

]⎧⎪⎪⎨
⎪⎪⎩

[
C2
C1

]
k
{

1 − χ j(z)
[
z − Re{a} + 2ε j Im{a}]}

+
[

C2
−C1

]
k̄R2

[
1
z2 − χ j(z)

χ j(0)z2 + χ j(z)χ ′
j(0)

[χ j(0)]2z

]
⎫⎪⎪⎬
⎪⎪⎭

+ χ j(z)

iπd jλ j(1 + λ j)

∫
1

t − z
yT

j

{[
C2
C1

]
k
[
t − Re{a} + 2ε j Im{a}]+

[
C2

−C1

]
k̄R2

[
1

χ j(0)t2
− χ ′

j(0)

[χ j(0)]2t

]}
dt
Lc
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Fig. 2. The oscillatory index ε′ as a function of the coupling factor κ .

g′
j+1(z) = − 2

d j(1 + λ j)
yT

j

⎧⎪⎪⎨
⎪⎪⎩

[
C2
C1

]
k
{

1 − χ j(z)
[
z − Re{a} + 2ε j Im{a}]}

+
[

C2
−C1

]
k̄R2

[
1
z2 − χ j(z)

χ j(0)z2 + χ j(z)χ ′
j(0)

[χ j(0)]2z

]
⎫⎪⎪⎬
⎪⎪⎭ , j = 1,3 (31)

where the Cauchy integral is taken in the counterclockwise direction from the upper tip to the lower tip of the rigid line 
inclusion, and

χ j(z) = (z − a)−
1
2 −iε j (z − ā)−

1
2 +iε j , ε j = − ln λ j

2π
, j = 1,3 (32)

It is seen from the analysis in this section that:
(i) when (C (1)

44 ε
(2)
11 − C (2)

44 ∈(1)
11 )2 + 4(C (1)

44 e(2)
15 − C (2)

44 e(1)
15 )(ε

(2)
11 e(1)

15 − ε
(1)
11 e(2)

15 ) > 0, the stresses and electric displacements at 
the tips of the line inclusion exhibit the power type singularities r− 1

2 ±γ1 and r− 1
2 ±γ2 with γ j = 1

π arctan(
√

ρ j), j = 1, 2;

(ii) when (C (1)
44 ε

(2)
11 − C (2)

44 ε
(1)
11 )2 + 4(C (1)

44 e(2)
15 − C (2)

44 e(1)
15 )(ε

(2)
11 e(1)

15 − ε
(1)
11 e(2)

15 ) < 0, the stresses and electric displacements at 
the tips of the line inclusion exhibit the singularities r− 1

2 −ε′′±iε′
and r− 1

2 +ε′′±iε′
with ε′ and ε′′ being the real and imaginary 

parts of ε(1)
1 (= ε̄

(2)
2 = −ε

(1)
2 = −ε̄

(2)
1 );

(iii) when (C (1)
44 ε

(2)
11 − C (2)

44 ε
(1)
11 )2 + 4(C (1)

44 e(2)
15 − C (2)

44 e(1)
15 )(ε

(2)
11 e(1)

15 − ε
(1)
11 e(2)

15 ) = 0 [or equivalently 2e(2)
15 = e(1)

15 (
C (2)

44

C (1)
44

+ ε
(2)
11

ε
(1)
11

) ±√
C (1)

44 ε
(1)
11 + (e(1)

15 )2(
C (2)

44

C (1)
44

− ε
(2)
11

ε
(1)
11

)] and C1 is not proportional to C2, the stresses and electric displacements at the tips of the 

line inclusion exhibit the singularities r− 1
2 ±γ1 and r− 1

2 ±γ1 ln r with γ1 = 1
π arctan(

√
ρ1). The additional logarithmic term in 

the singularities is due to the remaining Cauchy integral in Eq. (31).
For example, if the inhomogeneity and the matrix possess identical material properties, but have opposite poling direc-

tions (i.e. C (1)
44 = C (2)

44 , e(1)
15 = −e(2)

15 , ε(1)
11 = ε

(2)
11 ), Eq. (11) becomes

ρ1 = 1 + iκ

1 − iκ
, ρ2 = 1 − iκ

1 + iκ
(33)

where κ is the electromechanical coupling factor defined by

κ = |e(1)
15 |√

C (1)
44 ε

(1)
11

(34)

