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Three-point bending of a beam is studied based on the Timoshenko beam theory. Large 
deflection and large rotation of a beam resting on simple supports with friction are 
calculated for a concentrated force acting at the midspan. Using the Lagrangian kinematic 
relations, a system of non-linear differential equations are obtained for a prismatic shear-
deformable Timoshenko beam. Exact solutions for the deflection, horizontal displacement, 
and rotation of cross-section are derived analytically. Two deflections of small and large 
scale exist under three-point bending. The solutions corresponding to linearized model 
coincide with the well-known solutions to the classical Timoshenko beams. Numerical 
calculations are carried out to show the effect of the important parameters such as shear 
rigidity of the beam and the coefficient of friction at the contact position between the 
beam and supports on the deflection. The load–deflection curves are graphically presented. 
A comparison of large deflections and large rotations with their classical counterparts and 
with experimental data is made. The obtained results are useful in safety design of linear 
and non-linear beams subject to three-point bending.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Large deflection analysis of beams is of much significance in practice. Simple beam theories are based on the linear 
theories of geometry and materials of a beam. Numerical results based on these linear theories cannot be applied to large 
deflection predictions since they may lead to severe errors.

For Euler–Bernoulli beams, nonlinearity arising from the beam’s geometry and from the materials has been studied ex-
tensively. Large deflection calculation of Euler–Bernoulli beams as a subject of research has a long history. So far, a large 
number of theoretical methods have been proposed to determine the large deflections of Euler–Bernoulli beams due to 
geometric and material nonlinearity. For example, for a simply-supported beam, elliptic integrals are applied to calculate 
large deflections for a centrally-loaded simply-supported beam (e.g., [1–3]). When a simply-supported beam is subjected to 
moment at ends, large deflections have been calculated in [4–6]. Large deflections of a simply-supported beam under both 
concentrated forces and uniformly distributed loading have been determined via various approaches such as shooting opti-
mization technique [7], the minimum residual method [8], the integral approach [9], the Runge–Kutta–Felhberg method [10], 
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Fig. 1. Schematic of a centrally-loaded beam resting on simple supports under three-point bending.

Fig. 2. An element to describe Lagrangian kinematic relationship.

etc. When subjected to a follower force, the large deflection analysis has been conducted by Shavartsman [11], Nallathambi 
et al. [12].

In addition to the above-stated geometric nonlinearity, large deflections owing to material nonlinearity also attract con-
siderable attention of many researchers. For a class of non-linear beams, Lewis and Monasa [13,14] dealt with the large 
deflections of thin cantilever beams when subjected to a concentrated load and an end moment at the free end, respec-
tively. The large deflections of a non-linear cantilever beam under combined loading were coped with in [15]. The large 
deflections of a non-linear cantilever beam with bimodulus have been investigated in [16]. Furthermore, Brojan et al. [17]
calculated the large deflections of a non-prismatic slender and inextensible cantilever beam subjected to a concentrated mo-
ment at the free end. Kang and Li [18,19] calculated the large deflections of a cantilever beam made of functionally graded 
materials and obeying non-linear Ludwick stress–strain relations under a concentrated bending moment and a concentrated 
force. Borboni and De Santis [20] further studied the large deflections of an asymmetric Ludwick cantilever beam subjected 
to a horizontal force, a vertical force, and a bending torque at the free end.

