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This Note lays out the specialization of the two-potential constitutive framework — also 
known as the “generalized standard materials” framework — to rubber viscoelasticity. Inter 
alia, it is shown that a number of popular rubber viscoelasticity formulations, introduced 
over the years following different approaches, are special cases of this framework. As a first 
application of practical relevance, the framework is utilized to put forth a new objective 
and thermodynamically consistent rubber viscoelastic model for incompressible isotropic 
elastomers. The model accounts for the non-Gaussian elasticity of elastomers, as well 
as for the deformation-enhanced shear thinning of their viscous dissipation governed by 
reptation dynamics. The descriptive and predictive capabilities of the model are illustrated 
via comparisons with experimental data available from the literature for two commercially 
significant elastomers.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

While within certain ranges of loading conditions elastomers may be safely idealized as elastic, they are intrinsically 
viscoelastic. In the literature, there are, in essence, two approaches that have been adopted to model their viscoelastic be-
havior at a continuum level. The first approach is grounded on hereditary integral representations of the stress (strain) in 
terms of the strain (stress) (see, e.g., [1–3]), whereas the second one is based on the employment of internal variables 
to describe their viscous dissipation (see, e.g., [4–9]). Because of its superior tractability, the internal-variables approach 
has proved overwhelmingly more popular. Now, within the theoretical description of dissipative (not just viscoelastic) phe-
nomena based on internal variables [10], the so-called two-potential framework [11–14] — also known as the “generalized 
standard materials” framework — has emerged as a framework of choice to construct thermodynamically consistent models 
for a wide range of phenomena such as for instance plasticity [15], fracture [16], and ferroelectricity [17]. Yet, somewhat 
surprisingly, the specialization of this framework to the case of rubber viscoelasticity does not appear to have been reported 
in the literature.1

The purpose of this Note is to lay out the two-potential constitutive framework for rubber viscoelasticity. The consis-
tency of the framework with material frame indifference, material symmetry, and the second law of thermodynamics is 
placed on record. As an illustration of the generality of the framework, it is also shown that a number of popular rubber 
viscoelasticity formulations, which have been introduced over the years using different approaches, can all be derived from 
the two-potential constitutive framework.

* Corresponding author.
E-mail addresses: akumar51@illinois.edu (A. Kumar), pamies@illinois.edu (O. Lopez-Pamies).

1 There are, however, a number of models in the literature that have been proposed using directly this approach (see, e.g., [18,19]).
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Fig. 1. Rheological model of rubber viscoelastic behavior.

A second objective of this Note is to put forth, by means of the two-potential framework, a new objective and ther-
modynamically consistent viscoelastic model for the practically relevant case of isotropic incompressible elastomers. The 
model accounts for the non-Gaussian elasticity of elastomers, as well as for the deformation-enhanced shear thinning of 
their viscous dissipation governed by the reptational motion of the underlying polymer chains. The computational tractabil-
ity and robustness of the model is illustrated together with its predictive and descriptive capabilities via comparisons with 
experimental data available from the literature for two commercially significant elastomers, Nitrile rubber and the acrylate 
elastomer VHB 4910 from 3M.

2. The two-potential framework for rubber viscoelasticity

The two-potential framework in mechanics The key idea behind the two-potential constitutive framework is to describe the 
manner in which a material stores and dissipates energy by means of two thermodynamic potentials: (i) a free energy 
function ψ and (ii) a dissipation potential φ. In the context of mechanics [11–14], formally,

ψ = ψ(F,�) and φ = φ(F,�, �̇) (1)

under isothermal conditions, where F is the deformation gradient tensor, � stands for a finite number of (macroscopically 
non-observable) internal variables, and �̇ = d�/dt denotes the time derivative of �. Both of these potentials are required 
to be non-negative and objective functions. In addition, the dissipation potential φ is required to be convex in �̇ and such 
that arg min�̇ φ(F, �, �̇) = 0. The constitutive relation implied by these potentials is given by the following two coupled 
equations:

S = ∂ψ

∂F
(F,�),

∂ψ

∂�
(F,�) + ∂φ

∂�̇
(F,�, �̇) = 0 (2)

where S stands for the first Piola–Kirchhoff stress tensor and the differential equation in time (2)2 is commonly referred to 
as the evolution equation for the internal variables �. By virtue of the objectivity of ψ and φ and the convexity of φ in �̇, 
the constitutive relation (2) satisfies the principle of material frame indifference and the second law of thermodynamics. 
Moreover, it satisfies automatically the balance of angular momentum SFT = FST.

