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Using complex variable methods and conformal mapping techniques, we demonstrate 
rigorously that two inhomogeneities of irregular shape interacting with a screw dislocation 
can indeed maintain uniform internal stress distributions. Our analysis indicates that while 
the internal uniform stresses are independent of the existence of the screw dislocation, 
the shapes of the two inhomogeneities required to achieve this uniformity depend on the 
Burgers vector, the location of the screw dislocation, and the size of the inhomogeneities. 
In addition, we find that this uniformity of the internal stress field is achievable also when 
the two inhomogeneities interact with an arbitrary number of discrete screw dislocations 
in the matrix.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In a series of recent papers, several authors have used various approaches to demonstrate that stress distributions in-
side multiple non-elliptical elastic inhomogeneities remain uniform when the surrounding elastic matrix is subjected to a 
uniform loading at infinity (see, for example, [1–5]). It is well known, however, that a common feature of crystalline solids 
is the existence of dislocations [6] and that plastic deformation in solids is closely related to dislocation dynamics (see, for 
example, [7–13]). It is therefore of great interest to ask whether the internal stress distributions inside multiple elastic inho-
mogeneities of irregular shape can maintain uniformity in the presence of a number of discrete or continuously distributed 
dislocations in the elastic matrix surrounding the inhomogeneities.

In this paper, we take the first step towards addressing this challenging question, by asking whether it is possible to 
maintain internal uniform stress inside two inhomogeneities of irregular shape when either a single or multiple screw 
dislocations are present in a matrix subjected to uniform anti-plane shear stresses at infinity. We propose a simple yet 
efficient method based on complex function theory and conformal mapping techniques to determine the shapes of the 
two aforementioned inhomogeneities. We emphasize that our method remains valid when an arbitrary number of screw 
dislocations exist in the matrix.
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Fig. 1. Two inhomogeneities of irregular shape interacting with a screw dislocation.

2. Two inhomogeneities of irregular shape interacting with a screw dislocation

In the case of anti-plane shear deformations of an isotropic elastic material, the two shear stress components σ31
and σ32, the out-of-plane displacement w = u3(x1, x2) and the associated stress function φ can be expressed in terms 
of a single analytic function f (z) of the complex variable z = x1 + ix2 as [14]

σ32 + iσ31 = μ f ′(z), μ−1ϕ + iw = f (z) (1)

where μ is the shear modulus of the material. The stresses σ31 and σ32 are related to the stress function ϕ through [14]:

σ31 = −ϕ,2, σ32 = ϕ,1 (2)

Consider an infinite matrix containing two elastic inhomogeneities of irregular shape. As shown in Fig. 1, let S1, S2 and 
S3 denote the left inhomogeneity, the matrix and the right inhomogeneity, respectively, all of which are perfectly bonded 
through the left and the right interfaces L1 and L2. The matrix is subjected to a remote uniform anti-plane shear stress 
field (σ∞

31 , σ∞
32 ) and a single screw dislocation with Burgers vector b3 located at z = z0. In what follows, the subscripts 1, 2 

and 3 (or the superscripts (1), (2) and (3)) are used to identify the associated quantities in S1, S2 and S3, respectively. Our 
objective is to determine the shapes of the two inhomogeneities which maintain uniform internal stress distributions inside 
both inhomogeneities.

The continuity conditions of traction and displacement across the two interfaces L1 and L2 can be expressed in terms of 
the corresponding analytic functions in S1, S2 and S3 as follows

f2(z) + f2(z) = �1 f1(z) + �1 f1(z)

f2(z) − f2(z) = f1(z) − f1(z), z ∈ L1 (3)

f2(z) + f2(z) = �3 f3(z) + �3 f3(z)

f2(z) − f2(z) = f3(z) − f3(z), z ∈ L2 (4)

where �1 = μ1/μ2 and �3 = μ3/μ2.
Adding the two conditions in Eq. (3), we obtain

f2(z) = �1 + 1

2
f1(z) + �1 − 1

2
f1(z), z ∈ L1 (5)

Similarly, from Eq. (4), we have

f2(z) = �3 + 1

2
f3(z) + �3 − 1

2
f3(z), z ∈ L2 (6)

We now construct the following conformal mapping function for the matrix:

z = ω(ξ) = R

[
1

ξ − λ
+ p

ξ − λ−1
+ 	−1 p

ρξ − λ−1
+ q log

ξ − ξ̄−1
0

ξ − λ−1
+ 	−1q log

ρξ − ξ̄−1
0

ρξ − λ−1
+

+∞∑
n=1

(
anξ

n + a−nξ
−n)]