Most of the above-mentioned researches are limited to Euler–Bernoulli beams. In other words, shear deformation of the 
cross-section of a beam is neglected or shear rigidity is assumed to be sufficiently large during the process of bending de-
formation. In fact, the effect of shear deformation is quite significant, especially for short beams. In fact, a substantial error 
in the effective elastic modulus results from shear deformation and the change in cross-section shape near the support con-
tact positions and loading position from three-point bending tests of animal bones [21,22]. Even for nanoscale three-point 
bending tests, the contribution of shear deformation on the deflection and then on the stiffness of the nanotube deduced 
by the load–deflection relation is not negligible [23]. The influence of shear deformation along with scale parameters on 
the deflection of a nanobeam as well as the effective Young’s modulus of the nanobeam has been analyzed [24,25]. If shear 
deformation is further taken into account, the classical linear Timoshenko beam theory accounts for the above phenomena. 
For large deflection analysis based on the Timoshenko beam theory, Li and Song [26] solved large thermal deflections of 
Timoshenko beams under transverse non-uniform temperature rise. Mohyeddin and Fereidoon [27] formulated a method 
for calculating large deflections of a beam under three-point bending. Li and Lee [28] analyzed the effect of the horizontal 
reaction force at the support position on the large deflection of short simply-supported Timoshenko beams subjected to 
general transverse loading. Batista [29] formulated Jacobi elliptic functions to determine large deflections of a Reissner’s 
beam under three-point bending.

In this paper, a straight prismatic Timoshenko beam resting on simple supports is analyzed when subjected to a con-
centrated force at the midspan. An emphasis is placed on the effect of friction on the deflection. Using suitable boundary 
conditions, nonlinear governing equations are solved and an exact solution is determined. The effects of shear rigidity and 
the coefficient of friction between the beam and supports on the deflection are discussed.

2. Basic equations

Consider the bending of a straight prismatic Timoshenko beam of length 2 L under a concentrated force 2 P at the beam 
midspan x = L, as shown in Fig. 1. A Cartesian coordinate system is introduced such that the x- and z-axes are orientated 
along the neutral surface (axis) and perpendicular to the neutral surface (axis) downward, respectively. Using the Lagrangian 
description, kinematic relations for a prismatic Timoshenko beam can be represented as (see Fig. 2)

u∗ (x, z) = u (x) − z sin θ (1)

w∗ (x, z) = w (x) − z (1 − cos θ) (2)

where u∗ (x, z) and w∗ (x, z) denote the displacement components at an arbitrary position in the beam along the x- and 
z-axes, respectively, u (x) and w (x) are the corresponding displacement components at the neutral axis, respectively, and θ
represents the rotation of cross-section at the neutral axis. For Timoshenko beams, the rotation angle of cross-section does 
not coincide with the slope angle of the deflection, i.e. θ �= dw/dx, even for a small deformation. With these displacement 
components together with the rotation, one gets the axial strain and the shear strain as follows:



558 D.-K. Li, X.-F. Li / C. R. Mecanique 344 (2016) 556–568
εxx (x, z) = du

dx
− zκ (x) (3)

γxz (x, z) = dw

dx
−

(
1 + z

dθ

dx

)
sin θ (4)

respectively, where κ (x) stands for curvature of the neutral axis, i.e.

κ (x) = dθ

ds
= cos θ

dθ

dx
(5)

It is noted that the relations (3)–(5) are identical to those in the classical treatment. However, the displacement com-
ponents u∗ and w∗ are both dependent on z and applicable to a large rotation angle θ . If restricting θ to small values, 
we have sin θ ≈ θ and 1 − cos θ ≈ 0. The above displacement components u∗ and w∗ reduce to the classical Timoshenko 
hypothesis, in which w∗ is only dependent on x. For large deflection or large rotation of Timoshenko beams, in addition 
to the deflection and rotation of cross-section along with the horizontal displacement, geometric nonlinearity occurs and 
needs to be analyzed.

Based on the constitutive relationships for one-dimensional structures, we have

σxx = Eεxx (6)

τxz = Gγxz (7)

where σxx and τxz are the axial stress and shear stress, respectively, E and G denote Young’s modulus and shear modulus, 
respectively. It is worth noting that the stress–strain relations adopted here are still linear, rather than nonlinear. Actually, 
this paper only considers geometric nonlinearity, referring to large deflection accompanied with large rotation, not material 
nonlinearity.