Rubber viscoelasticity The specialization of the above constitutive framework to rubber viscoelasticity, much like to any 
other type of dissipative phenomenon, amounts to selecting appropriate internal variables � and appropriate thermody-
namic potentials ψ and φ. For rubber viscoelasticity, this selection must account for at least five features (two microscopic 
and three macroscopic in nature) that have been well established experimentally about elastomers: (i) the storage of energy 
is primarily governed by changes in entropy of the underlying polymer network, (ii) the dissipation of energy is primarily 
governed by friction among neighboring polymer chains, (iii) when all forces are removed after an arbitrary loading path, 
elastomers creep to their original configuration, (iv) when subjected to relaxation and creep loading conditions, elastomers 
exhibit a transient response that then evolves into an equilibrium state of deformation and stress, and (v) when subjected 
to loading conditions of the same type but different loading rate, elastomers exhibit different responses.

In the classical context of small-deformation linear viscoelastic behavior, features (iii) through (v) are encompassed by the 
basic rheological model depicted in Fig. 1. This model suggests that the internal variables � should be identified, loosely 
speaking, with a deformation gradient, Fv say, associated with the viscous (i.e. dissipative) part of the deformation, and 
moreover that

ψ = ψEq(F) + ψNEq(F,Fv) and φ = φ(F,Fv, Ḟv) (3)

where the free energy function ψEq serves to characterize the thermodynamic equilibrium states of the elastomer, while 
ψNEq serves to account for the additional energy storage at non-equilibrium states.

To proceed further, it is necessary to establish the precise definition of Fv and how the non-equilibrium part ψNEq of the 
free energy depends on it. Consistent with the rheological model depicted in Fig. 1 and motivated by earlier efforts [4], we 
take χ , the mapping between material points X in the undeformed reference configuration �0 and their spatial position x
in the deformed configuration �, to be given by the composition

χ(X) = χ e ◦ χv = χ e

(
χv(X)

)= χ e (ξ) with ξ = χv(X) (4)
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Fig. 2. Schematic of the deformation field χ , mapping material points X in the undeformed reference configuration �0 to their spatial position x in the 
current deformed configuration �, and its assumed composition (4).

Fig. 2 shows a schematic of this composition. Granted the representation (4), it follows that

F = ∂χ

∂X
= ∂χ e

∂ξ

∂χv

∂X
= FeFv (5)

which defines Fv. Here, it is important to emphasize that the composition (4) is a constitutive assumption. While other as-
sumptions2 that are consistent with the requirements of rubber viscoelasticity could be made leading to different definitions 
of Fv, as it will become apparent below, the assumption (4) is amply general and yet convenient. Now, in view of relation 
(5) and motivated, again, by the rheological model in Fig. 1, we take that the dependence of ψNEq on Fv is only through 
Fe = FFv−1. With a slight abuse of notation we write ψNEq(F, Fv−1

) = ψNEq(FFv−1
) = ψNEq(Fe).

In short, under the physically based assumptions stated above, the free energy function ψ and dissipation potential φ in 
the general framework (1) specialize to

ψ = ψEq(F) + ψNEq(FFv−1
) and φ = φ(F,Fv, Ḟv) (6)

for rubber viscoelasticity. The implied constitutive relation (2) specializes in turn to

S = ∂ψEq

∂F
(F) + ∂ψNEq

∂F
(FFv−1

),
∂ψNEq

∂Fv (FFv−1
) + ∂φ

∂ Ḟv
(F,Fv, Ḟv) = 0 (7)

where, again, the internal variable Fv corresponds to the dissipative (viscous) part of the deformation as defined by (5).

2.1. Constraints on the functions ψEq, ψNEq , φ

In the sequel, we spell out the constraints imposed on the functions ψEq, ψNEq, φ in (6) by the principle of material 
frame indifference, material symmetry requirements, and the second law of thermodynamics.

Material frame indifference Under the generic change of observer x∗ = Qx + c with Q ∈ Orth+ and c ∈ R
3, it is required 

that the thermodynamic potentials ψ and φ in (6) remain invariant. A corollary of this condition is that the free energy 
function ψEq must itself remain invariant for ψNEq = 0 at thermodynamic equilibrium states. Accordingly, noting that the 
deformation field χ v is not connected to the deformed configuration � and hence changes in x do not have any effect on 
its gradient Fv,

ψEq(QF) = ψEq(F), ψNEq(QFFv−1
) = ψNEq(FFv−1

), φ(QF,Fv, Ḟv) = φ(F,Fv, Ḟv) (8)

for all Q ∈ Orth+ and arbitrary deformation gradients F, Fv. Here, it is worth remarking that the first two conditions in (8)
imply balance of angular momentum SFT = FST.