ξ(z) = ω−1(z), 1 ≤ |ξ | ≤ ρ− 1
2 (7)
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where R is a real scaling constant measuring the size of the two inhomogeneities, λ(1 < |λ| < ρ− 1
2 ) and 	 are real con-

stants, p, q and ξ0 = ω−1(z0)(1 < |ξ0| < ρ− 1
2 ) are complex coefficients, and an, a−n are unknown complex coefficients to be 

determined. The two parameters ρ and λ are variable, whilst the three parameters 	, p, q will be obtained in the solution 
process presented below. In Eq. (7), the first-order pole at ξ = λ is located within the annulus 1 ≤ |ξ | ≤ ρ− 1

2 , whereas the 
two first-order poles at ξ = λ−1 and ξ = (ρλ)−1 are both located outside the annulus. The branch cut for the logarithmic 

function log
ξ−ξ̄−1

0
ξ−λ−1 is chosen as the line segment connecting ξ = ξ̄−1

0 and ξ = λ−1 whilst that for log
ρξ−ξ̄−1

0
ρξ−λ−1 is chosen as the 

line segment connecting ξ = (ρξ̄0)
−1 and ξ = (ρλ)−1. Thus the two logarithmic functions appearing in Eq. (7) are analytic, 

continuous and single-valued within the annulus 1 ≤ |ξ | ≤ ρ− 1
2 . Using the mapping function in Eq. (7), the matrix S2 in the 

z-plane is mapped onto an annulus 1 ≤ |ξ | ≤ ρ− 1
2 in the ξ -plane, while the interfaces L1 and L2 in the z-plane are mapped 

onto two co-axial circles with radii 1 and ρ− 1
2 in the ξ -plane, respectively. Furthermore the point at infinity (z = ∞) is 

mapped to ξ = λ. A comparison of Eq. (7) with Eq. (2) in [3] reveals the presence of additional logarithmic functions in 
Eq. (7) to accommodate the influence of the screw dislocation.

In order to ensure that the internal stress fields inside the two inhomogeneities are uniform, we make the following 
judicious choice for the functions f1(z) and f3(z)

f1(z) = 2k

R(�1 + 1)
z + 2c1, z ∈ S1

f3(z) = 2k

R(�3 + 1)
z + 2c3, z ∈ S3 (8)

where k is a complex number to be determined and c1 and c3 are complex constants.
For convenience, and without loss of generality, we write f2(ξ) = f2(ω(ξ)) = f2(z). The following expression for f2(ξ)

can be obtained from Eqs. (5), (7) and (8):

f2(ξ) = k

[
1

ξ − λ
+ p

ξ − λ−1
+ 	−1 p

ρξ − λ−1
+ q log

ξ − ξ̄−1
0

ξ − λ−1
+ 	−1q log

ρξ − ξ̄−1
0

ρξ − λ−1
+

+∞∑
n=1

(
anξ

n + a−nξ
−n)]

+ k̄(�1 − 1)

�1 + 1

[
1

ξ−1 − λ
+ p̄

ξ−1 − λ−1
+ 	−1 p̄

ρξ−1 − λ−1
+ q̄ log

ξ−1 − ξ−1
0

ξ−1 − λ−1
+ 	−1q̄ log

ρξ−1 − ξ−1
0

ρξ−1 − λ−1

+
+∞∑
n=1

(
ānξ

−n + ā−nξ
n)] + c1(�1 + 1) + c̄1(�1 − 1), 1 ≤ |ξ | ≤ ρ− 1

2 (9)

We can similarly obtain a second expression for f2(ξ) from Eqs. (6)–(8):

f2(ξ) = k

[
1

ξ − λ
+ p

ξ − λ−1
+ 	−1 p

ρξ − λ−1
+ q log

ξ − ξ̄−1
0

ξ − λ−1
+ 	−1q log

ρξ − ξ̄−1
0

ρξ − λ−1
+

+∞∑
n=1

(
anξ

n + a−nξ
−n)]

+ k̄(�3 − 1)

�3 + 1

[
1

ρ−1ξ−1 − λ
+ p̄

ρ−1ξ−1 − λ−1
+ 	−1 p̄

ξ−1 − λ−1
+ q̄ log

ρ−1ξ−1 − ξ−1
0

ρ−1ξ−1 − λ−1

+ 	−1q̄ log
ξ−1 − ξ−1

0

ξ−1 − λ−1
+

+∞∑
n=1

(
ānρ

−nξ−n + ā−nρ
nξn)] + c3(�3 + 1) + c̄3(�3 − 1), 1 ≤ |ξ | ≤ ρ− 1

2 (10)