3. Large deflection analysis

In order to determine the large deflections of a Timoshenko beam, it is natural to establish relationships between applied 
load and deformation variables. To this end, let us calculate axial force N , shear force Q , and bending moment M , through 
the following integrals

N =
∫
A

σxx dA (8)

Q =
∫
A

τxz dA (9)

M =
∫
A

zσxx dA (10)

where A is the cross-sectional area. Inserting (6) and (7) in connection with (3) and (4) into (8)–(10) yields

N = E A
du

dx
(11)

Q = kG A

(
dw

dx
− sin θ

)
(12)

M = −E Iκ (x) (13)

where I is the moment of inertia of the cross-sectional area, and k is the shear correction coefficient.
Consider the bending of a simply supported beam subjected to a concentrated force at the beam midspan. The reaction 

forces at the supports are assumed to be normal to the beam surface posterior to bending deformation and frictional forces 
tangential to the surface of the bent beam are accompanied. Due to the symmetry of the problem we consider a half of the 
beam, the left-half portion, say.

Making use of balance of forces, we get

R cosα0 + μR sinα0 = P (14)

where R is the reaction force at the support x = 0, α0 is the slope angle of the deflection at the support x = 0, and μ is 
the coefficient of friction. Clearly, for the case of a small rotation angle α0, we can approximate α0 ≈ 0, and then R ≈ P . It 
is worth emphasizing that here we treat the case of a large rotation angle α0, which may reach 30 degrees or 80 degrees 
for some cases, as will be seen. Under such circumstances, we have the resultant axial and shear forces at an arbitrary 
cross-section



D.-K. Li, X.-F. Li / C. R. Mecanique 344 (2016) 556–568 559
N = R sinα0 − μR cosα0 (15)

Q = R cosα0 + μR sinα0 (16)

Thus with the above results, if introducing a parameter β such that

tanβ = μ (17)

we further obtain

N = P tan (α0 − β) (18)

Q = P (19)

M = P w tan (α0 − β) + P x (20)

In the above, the internal bending moment contains two terms. The first term arises from the contribution of the horizontal 
axial force and the other from that of the vertical shear force. Note that a moment appears when the friction force μR is 
shifted from the contact position to the neutral surface of the beam and has been neglected since the beam depth is small 
enough.

Next, from (11)–(13) and (18)–(20), we get a system of differential equations as follows:

P tan (α0 − β) = E A
du

dx
(21)

P = kG A

(
dw

dx
− sin θ

)
(22)

P w tan (α0 − β) + P x = −E Iκ (x) (23)

From (21) one easily finds

u = P

E A
(x + C1) tan (α0 − β) (24)

where C1 is a constant, which can be determined from the midspan displacement condition, namely

u (L) = 0 (25)

Accordingly, one has

u = P

E A
(x − L) tan (α0 − β) (26)

Obviously, this function linearly depends on the local position. In the above derived expression for the horizontal displace-
ment, the parameter α0 is unknown for the time being, which will be determined in what follows.

For convenience of further analysis, we introduce dimensionless variables

W = w

L
, ξ = x

L
(27)

p = P L2

E I
, ψ = E I

kG AL2
(28)

and rewrite (22) and (23) in a dimensionless form

p ψ = dW

dξ
− sin θ (29)

p W tan (α0 − β) + pξ = − cos θ
dθ

dξ
(30)

From the above two equations, we eliminate θ and obtain a second-order ordinary differential equation with an unknown 
parameter α0

d2W

dξ2
+ pW tan (α0 − β) = −p ξ (31)

As pointed out in [30], several possible choices on the boundary conditions for a clamped end can be selected. For the 
present problem, the corresponding boundary conditions are either

W (0) = 0,
dW

dξ

∣∣∣∣ = 0 (32)

ξ=1
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Fig. 3. Diagram of a comparison of the boundary conditions on the slope angle of the deflection and rotation angle of cross-section at the midspan of a 
centrally-loaded simply-supported beam.

or

W (0) = 0, θ (1) = 0 (33)

However, there is an essential difference for two choices. For the former, the physical meaning is clear for Euler–Bernoulli 
beams. For Timoshenko beams, the latter seems to be more reasonable since, by virtue of (22), the corresponding rotation of 
cross-section at the beam midspan θ (1) �= 0 if adopting (32) results is incompatible with or contradictory to the symmetry 
of the problem. This can be seen from an illustrative diagram (Fig. 3). Due to this reason, in this paper we use the boundary 
conditions in (33).