Material symmetry For elastomers with material symmetry group Symm ⊆ Orth+ , it is required that the thermodynamic 
potentials ψ and φ in (6) remain invariant under the change of reference configuration X∗ = KX with K ∈ Symm. Thus, upon 
recognizing that changes in the reference configuration �0 involve changes in the deformation fields χ and χ v

ψEq(FK) = ψEq(F), φ(FK,FvK, ˙FvK) = φ(FK,FvK,
˙̂

FvK) = φ(F,Fv, Ḟv) (9)

for all K ∈ Symm and arbitrary deformation gradients F, Fv. It is of note that material symmetry requirements impose no
constraint on the free energy function ψNEq since ψNEq(FK(FvK)−1) = ψNEq(FKKTFv−1) = ψNEq(FFv−1)

2 For instance, an alternative convenient choice could be to take the deformation field χ to be given by the composition χ (X) = χ ′
v ◦ χ ′

e, where χ ′
e

stands for an “elastic” mapping while χ ′
v stands for a “viscous” mapping. This assumption would lead to a deformation gradient Fv defined by F = FvFe.
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The second law of thermodynamics In the context of isothermal processes of interest in this work, the second law of ther-
modynamics imposes the following constraint on the dissipation potential φ in (6):ï

∂φ

∂ Ḟv
(F,Fv, Ḟv)

ò
· Ḟv ≥ 0 (10)

for arbitrary deformation gradients F, Fv, with equality holding only when Ḟv = 0. Since, according to the two-potential 
framework, the function φ is non-negative, convex in Ḟv, and such that arg minḞv φ(F, Fv, ̇Fv) = 0, this inequality is automat-
ically satisfied. A natural choice to comply with (10), which appears to be sufficiently general to model elastomers, is the 
quadratic functional form

φ(F,Fv, Ḟv) = 1

2
Ḟv · A(F,FFv−1

)Ḟv (11)

where A is any positive-definite fourth-order tensor function of choice such that, in view of the requirements (8)3 and (9)2, 
Aijkl(QFK, QFFv−1

) = Kmj Aimkn(F, FFv−1
)Knl for all Q ∈ Orth+ , K ∈ Symm and arbitrary F, Fv.

In the sequel, we shall restrict attention to dissipation potentials of the form (11). Instead of working directly with (11), 
however, we will work with the more convenient equivalent form

φ(F,Fv, Ḟv) = 1

2
�̃

v ·A(F,Fe)�̃
v

(12)

where we recall that Fe = FFv−1 and have introduced the notation

�̃
v = Fe�vFe−1

, �v = ḞvFv−1
, Ai jkl(F,Fe) = F e−1

mi F jn Amnrs(F,FFv−1)F e−1
rk Fls (13)

By definition, A is any positive-definite fourth-order tensor function of choice such that

Ai jkl(QFK,QFe) = Q im Q jn Q kp Q lq Amnpq(F,Fe) (14)

for all Q ∈ Orth+ , K ∈ Symm and arbitrary F, Fe.
In view of relation (12), the two potentials (6) and ensuing constitutive relation (7) for rubber viscoelasticity take the 

more explicit form

ψ = ψEq(F) + ψNEq(Fe), φ = 1

2
FFv−1ḞvF−1 · [A(F,Fe)FFv−1ḞvF−1] (15)

and

S = SEq + SNEqFv−T , SNEqFv−T FT −A(F,Fe)FFv−1ḞvF−1 = 0 (16)

Here, SEq = ∂ψEq(F)/∂F, SNEq = ∂ψNEq(Fe)/∂Fe, and it is recalled again that Fe = FFv−1. For given choices of functions 
ψEq, ψNEq, A subject to conditions (8)1–2, (9)1, (14) and given loading conditions, the evaluation of the stress-deformation 
response (16)1 of the material requires the solution to the nonlinear first-order ordinary differential equation (16)2 in time 
for the internal variable Fv. For later reference, we remark that in terms of the Cauchy stress T = J−1SFT, the constitutive 
relation (16) reads as

T = TEq + 1

J v TNEq, J eTNEq −A(F,Fe)FFv−1ḞvF−1 = 0 (17)

where J = det F, J v = det Fv, J e = det Fe, TEq = J−1SEqFT, TNEq = J e−1SNEqFeT

2.2. The case of isotropic materials

By and large, the types of elastomers of most practical interest in engineering applications are isotropic. In this subsec-
tion, we spell out the specialization of the constitutive framework (15)–(16) to such a class of materials.

