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In this paper, we develop an axisymmetric boundary integral equation that derives from a 
reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in 
a subsonic uniform flow. Through the use of a new non-standard derivative operator, the 
axisymmetric convected Helmholtz integral equation substantially reduces the effects of 
flow incorporated in the classical convected boundary integral formulations, and involved 
in the normal derivative and the derivative in the flow direction of the axisymmetric 
convected Green’s function. As for the free term derived from the singular integrals, it 
is given by a new expression independent of complete elliptic integrals and evaluated 
analytically as a convected angle in the meridian plane. The numerical treatment of 
singular integrals requires only the use of standard Gauss quadrature rules. Different test 
cases are presented.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Boundary Integral Equation (BIE) method is a technique appropriate to predict the three-dimensional acoustic radia-
tion in a subsonic uniform flow. The integral representations can be formulated in the transformed acoustic medium [1,2] or 
in the original acoustic medium [3,4]. However, the advantages of using boundary integral formulations in an untransformed 
acoustic medium are that the convection effects are explicit and that complex boundary conditions can be handled easily.

Nonetheless, when considering the convected acoustic radiation in axisymmetric domains, it is necessary to develop new 
integral representations. Although the main problems posed by the 2D axisymmetric integral formulations in a uniform 
flow are the same as in the no-flow case [5–9], the presence of flow substantially increases these difficulties and makes 
significantly more complicated the convected integral representations [10,11] derived from the three-dimensional boundary 
integral formulation developed in [3].

The aim of this paper is to contribute to reduce the complexity of convected boundary integral formulas for axisymmetric 
domains and boundary conditions. Thus, we develop a new boundary integral formula resulting from a simplified BIE for 
the convected Helmholtz problem in a 3D exterior domain.

A study of the axisymmetric Convected Helmholtz Integral Equation (CHIE) is presented in details. It is expressed only 
in terms of the axisymmetric convected Green’s function and its non-standard normal derivative. This non-standard normal 
derivative kernel is very similar to the normal derivative of the axisymmetric Green function in the classical case without 
flow. The singular parts of the kernels involved in this integral formula are evaluated analytically in terms of complete 
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Fig. 1. (Color online.) Geometrical model of the surface of revolution (S).

elliptic integrals. Analytic expression is given for the free term resulting from the singular integrals and may be interpreted 
as a convected angle in the meridian plane. The numerical implementation of the present convected boundary integral 
equation is developed with quadratic unidimensional isoparametric elements. An efficient method is proposed to evaluate 
the elementary integrals containing singular complete elliptic integrals.

Finally, the axisymmetric convected boundary integral equation is validated by comparison with the exact solution to 
the acoustic radiation problem generated from a monopole source in a uniform flow.

2. A reformulation of the 3D convected Helmholtz integral equation

The boundary integral formulation for acoustic radiation in a subsonic uniform flow of Wu and Lee [3] has its origin in 
the formulation of sound radiation problems by bodies in the presence of a subsonic nonuniform flow. Thus, the unbounded 
propagation medium was split into two areas: a domain bounded by a fictitious closed surface S where the flow is non-
uniform around the radiating body, called interior domain, noted �int , and an unbounded domain outside of S where the 
flow is uniform, called exterior domain, noted �ext. The streamlines are not perturbed by the presence of this separation 
interface S . The acoustic velocity potential in the exterior domain �ext is then represented by a 3D convected boundary 
integral equation over the fictitious surface S [3]. We observe that the obtained formula is established on a fixed fictitious 
surface S and without the need to impose boundary conditions.

In this section, we consider the acoustic radiation problems in the exterior domain �ext . The acoustic medium is occupied 
by a compressible perfect fluid characterized by the density ρ∞ and the speed sound c∞ , isentropic, and in subsonic 
uniform motion of velocity v∞ = v∞ez in the z-direction of a Cartesian coordinate system (O, x, y, z) associated with the 
physical space R3, with the standard basis (ex, ey, ez). According to the linear acoustic analysis in harmonic-time e(+jωt) , 
the acoustic pressure perturbation pa in �ext is given by pa = pe(+jωt) , where p is the complex amplitude, ω is the angular 
frequency, and j = √−1.