First, in the case of α0 = β , this case is quite simple and the solution to (31) subjected to the boundary conditions in 
(33) is readily derived as

W = 1

6
p ξ

[
3 (1 + 2ψ) − ξ2

]
(34)

θ = sin−1
[

1

2
p

(
1 − ξ2

)]
(35)

If restricting the rotation of the cross-section θ in order for it to be small, we have sin θ ≈ θ , and the classical results for the 
bending of Timoshenko beams are recovered from the above [30]. This is not surprising, since the moment resulting from 
the horizontal force corresponding to the first term at the left-hand side of (30) disappears in the case where α0 = β .

Next let us consider another case in which α0 �= β . For instance, smooth contact at end supports belongs to this case. 
Solving Eq. (31), because of α0 > β , one has

W = C2 cos
[√

p tan (α0 − β)ξ
]
+ C3 sin

[√
p tan (α0 − β)ξ

]
− ξ

tan (α0 − β)
(36)

where C2 and C3 are still unknown, which can be determined through appropriate boundary conditions.
Since the expression for the deflection contains an unknown parameter α0 and two unknown constants C2 and C3, we 

need three conditions to determine them. Applying the first condition in (33), one gets C2 = 0. With this result in mind, 
using (29) we have

sin θ = C3
√

p tan (α0 − β) cos
[√

p tan (α0 − β)ξ
]
− 1

tan (α0 − β)
− p ψ (37)

Next the second condition in (33) permits us to obtain

C3 =
[
ψ + 1

p tan (α0 − β)

]
p√

p tan (α0 − β) cos
√

p tan (α0 − β)
(38)

and the desired deflection is then obtained as

W =
[
ψ + 1

p tan (α0 − β)

]
p sin

[√
p tan (α0 − β)ξ

]
√

p tan (α0 − β) cos
√

p tan (α0 − β)
− ξ

tan (α0 − β)
(39)

To determine α0, we differentiate W with respect to ξ , leading to

dW

dξ
=

[
ψ + 1

p tan (α0 − β)

]
p cos

[√
p tan (α0 − β)ξ

]
cos

√
p tan (α0 − β)

− 1

tan (α0 − β)
(40)

According to the definition of α0, by setting ξ = 0 in the above expression (40), we have dW /dξ = tanα0, which is a condi-
tion to determine the end slope angle. Note that the end slope angle is not equal to the rotation angle of the cross-section 
for Timoshenko beams. Thus
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tanα0 =
[

pψ + 1

tan (α0 − β)

][
1

cos
√

p tan (α0 − β)
− 1

]
(41)

Eq. (41) is a nonlinear equation in α0. A further simplification may be made by introducing a parameter

s = tan (α0 − β) (42)

Considering (17), we have

tanα0 = s + μ

1 − sμ
(43)

and after some algebra, Eq. (41) becomes the following form

cos
√

p s =
[

1 + s (s + μ)

(1 − s μ)(1 + s p ψ)

]−1

(44)

Consequently, the determination of α0 is transformed to seek a root of transcendental Eq. (44). Its solution can be numeri-
cally determined. From the above, taking into account μ > 0 and 1 − s μ > 0, there are two positive roots for certain positive 
values of p and ψ . Similar to [31], the deflection corresponding to the smaller one is called the small-scale deflection, and 
that to the larger one is called the large-scale deflection. Once two roots s0 of (44) are determined, the end slope angle α0
is given through