The material symmetry group for isotropic elastomers is the entire proper orthogonal group and hence it follows from 
(8)1–2, (9)1 that

ψEq(QFK) = ψEq(F), ψNEq(QFe) = ψNEq(Fe) (18)

for all Q, K ∈ Orth+ and arbitrary F, Fe. These conditions imply the following expedient representations of ψEq and ψNEq:

ψEq(F) = ψ̂Eq(I1, I2, J ), ψNEq(Fe) = ψ̂NEq(Ce) (19)

where I1 = tr C, I2 = 1/2[(tr C)2 − tr C2], J = √
det C = det F stand for the principal invariants of the right Cauchy–Green 

deformation tensor C = FTF, and Ce = FeTFe. We remark that the free energy function ψNEq, as opposed to ψEq, is not
required to be an isotropic function.
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Moreover, it follows from (14) that

Ai jkl(QFK,QFe) = Q im Q jn Q kp Q lqAmnpq(F,Fe) (20)

for all Q, K ∈ Orth+ and arbitrary F, Fe. A convenient, albeit incomplete, representation of A implied by this condition is 
given by

Ai jkl(F,Fe) = 2ηK (I1, I2, J ,Ce,Bv)Ki jkl + 2νK (I1, I2, J ,Ce,Bv)F e −1
mi F e

jnKmnpq F e −1
pk F e

lq +
2θK (I1, I2, J ,Ce,Bv)Ki jmn F e

mp F e
lp F e −1

qn F e −1
qk + 3η J (I1, I2, J ,Ce,Bv)Ji jkl (21)

Here, Bv = FvFv T = Fe −1BFe −T with B = FFT denoting the left Cauchy–Green deformation tensor, K and J stand for the 
orthogonal projections tensors

Ki jkl = 1

2

ï
δikδ jl + δilδ jk − 2

3
δi jδkl

ò
, Ji jkl = 1

3
δi jδkl (22)

where δi j denotes the Kronecker delta, and ηK , νK , θK , η J are non-negative functions of their arguments. We recall that 
the projection tensors K, J are such that KK = K, JJ = J , and KJ = JK = 0. We also emphasize that the functions 
ηK , νK , θK , η J are not constrained to be isotropic functions of Ce or Bv, namely, they are not constrained to depend 
on Ce or Bv only through their principal invariants Ie

1 = tr Ce, Ie
2 = 1/2[(tr Ce)2 − tr Ce 2], J e = √

det Ce = det Fe, Iv
1 = tr Bv, 

Iv
2 = 1/2[(tr Bv)2 − tr Bv 2], J v = √

det Bv = det Fv. For later reference, we note that the invariants Ie
1, Ie

2, J e can be written 
in terms of the right Cauchy–Green deformation tensors C and Cv = Fv TFv as follows: Ie

1 = tr(CCv −1) = C · Cv −1, Ie
2 =

1/2[(tr(CCv −1))2 − tr(Cv −1CCv −1C)] = 1/2[(C · Cv −1)2 − Cv −1C · CCv −1], J e =√
det C/det Cv.

2.3. Connection with existing formulations

The two-potential constitutive framework defined by relations (15)–(16) is fairly simple, as its computational cost 
amounts to solving a nonlinear first-order ordinary differential equation for a second-order tensor, and yet admittedly 
general, as it applies to elastomers of arbitrary compressibility and anisotropy. Moreover, many of the formulations of rub-
ber viscoelasticity that have been proposed in the literature over the years happen to be special cases of (15)–(16). In this 
subsection, for illustration purposes, we discuss three such formulations: the formulation of Le Tallec et al. [5], that of Reese 
and Govindjee [6], and the model of Bergström and Boyce [7].

The formulation of Le Tallec et al. Le Tallec et al. [5] proposed a formulation for rubber viscoelasticity applicable to incom-
pressible materials with general classes of anisotropy. In its general form, their formulation can be written out as a special 
case of the two-potential framework (15)–(16). More specifically, in the present notation, their formulation corresponds to 
setting

ψEq(F) =
®

ψ̂Eq(C) if J = 1

+∞ otherwise
, ψNEq(Fe) =

®
ψ̂NEq(Ce) if J e = 1

+∞ otherwise
(23)

in the free energy function (15)1 and

Ai jkl(F,Fe) = 2 f1 F e −1
mi F e

jnKmnpq F e −1
pk F e

lq + 3 f2Ji jkl (24)

with constants f1 > 0 and f2 = +∞ in the dissipation potential (15)2. The unbounded value of f2 in (24) implies that 
det Fv = 1.