The compatibility of Eqs. (9) and (10) requires that 	 takes the form

	 = (�1 + 1)(�3 − 1)

(�1 − 1)(�3 + 1)
(11)

and an and a−n are given by

an = λ−n−1 + p	−1ρnλn+1 + q(n	)−1ρn(ξ̄n
0 − λn)

1 − 	ρ−n

a−n = λn−1 + pλ1−n − qn−1(ξ̄−n
0 − λ−n)

	−1ρ−n − 1
, n = 1,2, · · · ,+∞ (12)

Additionally, from Eq. (9), the complex number k is related to the remote uniform stress field (σ∞
31 , σ∞

32 ) through

k = R(�1 + 1)2(σ∞
32 + iσ∞

31 ) + R p̄λ2(�2
1 − 1)(σ∞

32 − iσ∞
31 )

2 2 4 2
(13)
μ2[(�1 + 1) − |p| λ (�1 − 1) ]
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Fig. 2. The shapes of the two inhomogeneities for different values of q and ξ0 with ρ = 0.2, λ = ρ− 1
4 = 1.4953, 	 = 1, p = 0.08. The star in each subplot 

represents the location of the screw dislocation.

while the complex number q is related to the Burgers vector b3 and the remote uniform stress field through

q = μ2b3[(�1 + 1)2 − |p|2λ4(�1 − 1)2]
2πR[(�2

1 − 1)(σ∞
32 + iσ∞

31 ) + p̄λ2(�1 − 1)2(σ∞
32 − iσ∞

31 )] (14)

Equation (14) is obtained using the fact that f2(ξ) ∼= b3
2π log(ξ − ξ0) + O (1) as ξ → ξ0. The expression for k in Eq. (13)

implies that the values of the internal uniform stresses inside the two elastic inhomogeneities are independent of the 
existence of the screw dislocation. In fact, we can say that the dislocation is invisible to the two inhomogeneities as far as 
the internal uniform stress fields are concerned. Furthermore, since the expression for q in Eq. (14) depends on b3 and R , 
the shapes of the two inhomogeneities described by ω(ξ)/R in Eq. (7) with |ξ | = 1 and |ξ | = ρ− 1

2 depend on the Burgers 
vector and the location of the screw dislocation as well as on the size of the two inhomogeneities.

Regarding the stresses along the two interfaces L1 and L2, from Eqs. (8)–(10) and (13), we can write

∣∣∣∣2�1(σ
(2)
32 + iσ (2)

31 )

σ
(1)
32 + iσ (1)

31

− �1 − 1

∣∣∣∣ = |�1 − 1|, z ∈ L1

∣∣∣∣2�3(σ
(2)
32 + iσ (2)

31 )

σ
(3)
32 + iσ (3)

31

− �3 − 1

∣∣∣∣ = |�3 − 1|, z ∈ L2 (15)

The shapes of the two inhomogeneities with internal uniform stress fields for given values of r, λ, 	, p, q and ξ0 are 
illustrated in Figs. 2 and 3. We note that a careful check of the corresponding mapping functions used in identifying the 
shapes of the inhomogeneities in Figs. 2 and 3 reveal indeed that they are one-to-one (or conformal) for 1 ≤ |ξ | ≤ ρ− 1

2 . It 
is observed from Figs. 2 and 3 that the two parameters q and ξ0, which are related to the Burgers vector, the location of 
the screw dislocation and the size of the two inhomogeneities, in fact exert a significant influence on the shapes of the two 
inhomogeneities, in particular on that of the inhomogeneity closer to the screw dislocation. Considering the definition of 
the parameter q in Eq. (14), we see from the second row in Figs. 2 and 3 that following a reflection about the x1-axis for 
the shapes of the two inhomogeneities and the dislocation location obtained under the remote uniform loading σ∞

31 = σ 	= 0
and σ∞

32 = 0, we can obtain those corresponding to the separate remote loading σ∞
31 = −σ and σ∞

32 = 0. We bear in mind 
that the Burgers vectors for the two loading cases remain the same.

We can further construct a mapping function to ensure the uniformity of internal stresses inside two inhomogeneities of 
irregular shape interacting with an arbitrary number of discrete screw dislocations in the matrix. Specifically, if we assume 
a total of M screw dislocations with Burgers vectors b( j)

3 ( j = 1, 2, · · · , M) located at z = z j( j = 1, 2, · · · , M), respectively, the 
corresponding mapping function is given by
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Fig. 3. The shapes of the two inhomogeneities for different values of q and ξ0 with ρ = 0.1, λ = ρ− 1
4 = 1.7783, 	 = −1, p = 0. The star in each subplot 

represents the location of the screw dislocation.