α0 = tan−1 μ + tan−1 s0 (45)

Therefore, the large deflection of a Timoshenko beam is obtained as (39) and the rotation θ of cross-section is given by

θ = sin−1

{[
p ψ + 1

tan (α0 − β)

][
cos

[√
p tan (α0 − β) ξ

]
cos

√
p tan (α0 − β)

− 1

]}
(46)

In this case, at the midspan of the beam, we find

dW

dξ

∣∣∣∣
ξ=1

= p ψ (47)

This implies that at the midspan, the slope of the deflection does not vanish, but the rotation of cross-section vanishes, 
which means that the cross-section at the beam midspan does not rotate, while other cross-sections rotate and deviate 
away from the original position, as shown in Fig. 3. If the shear rigidity is sufficiently large, or ψ → 0, thus the slope of 
deflection reduces to zero. This actually corresponds to the Euler–Bernoulli hypothesis. For the latter, θ = dW /dξ , and both 
vanish at the midspan.

Now we turn our attention to having a look at d2 W /dξ2. By performing the second derivative of W , we get

d2W

dξ2
= − [p ψ tan (α0 − β) + 1]

√
p

tan (α0 − β)

sin
[√

p tan (α0 − β) ξ
]

cos
√

p tan (α0 − β)
(48)

This is to say that d2 W /dξ2 indeed vanishes at the end supports, as expected.
In the following, we consider two special cases.

3.1. Frictionless end supports

If contact at simple supports is frictionless, meaning μ = 0, or β = 0, one has the deflection and rotation as

W =
(

p ψ + 1

s0

)
sin

[√
p s0ξ

]
√

ps0 cos
√

ps0
− ξ

s0
(49)

θ = sin−1

{[
pψ + 1

s0

][
cos

(√
ps0ξ

)
cos

√
ps0

− 1

]}
(50)

where s0 is the smallest positive root of the following equation

cos
√

ps =
(

1 + s2

1 + spψ

)−1

(51)

In particular, for ψ → 0, equivalent to an Euler–Bernoulli beam, we have

cos
√

p s = 1
2

(52)

1 + s
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Table 1
The end slope angle α0 (in degrees) for frictionless end supports.

ψ p

0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0 0.029 2.868 5.759 8.694 11.703 14.819 18.088 21.578 25.402 29.773 35.238 46.037
89.977 87.674 85.327 82.934 80.467 77.894 75.167 72.219 68.937 65.108 60.185 49.928

0.1 0.029 2.870 5.770 8.735 11.802 15.021 18.460 22.223 26.493 31.669 39.202 –
89.977 87.673 85.317 82.900 80.384 77.722 74.847 71.657 67.971 63.390 56.467 –

0.2 0.029 2.871 5.782 8.775 11.902 15.228 18.848 22.912 27.706 33.969 – –
89.977 87.672 85.307 82.865 80.299 77.545 74.512 71.055 66.890 61.284 – –

In this case, the maximum deflection occurs at ξ = 1, namely

W (1) = p ψ
tan

√
p s0√

p s0
+ 1

s0

(
tan

√
p s0√

p s0
− 1

)
(53)

3.2. Linearized model

By linearizing the theory presented above, one obtains the classical (linear) Timoshenko beam theory. To this end, large 
rotation collapses to small rotation, i.e.

sin θ ≈ θ, cos θ ≈ 1 (54)

Moreover, neglecting the horizontal displacement and horizontal force, from (22) and (23), we get

p ψ = dW

dξ
− θ (55)

p ξ = −dθ

dξ
(56)

in terms of the introduced dimensionless variables. In fact, since the first term in the left-hand side of (30) describes bending 
moment caused by the horizontal force, for small deflection, W << 1, we neglect the contribution of the bending moment 
caused by the horizontal force. In other words, at simply supported ends, the reaction forces at the contact position between 
the beam and the support ends are assumed to be vertical, rather than normal to the beam surface after the bending 
deformation. This coincides with the conventional treatment for small deflection analysis. Under such circumstances, we 
integrate (55) and (56) to obtain