The formulation of Reese and Govindjee In a subsequent effort, Reese and Govindjee [6] proposed a similar formulation for 
rubber viscoelasticity applicable to compressible materials with a restricted class of anisotropies. Save for a caveat, in its 
general form, this formulation too corresponds to a special case of the two-potential framework (15)–(16). Specifically, their 
formulation corresponds to setting

ψEq(F) = ψ̂Eq(C), ψNEq(Fe) = ψ̂NEq(Ce) (25)

in the free energy function (15)1 and

Ai jkl(F,Fe) = g1

î
Ki jkl +Ki jmn F e

mp F e
lp F e −1

qn F e −1
qk

ó
+ 3g2Ji jkl (26)

with constants g1 > 0, g2 > 0 in the dissipation potential (15)2. The caveat is that the general formulation — but not 
the numerical examples — of Reese and Govindjee [6] assumes the coefficients g1 and g2 in (26) to be functions of the 
left Cauchy–Green deformation tensor Be = FeFeT and not just positive constants. This assumption violates the principle of 
material frame indifference as it can be readily deduced from condition (14). This significant drawback does not appear to 
have been realized in the literature until now.
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The model of Bergström and Boyce Bergström and Boyce [7] proposed a model for compressible isotropic rubber viscoelastic 
materials, which, similar to the two earlier formulations discussed above, corresponds to a special case of the two-potential 
framework (15)–(16). Indeed, their model corresponds to setting

ψEq(F) = ψ̂ AB(I1, J ), ψNEq(Fe) = ψ̂ AB(Ie
1, J e) (27)

in the free energy function (15)1 and

Ai jkl(F,Fe) = 2h1(Ie
1, Ie

2, J e, Iv
1)Ki jkl + 3h2Ji jkl (28)

in the dissipation potential (15)2. In these expressions, ψ̂ AB denotes the stored-energy function of a compressible Arruda–
Boyce material [20],

h1(Ie
1, Ie

2, J e, Iv
1) =

J e
Ä

J NEq
2

ä 1−m
2

C1

Ç…
Iv
1

3
− 1

åC2
with J NEq

2 = 4

J e 2

Ç
Ie 2
1

3
− Ie

2

åñ
∂ψ̂ AB

∂ Ie
1

(Ie
1, J e)

ô2

(29)

and

h2 = +∞ (30)

where C1 > 0, C2 ∈ [0, −1], m > 0 are material constants and the notation J NEq
2 = 1/2 dev TNEq · dev TNEq has been intro-

duced to denote the second invariant of the stress deviator dev TNEq = TNEq − 1/3 tr TNEq. We remark that the fourth-order 
tensor (28) characterizing the dissipation potential (15)2 is a special case of the representation (21) corresponding to the 
choice ηK (I1, I2, J , Ce, Bv) = h1(Ie

1, I
e
2, J

e, Iv
1), η J (I1, I2, J , Ce, Bv) = h2 = +∞, νK (I1, I2, J , Ce, Bv) = θK (I1, I2, J , Ce, Bv) = 0. 

The unbounded value of h2 in (28) implies that det Fv = 1.

3. Proposed model for isotropic incompressible elastomers

In this section, we make use of the two-potential constitutive framework (15)–(16) to construct a new objective and ther-
modynamically consistent model for the rubber viscoelastic response of isotropic incompressible elastomers that: (i) satisfies 
the five microscopic and macroscopic features about elastomers outlined at the beginning of Section 2, (ii) is mathematically 
simple and amenable to numerical implementation for solving boundary-value problems, (iii) contains material parameters 
which may be given a physical interpretation, and, more importantly, (iv) is able to describe and predict the mechanical 
behavior of elastomers over wide ranges of deformations and deformation rates.

We begin by characterizing the equilibrium and non-equilibrium free energy functions in (15)1 with the I1-based stored-
energy functions proposed by Lopez-Pamies [21]:

ψEq(F) =
⎧⎨⎩

31−α1

2α1
μ1

[
Iα1
1 − 3α1

]+ 31−α2

2α2
μ2

[
Iα2
1 − 3α2

]
if J = 1

+∞ otherwise
(31)

ψNEq(Fe) =
⎧⎨⎩

31−a1

2a1
m1

[
Ie
1

a1 − 3a1
]+ 31−a2

2a2
m2

[
Ie
1

a2 − 3a2
]

if J e = 1

+∞ otherwise
(32)

In these expressions, μr , αr , mr , ar (r = 1, 2) are real-valued material parameters3 that may be associated with the non-
Gaussian statistical distribution of the underlying polymer chains. In addition to its mathematical simplicity and physical 
meaning of its parameters, we choose this class of stored-energy functions because of its rich functional form and demon-
strated descriptive and predictive capabilities to model the nonlinear elastic response of a broad variety of elastomers [21].