In this case, the stresses and electric displacements exhibit the singularities r− 1
4 ±iε′

and r− 3
4 ±iε′

where the oscillatory 
index ε′ as a function of κ is illustrated in Fig. 2. When κ = 1, the oscillatory index attains its maximum value of max{ε′} =
ln(

√
2+1) = 0.1403.
2π
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4. A rigid line inclusion debonded from the inhomogeneity

In the second configuration (see Section 2), the boundary conditions on the conducting rigid line inclusion (which is 
debonded from the inhomogeneity) can be expressed in terms of f1(z), f2(z), ̄f1(

R2

z ), ̄f2(
R2

z ) as follows:

f+1 (z) + f̄−1
(

R2

z

)
= 0, f−2 (z) − f̄+2

(
R2

z

)
= 0, z ∈ Lc (35)

Substitution of Eqs. (6) and (7) into the above yields the following vector Riemann–Hilbert problem:[
C2 C1
C1 −C1

][
h+

1 (z)

h+
2 (z)

]
−
[−C2 C1

C1 C1

][
h−

1 (z)

h−
2 (z)

]
= 2

[−C2
C2

]
kz − 2

[
C2
C2

]
k̄R2z−1, z ∈ Lc (36)

If we introduce the transform in Eq. (14) for the case of distinct eigenvalues in Eq. (11), the above can be rewritten as:[
ρ1 1
1 −1

][
p+

1 (z)

q+
1 (z)

]
−
[−ρ1 1

1 1

][
p−

1 (z)

q−
1 (z)

]
= 2zY1(ρ1, δ1,k1,k2)

[−1
1

]
− 2R2z−1Y1(ρ1, δ1, k̄1, k̄2)

[
1
1

]
[

ρ2 1
1 −1

][
p+

2 (z)

q+
2 (z)

]
−
[−ρ2 1

1 1

][
p−

2 (z)

q−
2 (z)

]
= 2zY1(ρ2, δ2,k1,k2)

[−1
1

]
− 2R2z−1Y1(ρ2, δ2, k̄1, k̄2)

[
1
1

]

z ∈ Lc (37)

where Y1(ρ, δ, k1, k2) has been defined in Eq. (16)1. We can see that the vector R–H problem for 
[

p1(z) q1(z)
]T is decou-

pled from that for 
[

p2(z) q2(z)
]T.

After the introduction of the transform in Eq. (21) and utilization of Eq. (20), Eq. (37) can be decoupled into

ξ+
j (z) − λ

( j)
1 ξ−

j (z) = z
iY1(ρ j, δ j,k1,k2)√

ρ j
+ z−1 iR2λ

( j)
1 Y1(ρ j, δ j, k̄1, k̄2)√

ρ j

η+
j (z) − λ

( j)
2 η−

j (z) = −z
iY1(ρ j, δ j,k1,k2)√

ρ j
− z−1 iR2λ

( j)
2 Y1(ρ j, δ j, k̄1, k̄2)√

ρ j
, z ∈ Lc, j = 1,2 (38)

The solutions to the above four decoupled scalar R–H problems can be conveniently derived as:

ξ ′
j(z) = iY1(ρ j, δ j,k1,k2)√

ρ j(1 − λ
( j)
1 )

{
1 − χ̃

( j)
1 (z)

[
z − Re{a} + 2ε̃

( j)
1 Im{a}]}

− iR2λ
( j)
1 Y1(ρ j, δ j, k̄1, k̄2)
√

ρ j(1 − λ
( j)
1 )

[
1

z2
− χ̃

( j)
1 (z)

χ̃
( j)
1 (0)z2

+ χ̃
( j)
1 (z)χ̃ ′( j)

1 (0)

[χ̃ ( j)
1 (0)]2z

]

η′
j(z) = − iY1(ρ j, δ j,k1,k2)√

ρ j(1 − λ
( j)
2 )

{
1 − χ̃

( j)
2 (z)

[
z − Re{a} + 2ε̃

( j)
2 Im{a}]}

+ iR2λ
( j)
2 Y1(ρ j, δ j, k̄1, k̄2)
√

ρ j(1 − λ
( j)
2 )