W = p ψ ξ + p

(
1

2
ξ − 1

6
ξ3

)
, 0 ≤ ξ ≤ 1 (57)

θ = 1

2
p

(
1 − ξ2

)
, 0 ≤ ξ ≤ 1 (58)

If setting ξ = 1, the rotation of cross-section at the midspan clearly vanishes, as expected. In addition, we get the 
maximum deflection at the midspan as

w (L) = P L3

3E I
+ P L

kG A
(59)

Keeping the beam span being 2L and concentrated force being 2P in mind, it is viewed that the above results are in 
exact agreement with those derived in [30]. Of course, if further imposing kG A → ∞, the above results reduce to those 
for Euler–Bernoulli beams. This is readily understood since dW /dξ = θ can be derived in this case. Therefore, for sufficient 
large shear rigidity, the rotation of cross-section coincides with the slope angle of the deflection, implying that Timoshenko 
beams reduce to Euler–Bernoulli beams, as expected.

4. Numerical results and discussion

In this section, numerical results are presented to show the dependence of large deflections on several parameters of 
interest.

4.1. End slope angle

We first numerically determine the end slope angle via (45) where s0 is the root of Eq. (44). When the end supports are 
frictionless, the end slope angle satisfies (51). Calculated numerical results of the end slope angle are tabulated in Table 1. 
From Table 1, it is seen that two sets of the end slope angle can be sought for ψ = 0 if p < 1.1025. This indicates that 
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Fig. 4. A comparison of the deflection for a centrally-loaded simply-supported beam with its linearized model with p = 1, μ = 0, the curve marked with 
label S means the small scale deflection and that with L means the large scale deflection; a) Euler–Bernoulli beams, b) Timoshenko beams with ψ = 0.1.

there exist two distinct deflections, a small-scale deflection corresponding to a small end slope angle and a large-scale 
deflection to a large end slope angle. In particular, for p = 0.1, we find that α0 = 2.759◦ or α0 = 87.674◦ . For the former 
case, the bending shape is almost close to that of the linearized model, whereas for the latter case, the deformed beam 
at the supports is nearly normal to the beam prior to deformation, and the midspan deflection has a very large value. In 
this case, the shape of the beam after deformation looks like the letter U, which has been observed in experiment [3]. For 
p = 1, we depict the small- and large-scale deflections marked with labels S and L, which correspond to end slope angles 
about 35◦ and 60◦ , respectively, for Euler–Bernoulli and Timoshenko beams in Fig. 4(a,b). These angles correspond no longer 
to a small rotation, but to a large rotation. Meanwhile, the deflections of their linearized models are also demonstrated in 
Fig. 4(a,b) for contrast. From Table 1, we find that for given values of ψ , the end slope angle α0 becomes larger with the 
concentrated force P0 rising, as expected. However, for ψ = 0.1, the end slope angle does not exist when p is chosen larger 
than 1.1042. A similar phenomenon takes place for ψ = 0.2, and a suitable range of p values becomes smaller.

4.2. Large deflection

Once the end slope angle α0 is determined, large deflections are easily obtained. Consider a centrally-loaded simply-
supported beam with frictionless contact, a comparison of the large deflection of Timoshenko and Euler–Bernoulli beams 
with the deflection of the linearized models (i.e. the classical deflection) is made for p = 1, μ = 0 (see Fig. 4(a,b)). Since 
Euler–Bernoulli beams neglect the effect of shear deformation, in calculations we choose ψ = 0, while for Timoshenko 
beams we choose ψ = 0.1. From (28), with G = E/2 (1 + ν), the parameter ψ = 2 (1 + ν) I/kAL2 takes 3I/AL2 if ν = 0.3 and 
k = 5 (1 + ν) / (6 + 5ν), thus the value of ψ is about 0.1 for a beam of square cross-section with aspect ratio 2L/a = 3.16
(a: side length) or circular cross-section with 2L/D = 2.78 (D: diameter). We find that the deflection of the latter is larger 
than that of the former, which is evident for the classical case (59). On the other hand, since there exist the small and 
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Fig. 5. Dimensionless applied loading versus the ratio of the midspan deflection to the half span length.