Molecular analyses [22–24] as well as macroscopic experiments [25–28] have by now established that elastomers exhibit 
deformation-enhanced shear thinning. In the context of the formulation (15)–(16) specialized to isotropic elastomers, this 
implies that the “viscosities” ηK , νK , and/or θK in the representation (21) of A are not constants (as in the formulations 
(24) and (26) of Le Tallec et al. and of Reese and Govindjee), but increasing functions of the applied deformation and 
decreasing functions of the deformation rate. In light of these requirements, we propose to make use of the following 
fourth-order tensor A in the dissipation potential (15)2:

Ai jkl(F,Fe) = ηK (Ie
1, Ie

2, Iv
1)
î
Ki jkl +Ki jmn F e

mp F e
lp F e −1

qn F e −1
qk

ó
+ 3η JJi jkl (33)

3 The values of the parameters μr , αr , mr , ar should be selected so that the stored-energy functions (31) and (32) are strongly elliptic. Simple sufficient 
conditions for strong ellipticity are given by μr > 0, αr > 1/2, mr > 0, ar > 1/2 (r = 1, 2). Sufficient and necessary conditions are given by relations (22) 
in [21].
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Fig. 3. Schematic of the deformation-enhanced shear thinning behavior of the proposed constitutive model: parts (a) and (b) illustrate how the viscosity 
function ηK increases with applied deformation (as measured by Iv

1) and decreases with deformation rate (as measured by J NEq
2 ).

where

ηK (Ie
1, Ie

2, Iv
1) = η∞ +

η0 − η∞ + K1

î
Iv
1
β1 − 3β1

ó
1 +

Ä
K2 J NEq

2

äβ2
with J NEq

2 =
Ç

Ie 2
1

3
− Ie

2

å(
2∑

r=1

31−ar mr Ie ar−1
1

)2

(34)

and

η J = +∞ (35)

In expressions (34), η0 > η∞ ≥ 0, β1 ≥ 0, β2 ≥ 0, K1 ≥ 0, K2 ≥ 0 are real-valued material parameters that may be associated 
with reptation dynamics and it is recalled that J NEq

2 = 1/2 dev TNEq · dev TNEq stands for the second invariant of the stress 
deviator dev TNEq = TNEq −1/3 tr TNEq. As illustrated schematically by Fig. 3, the viscosity function ηK in (33) is an increasing 
function of Iv

1 (and hence an increasing function of the applied deformation since Iv
1 is proportional to F) and a decreasing 

function of J NEq
2 (and hence a decreasing function of the deformation rate since TNEq is proportional to Ḟ).

Having defined the free energy function (15)1 with (31)–(32) and dissipation potential (15)2 with (33)–(35), it is now 
a simple matter to spell out the constitutive relation (16) that they imply. Thus, the stress-deformation response (16)1 is 
given by

S =
[

2∑
r=1

31−αr μr Iαr−1
1

]
F +

[
2∑

r=1

31−ar mr(C · Cv−1
)ar−1

]
FCv−1 − p F−T (36)

where we recall that I1 = tr C, C = FTF, Cv = FvTFv, and p stands for the arbitrary hydrostatic pressure associated with 
the incompressibility constraint det F = 1. In turn, after some algebraic manipulation and upon recalling the identities Ie

1 =
C · Cv −1 and Ie

2 = 1/2[(C · Cv −1)2 − Cv −1C · CCv −1], the ensuing evolution equation (16)2 can be written as

Ċv =

2∑
r=1

31−ar mr(C · Cv−1
)ar−1

ηK (Ie
1, Ie

2, Iv
1)

Å
C − 1

3
(C · Cv−1

)Cv
ã

.= G(t,Cv) (37)

where the function G of time t and Cv has been defined for subsequent notational convenience. We note that the stress-
deformation response (36) depends on the internal variable Fv only through Cv, which is defined implicitly by the nonlinear 
first-order ordinary differential equation (37) in terms of the applied deformation as characterized by C. We further note 
that the differential equation (37) implies that det Cv = det Fv = 1, as expected from the unbounded value of the viscosity 
η J in (33). The following additional remarks are in order:

• Linearization. In the limit of small deformations as F → I with det F = 1, the stress-deformation response (36) and 
evolution equation (37) linearize properly as they reduce asymptotically to

S = 2(μ1 + μ2)E + 2(m1 + m2)(E − Ev) − pI, Ėv = m1 + m2
(E − Ev), tr E = tr Ev = 0 (38)
η0
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to leading order, where E = 1/2(F + FT − 2I) and Ev = 1/2(Fv + Fv T − 2I). Relations (38) are nothing more than the 
constitutive relation for the so-called standard solid model in classical linear viscoelasticity.