[
1

z2
− χ̃

( j)
2 (z)

χ̃
( j)
2 (0)z2

+ χ̃
( j)
2 (z)χ̃ ′( j)

2 (0)

[χ̃ ( j)
2 (0)]2z

]
, j = 1,2 (39)

where

χ̃
( j)
k (z) = (z − a)−

1
2 −iε̃( j)

k (z − ā)−
1
2 +iε̃( j)

k , ε̃
( j)
k = − ln(−λ

( j)
k )

2π
, j,k = 1,2 (40)

The branch cuts for χ̃ ( j)
k (z) are taken along Lc(z) such that χ̃ ( j)

k (z) ∼= z−1 as |z| → ∞.
When ρ1 = ρ2 in Eq. (11) and C1 is not proportional to C2, we can introduce the transform in Eq. (25). By applying 

Eq. (28), Eq. (36) becomes[
g+

1 (z)

g+
2 (z)

]
−
[

λ1 1
0 λ1

][
g−

1 (z)

g−
2 (z)

]
= −2

[
1

d1
yT

2 − d2
d2

1
yT

1
1

d1
yT

1

]{[
C2

−C2

]
kz +

[
C2
C2

]
k̄R2z−1

}
[

g+
3 (z)

g+(z)

]
−
[

λ3 1
0 λ3

][
g−

3 (z)

g−(z)

]
= −2

[
1

d3
yT

4 − d4
d2

3
yT

3
1 yT

]{[
C2

−C2

]
kz +

[
C2
C2

]
k̄R2z−1

}
, z ∈ Lc (41)
4 4 d3 3
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The solutions to the above are finally found to be

g′
j(z) = 2

d j(1 − λ j)

[(
d j+1

d j
+ 1

1 − λ j

)
yT

j − yT
j+1

]⎧⎪⎪⎨
⎪⎪⎩

[
C2

−C2

]
k
{

1 − χ̃ j(z)
[
z − Re{a} + 2ε̃ j Im{a}]}

−
[

C2
C2

]
k̄R2

[
1
z2 − χ̃ j(z)

χ̃ j(0)z2 + χ̃ j(z)χ̃ ′
j(0)

[χ̃ j(0)]2z

]
⎫⎪⎪⎬
⎪⎪⎭

− χ̃ j(z)

iπd jλ j(1 − λ j)

∫
Lc

1

t − z
yT

j

{[
C2

−C2

]
k
[
t − Re{a} + 2ε̃ j Im{a}]−

[
C2
C2

]
k̄R2

[
1

χ̃ j(0)t2
− χ̃ ′

j(0)

[χ̃ j(0)]2t

]}
dt

g′
j+1(z) = − 2

d j(1 − λ j)
yT

j

⎧⎪⎪⎨
⎪⎪⎩

[
C2

−C2

]
k
{

1 − χ̃ j(z)
[
z − Re{a} + 2ε̃ j Im{a}]}

−
[

C2
C2

]
k̄R2

[
1
z2 − χ̃ j(z)

χ̃ j(0)z2 + χ̃ j(z)χ̃ ′
j(0)

[χ̃ j(0)]2z

]
⎫⎪⎪⎬
⎪⎪⎭ , j = 1,3 (42)

where

χ̃ j(z) = (z − a)−
1
2 −iε̃ j (z − ā)−

1
2 +iε̃ j , ε̃ j = − ln(−λ j)

2π
, j = 1,3 (43)

The singularities in electric displacements and stresses at the tips of the rigid line inclusion debonded from the inhomo-
geneity are identical to those discussed in Sec. 3.

5. Conclusions

We have solved the mixed boundary value problem associated with a debonded arc-shaped conducting rigid line inclu-
sion at the interface between a circular piezoelectric inhomogeneity and an infinite piezoelectric matrix. We address two 
configurations: (i) the inner side of the line inclusion is bonded to the inhomogeneity whilst its outer side is debonded from 
the matrix; (ii) the inner side of the line inclusion is debonded from the inhomogeneity, whilst its outer side is bonded to 
the matrix. Our analysis indicates that the nature of the singularities in stresses and electric displacements at the tips of 
the debonded conducting rigid line inclusion depends on the sign of the term in the square root in Eq. (11). In summary, 
three types of singularity are possible at the tips.
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