Fig. 6. Bending shapes of a centrally-loaded simply-supported beam for various values of shear rigidity with p = 0.8, μ = 0, where solid lines denote the 
small scale deflection curves and dashed lines denote deflection curves of the corresponding linearized model.

large scale deflection curves corresponding to small and large end slope angles, respectively, they are labeled with S and 
L, respectively. From Fig. 4, one views that the numerical results of both small-scale and large-scale deflections are always 
greater than those of the deflection based on the corresponding classical theories. This characteristic is in agreement with 
that based on other approaches [1,3]. Such two equilibrium configurations for a given applied loading are a unified char-
acteristic, irrespective of the applied end moment [6] or the concentrated force [1,3]. Generally speaking, the small-scale 
deflection is a stable equilibrium configuration, while the large scale deflection is an unstable equilibrium configuration, 
since further increase in deflection/rotation in this case requires no increment of applied loading.

In addition, by a careful inspection on Fig. 4, we find that the deflection curves at the midspan are smooth for Euler–
Bernoulli beams, and not smooth for Timoshenko beams. It is attributed to the fact that the rotation of cross-section just 
vanishes at the midspan, but the slope of the deflection does not vanish, coinciding with the symmetry of the problem 
(see Fig. 3). Thus the deflection has a nonsmooth inflexion point at the midspan for Timoshenko beams. Fig. 5 shows the 
dimensionless maximum deflection at the midspan of the beam against dimensionless applied loading for Euler–Bernoulli 
and Timoshenko beams as well as their linearized models.

4.3. Effect of shear rigidity

The effect of shear deformation or shear rigidity on deflection is examined for a Timoshenko beam under three-point 
bending. The small scale deflections of a centrally-loaded simply-supported beam under three-point bending with p = 0.8, 
μ = 0, ψ = 0, 0.1, 0.2 are presented in Fig. 6. The large-scale deflections are not depicted in Fig. 6. For comparison, we also 
display the deflection variation when using the linearized model, i.e. the deflection of the classical Timoshenko beam theory. 
Note that Euler–Bernoulli beams correspond to the case where ψ = 0. Clearly, consideration of shear deformation or shear 
rigidity gives rise to a further increase in the deflection. This trend is in agreement with that using the linearized theory. 
In fact, this case can be directly seen from (59), since consideration of shear deformation leads to an increase in deflection. 
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Fig. 7. Effect of shear rigidity on the ratio of the midspan deflection to the half span length as a function of dimensionless applied loading.

Table 2
Midspan deflection of a simply-supported beam under three-point bending for μ = 0.

p Linearized model Present model [27] [31]

ψ = 0 ψ = 0.1

0.125 0.041 7 0.0418 0.0543 0.0410 0.0419
0.25 0.083 3 0.0844 0.1097 0.0844 0.0849
0.375 0.1250 0.1287 0.1672 0.1287 0.1306
0.5 0.166 6 0.1760 0.2285 0.1760 0.1811
0.625 0.208 3 0.2279 0.2959 0.2279 0.2411
0.75 0.25 0.2874 0.3740 0.2874 0.3242
0.834 0.278 0.3345 0.4370 0.3345 0.478
0.875 0.291 7 0.3607 0.4729 0.3607 –
1 0.333 3 0.4653 – 0.465 2 –
1.1025 0.367 5 0.7189 – 0.718 9 –

Table 3
Applied load estimation for given midspan deflection with μ = 0.