• Numerical solution to the evolution equation (37). Under conditions of finite deformation, the nonlinear evolution equation 
(37) does not admit explicit solutions. Nevertheless, being a system of six nonlinear first-order differential equations for 
the six components Cv

11, Cv
22, Cv

33, Cv
12, Cv

13, Cv
23, it is a simple matter to generate numerical solutions for it. For instance, 

a possible numerical method of solution that preserves the required condition of incompressibility det Cv = 1 at every 
time step is given by the exponential implicit first-order Euler scheme (see, e.g., [29]). For a generic time interval 
[tn, tn+1], this scheme provides the updated value of the solution Cv

t=tn+1
in terms of the solution at the previous time 

step Cv
t=tn

by the rule

Cv
t=tn+1

= exp
î
�t G(tn+1,Cv

t=tn+1
)Cv −1

t=tn+1

ó
Cv

t=tn
(39)

where �t = tn+1 − tn . Numerical experiments — making use of the standard Newton–Rapshon scheme to solve the 
nonlinear algebraic equations (39) — for a variety of values of the material parameters and a variety of deformation 
histories F = F(t) have confirmed that (39) is indeed a robust scheme to generate numerical solutions for (37). We have 
also found robust the explicit fifth-order Runge–Kutta scheme with extended region of stability due to Lawson [30], 
which is given by the rule

Cv
t=tn+1

= Cv
t=tn

+ �t

90
(7k1 + 32k3 + 12k4 + 32k5 + 7k6) (40)

with

k1 = G(tn,Cv
tn

)

k2 = G(tn + �t/2,Cv
tn

+ k1 �t/2)

k3 = G(tn + �t/4,Cv
tn

+ (3k1 + k2)�t/16)

k4 = G(tn + �t/2,Cv
tn

+ k3 �t/2)

k5 = G(tn + 3�t/4,Cv
tn

+ 3(−k2 + 2k3 + 3k4)�t/16)

k6 = G(tn + �t,Cv
tn

+ (k1 + 4k2 + 6k3 − 12k4 + 8k5)�t/7) (41)

where �t = tn+1 − tn . Being explicit, the scheme (40)–(41) is easier to implement than (39) and, although it requires 
much smaller time increments �t , also less computationally costly.

• Determination of the material parameters from experimental data. The constitutive relation (36)–(37) contains fourteen ma-
terial parameters: four (μ1, μ2, α1, α2) describing the non-Gaussian elasticity at states of thermodynamic equilibrium, 
four (m1, m2, a1, a2) describing the additional non-Gaussian elasticity of non-equilibrium states, and six (η0 , η∞ , β1, 
β2, K1, K2) describing the viscous dissipation that stems from the reptational motion of the underlying polymer chains. 
These parameters can be determined by simply fitting (e.g., by means of least squares) the model simultaneously to a 
set of uniaxial relaxation data and a set of uniaxial tension/compression data at constant deformation rate. Alternatively, 
they can be determined by fitting simultaneously two sets of uniaxial tension/compression data at two sufficiently dif-
ferent constant deformation rates. While fitting more complex sets of data (when available) may lead to improved 
predictive capabilities, the values of the parameters determined by these simple procedures have been tested to gener-
ate models with good predictive capabilities for a variety of elastomers, as illustrated in the next subsection.

• Homogenization problems. Because of its derivation from two thermodynamic potentials that are functions of the de-
formation gradient tensor F and an internal variable Fv grounded in the undeformed configuration, the constitutive 
relation (36)–(37) is well suited for use in boundary-value problems, particularly in homogenization problems [31] such 
as for instance those that arise in the modeling of filled elastomers [32] and in cavitation phenomena in soft adhesives 
[33,34].

3.1. Sample comparisons with experiments

We conclude by illustrating the descriptive and predictive capabilities of the proposed model through sample compar-
isons with experimental data available from the literature for two commercially significant elastomers, namely, the data of 
Bergström and Boyce [7] for Nitrile rubber and the data of Hossain et al. [35] for the acrylate elastomer VHB 4910 from 3M.