Fig. 4. The shapes of the two inhomogeneities for the parameters ρ = 0.2, λ = ρ− 1
4 = 1.4953, 	 = 1, p = 0.08, q1 = −q2 = 0.2, ξ1 = 2.22, ξ2 = ρ− 1

2 /ξ1 =
1.0072. The two stars indicate the locations of the two screw dislocations with opposite signs.

z =ω(ξ)= R

[
1

ξ −λ
+ p

ξ −λ− 1
+ 	−1 p

ρξ −λ−1
+

M∑
m=1

qm

(
log

ξ − ξ̄−1
m

ξ −λ−1
+	−1 log

ρξ − ξ̄−1
m

ρξ −λ−1

)
+

+∞∑
n=1

(
anξ

n +a−nξ
−n)]

ξ(z) = ω−1(z), 1 ≤ |ξ | ≤ ρ− 1
2 (16)

where R and λ(1 < |λ| < ρ− 1
2 ) are real, p is complex, 	 continues to be determined by Eq. (11), ξm = ω−1(zm), qm is given 

by

qm = μ2b(m)
3 [(�1 + 1)2 − |p|2λ4(�1 − 1)2]

2πR[(�2
1 − 1)(σ∞

32 + iσ∞
31 ) + p̄λ2(�1 − 1)2(σ∞

32 − iσ∞
31 )] (17)

and an, a−n are found to be

an = λ−n−1 + p	−1ρnλn+1 + (n	)−1ρn ∑M
m=1 qm(ξ̄n

m − λn)

1 − 	ρ−n

a−n = λn−1 + pλ1−n − n−1 ∑M
m=1 qm(ξ̄−n

m − λ−n)

	−1ρ−n − 1
, n = 1,2, · · · ,+∞ (18)

In the case of multiple screw dislocations, the internal uniform stress distributions continue to be determined by Eqs. (8)
and (13) and again remain independent of the existence of the multiple screw dislocations. The stresses along the two 
interfaces given in Eq. (15) also remain valid in this case. We illustrate in Figs. 4–7 the shapes of the two inhomogeneities 
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Fig. 5. The shapes of the two inhomogeneities for the parameters ρ = 0.2, λ = ρ− 1
4 = 1.4953, 	 = 1, p = 0.08, q1 = −q2 = −0.2, ξ1 = 2.15, ξ2 = ρ− 1

2 /ξ1 =
1.04. The two stars indicate the locations of the two screw dislocations with opposite signs.

Fig. 6. The shapes of the two inhomogeneities for the parameters ρ = 0.1, λ = ρ− 1
4 = 1.7783, 	 = −1, p = 0, q1 = q2 = 0.2, ξ1 = 2.8, ξ2 = ρ− 1

2 /ξ1 = 1.1294. 
The two stars indicate the locations of the two identical dislocations.

interacting with a screw dislocation dipole or with two identical dislocations. In Figs. 4 and 5, 	 = 1 (or equivalently 
�1 = �3) and q1 = −q2 (or equivalently b(1)

3 = −b(2)
3 ). In Figs. 6 and 7, 	 = −1 (or equivalently �1�3 = 1) and q1 = q2 (or 

equivalently b(1)
3 = b(2)

3 ). In all four figures (Figs. 4–7), the shapes of the two inhomogeneities are identical while the two 
screw dislocation components are distributed symmetrically with respect to the two inhomogeneity components.

3. Conclusions

We find that the uniformity property relating to stress distributions inside two inhomogeneities of irregular shape can be 
maintained even when the inhomogeneities interact with an arbitrary number of discrete screw dislocations located inside 
the surrounding matrix. The mapping functions characterizing the shapes of the two inhomogeneities are constructed in 
Eq. (7) for a single screw dislocation and in Eq. (16) for multiple discrete screw dislocations. Interestingly, we find that the 
internal uniform stress fields are independent of the existence of the single or multiple screw dislocations in the matrix. Our 
numerical results clearly demonstrate that the Burgers vectors and the locations of the screw dislocations, as well as the 
size of the two inhomogeneities play a key role in determining the shapes of the two inhomogeneities permitting internal 
uniform stress fields.



538 X. Wang, P. Schiavone / C. R. Mecanique 344 (2016) 532–538
Fig. 7. The shapes of the two inhomogeneities for the parameters ρ = 0.1, λ = ρ− 1
4 = 1.7783, 	 = −1, p = 0, q1 = q2 = −0.2, ξ1 = 3, ξ2 = ρ− 1

2 /ξ1 = 1.0541. 
The two stars indicate the locations of the two identical dislocations.
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