W (1) Linearized model Present model [3] [32]

ψ = 0 ψ = 0.1 ψ = 0 ψ = 0.1

0.1 0.3 0.2308 0.296 0.245 0.2924 0.295
0.2 0.6 0.4615 0.560 0.443 0.5422 0.55
0.3 0.9 0.6923 0.774 0.632 0.7196 0.735
0.4 1.2 0.9231 0.929 0.789 0.8134 0.81

To show the small- and large-scale deflections for different applied loading, the midspan deflection is only presented in 
Fig. 7 for several values of ψ against dimensionless applied loadings. From Fig. 7, two midspan deflections correspond to 
each applied loading. Moreover, with shear rigidity rising, the midspan deflection has a slight increase. This implies that 
when shear deformation is taken into account, the small-scale deflection, which lies in the left-hand portion of the peak 
value of the corresponding curve becomes larger under the same loading. Nevertheless, for large-scale deflections lying 
the right-hand portion of the peak value, we find that they almost overlap for larger deflections under normalized applied 
loading less than about 0.9.

Here, we give a comparison of our numerical results of the midspan deflection of a simply-supported beam under three-
point bending for μ = 0 with the experimental data as well as previous theoretical results based on the Euler–Bernoulli 
beam theory in Tables 2 and 3. From these tables, numerical results are in satisfactory agreement with experimental data 
and theoretical results based on other approaches.

4.4. Effect of friction

Finally, the effect of friction at the contact position on the deflection is examined. For Euler–Bernoulli beams and Timo-
shenko beams, the variation of the small scale deflection is illustrated in Fig. 8(a,b), respectively. In calculations, the applied 
concentrated force is chosen as p = 1 and shear rigidity is taken such that ψ = 0.1. From Fig. 8, it is seen that the presence 
of friction results in a decrease in the deflection. In other words, if friction at the contact position between the beam and 
supports is considered, the beam appears to become stiffer. This can be explained as follows. When friction exists at the 
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Fig. 8. Bending shapes of the small scale deflection of a centrally-loaded simply-supported beam with p = 1 for various values of the coefficient of friction; 
a) Euler–Bernoulli beams, b) Timoshenko beams with ψ = 0.1.

contact position, as if there are two horizontal forces to pull oppositely the beam tight along its axial direction, thus the 
beam is more difficult to bend. In the absence of friction, the beam readily bends under transverse forces.

At the midspan of a centrally-loaded simply-supported beam, the deflection arrives at its maximum. To show the vari-
ation of the small- and large-scale deflection against applied loading, the ratio of the midspan deflection to the half span 
for different applied loadings is displayed for Euler–Bernoulli beams (dashed lines) and Timoshenko beams (solid lines) for 
various values of the coefficient of friction in Fig. 9. From Fig. 9, when the coefficient of friction becomes larger, the applied 
loading reaches a larger peak value, which indicates that the deflections of the linearized models are closer to small-scale 
deflections. Therefore, the linearized models are reasonable for large values of the coefficients of friction.

5. Conclusions

The large deflections of a simply-supported beam under three-point bending were investigated using the Timoshenko 
beam theory. Based on the nonlinear kinematic relationships of Timoshenko beams, governing equations were derived for a 
beam resting on simple supports with the emphasis on the added feature of friction. The classical results can be recovered 
from the present ones when linearized models are used. The obtained results are useful in safety design of linear and 
nonlinear beams. Some conclusions are drawn as follows:

• expressions for large deflection and large cross-sectional rotation of a simply-supported beam under three-point bending 
were derived;

• the presence of friction gives rise to a decrease in the deflection of a simply-supported beam, as if the beam becomes 
stiffer;
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Fig. 9. Effect of the coefficient of friction on the ratio of the midspan deflection to the half span length as a function of dimensionless applied loading.

• consideration of shear deformation or shear rigidity increases the deflection, as compared to Euler–Bernoulli beams, 
irrespective of large or small deflection analysis;

• the deflections under large deflection/rotation assumption is greater than those based on the classical linear theory for 
a simply-supporter beam.
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