Nitrile rubber The experimental data of Bergström and Boyce [7] for Nitrile rubber pertain to uniaxial compression load-
ing/unloading tests, with F = 1/

√
λ(t)(e1 ⊗ e1 + e2 ⊗ e2) + λ(t)e3 ⊗ e3 and S = Sune3 ⊗ e3, conducted at four different 

constant stretch rates |λ̇| = 0.00023, 0.001, 0.01, 0.1 s−1. As relaxation experiments were not reported, we simultaneously 
fitted (by means of least squares) the constitutive model (36)–(37) to the data for the two stretch rates |λ̇| = 0.00023 and 
0.01 s−1 in order to determine the fourteen material parameters of the model; fitting the data for two other stretch rates 
was checked to lead to similar results. Table 1 displays the resulting values for the parameters.
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Fig. 4. The proposed model (36)–(37), with the material parameters of Table 1, compared with the experimental data of Bergström and Boyce [7] for Nitrile 
rubber subjected to uniaxial compression loading/unloading at constant stretch rates of: (a) |λ̇| = 0.00023 s−1, (b) |λ̇| = 0.001 s−1, (c) |λ̇| = 0.01 s−1, 
(d) |λ̇| = 0.1 s−1.

Table 1
Material parameters for Nitrile rubber.

μ1 = 1.08 MPa μ2 = 0.017 MPa α1 = 0.26 α2 = 7.68
m1 = 1.57 MPa m2 = 0.59 MPa a1 = −10 a2 = 7.53 K1 = 442 MPa s
η0 = 2.11 MPa s η∞ = 0.1 MPa s β1 = 3 β2 = 1.929 K2 = 1289.49 MPa−2

Fig. 4 displays plots of the stress-stretch response of the Nitrile rubber for all four stretch rates |λ̇| = 0.00023, 0.001, 0.01,

0.1 s−1. The dashed lines in the plots correspond to the experimental data, while the solid lines correspond to results from 
the proposed model with the material parameters of Table 1. Figs. 4(a) and (c) show that the data for the two stretch 
rates that were utilized in the determination of the material parameters, |λ̇| = 0.00023 and 0.01 s−1, are well described by 
the model. Figs. 4(b) and (d) show further that the data for the other two stretch rates, |λ̇| = 0.001 and 0.1 s−1, are well 
predicted by the model.

The acrylate elastomer VHB 4910 The experimental data of Hossain et al. [35] comprise uniaxial tension loading/unloading 
tests, with F = 1/

√
λ(t)(e1 ⊗ e1 + e2 ⊗ e2) + λ(t)e3 ⊗ e3 and S = Sune3 ⊗ e3, conducted at three different constant stretch 

rates |λ̇| = 0.01, 0.03, 0.05 s−1, as well as single- and multi-step relaxation tests also in uniaxial tension.4 In this case, 
we determined the material parameters of the model by simultaneously fitting three sets of data: the equilibrium states 
obtained from the multi-step relaxation test and two uniaxial tension loading/unloading tests at constant stretch rates 
|λ̇| = 0.01, 0.05 s−1. The resulting values for the parameters are given in Table 2.

4 As opposed to the data for Nitrile rubber considered above for which the Mullins effect was reported to have been removed, it is unknown whether 
the data for the acrylate elastomer VHB 4910 considered here was obtained after removing a possible Mullins effect.



A. Kumar, O. Lopez-Pamies / C. R. Mecanique 344 (2016) 102–112 111
Fig. 5. The proposed model (36)–(37), with the material parameters of Table 2, compared with the experimental data of Hossain et al. [35] for VHB 
4910: (a) equilibrium stress-stretch states from a multi-step relaxation test, (b)–(c) uniaxial tension loading/unloading tests at constant stretch rates |λ̇| =
0.01, 0.03, 0.05 s−1, (d) two single-step relaxation tests with stretches held at λ = 2 and 4.5.

Table 2
Material parameters for VHB 4910.

μ1 = 13.54 kPa μ2 = 1.08 kPa α1 = 1.00 α2 = −2.474
m1 = 5.42 kPa m2 = 20.78 kPa a1 = −10 a2 = 1.948 K1 = 3507 kPa s
η0 = 7014 kPa s η∞ = 0.1 kPa s β1 = 1.852 β2 = 0.26 K2 = 1 kPa−2

Figs. 5(a) and (b) show comparisons between the experimental data (dashed lines) that were utilized in the deter-
mination of the material parameters and the model (solid lines). Figs. 5(c) and (d) show further comparisons between 
experiments and corresponding results from the model for a uniaxial tension loading/unloading test at constant stretch rate 
|λ̇| = 0.03 s−1 and for two single-step relaxation tests with stretches held at λ = 2 and 4.5. Similar to the case of Nitrile 
rubber, the model is seen to describe and predict the response of the acrylate elastomer VHB 4910 reasonably well.
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