Fig. 1 shows the exterior domain �ext and its fictitious boundary S submerged in a uniform flow. However, this scheme 
does not describe a physical test-case in R3, but is motivated by the obtaining the boundary integral equation. Using 
radiation conditions at infinity, the acoustic radiation problem in the exterior domain �ext is governed by the classical 
boundary integral representation of the acoustic pressure p given for all point M ∈ �ext by [4]:

p(M) =
∫
S

{
p(Q)

∂Gk
c

∂nQ
(M,Q) − Gk

c(M,Q)
∂ p

∂nQ
(Q)

+ 2 j k(M∞·nQ) p(Q) Gk
c(M,Q) + (M∞·nQ)

[
Gk

c(M,Q)(M∞·gradQ p(Q))

− p(Q)(M∞·gradQGk
c(M,Q))

]}
dSQ,M /∈ S (1)

where Gk
c(M, Q) is the convected Green’s function, k = ω/c∞ is the wave number, M∞ = M∞ez is the uniform flow Mach 

vector, the constant M∞ = v∞/c∞ is the Mach number (0 ≤ M∞ < 1) and gradQ is the gradient operator at point Q.
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Eq. (1) is very similar to conventional integral formulas in Ref. [3]. It requires the evaluation of the kernel Gk
c(M, Q) and 

its derivatives, the normal derivative ∂Gk
c(M, Q)/∂nQ and the derivative in the flow direction M∞·gradQGk

c(M, Q), which are 
given for M �= Q by [4]:

Gk
c(M,Q) = e−jk∗(MQ·M∗∞+R∗)

4 π(1 − M2∞)
1
2 R∗

(2)

∂Gk
c

∂nQ
(M,Q) = −Gk

c(M,Q)(1 + jk∗R∗)
MQ·nQ

R ∗2

− (M∞·nQ)Gk
c(M,Q)

[
j

k

1 − M2∞
+ (1 + jk∗R∗) MQ·M∞

(1 − M2∞)R∗ 2

]
(3)

M∞·gradQGk
c(M,Q) = −jk

M2∞
1 − M2∞

Gk
c(M,Q) − Gk

c(M,Q)(1 + jk∗R∗) MQ·M∞
(1 − M2∞)R∗ 2

(4)

with nQ is the unit normal on S pointing in �ext,

k∗ = k/(1 − M2∞)
1
2 ,M∗∞ = M∞/(1 − M2∞)

1
2 (5)

R = ‖MQ‖, R∗ =
(
‖MQ‖2 + (MQ·M∗∞)2

) 1
2

(6)

The function R is the physical distance between the source and the observer, while R∗ is the convected distance.
The presence of the flow in Eqs. (1)–(4) shows that the integral formula of the acoustic pressure p(M) becomes sig-

nificantly more complicated than in the no-flow case. To obtain a formulation that is less complicated and suitable for 
theoretical and numerical developments, the normal derivative and the derivative in the flow direction of the convected 
Green’s function Gk

c can be converted into a non-standard normal derivative operator DGk
c/DnQ defined by

DGk
c

DnQ
= ∂Gk

c

∂nQ
− (M∞·nQ)(M∞·gradQGk

c) + jk(M∞·nQ)Gk
c (7)

We note that the idea of introducing the operator DGk
c/DnQ is due to the formulation of a radiation condition at infinity 

in [4]. Substituting Eqs. (3) and (4) in Eq. (7), one obtains:

DGk
c

DnQ
≡ Hk

c(M,Q) = −Gk
c(M,Q)(1 + jk∗R∗)

MQ·nQ

R∗ 2
(8)

Thereafter, the convected integral formula of the acoustic pressure p(M) given by Eq. (1) can be rewritten as

p(M) =
∫
S

p(Q)Hk
c(M,Q)dS −

∫
S

[(
1 − (MQ·nQ)2

) ∂ p

∂nQ
(Q)

−(M∞·nQ)(M∞.gradsQ
p(Q)) − jk(M∞·nQ)p(Q)

]
Gk

c(M,Q)dSQ,M /∈ S (9)

where gradsQ
= gradQ − nQ∂/∂nQ is the surface gradient operator.

The 3D convected Helmholtz integral equation given by Eq. (9) presents a major advantage over the conventional con-
vected integral equation (1). The first integral containing the integrand Hk

c in Eq. (9) only requires the evaluation of two 
convective terms instead of several terms in Eq. (1) due to the normal derivative and the derivative in the flow direc-
tion of the convected Green’s function Gk

c(M, Q). This significant reduction of convection effects can be interpreted by the 
fact that the non-standard normal derivative of the Green’s function in a uniform motion free space has a very simi-
lar form to the standard normal derivative of the Green’s function in a free space at rest. Thus, the use of non-standard 
normal derivative operator Hk

c has significantly reduced the complexity due to flow in the conventional integral formula 
(1). In addition, using the boundary element method, the numerical approximation of Eq. (1) requires the evaluation of a 
large number of additional elementary integrals compared to the numerical approximation of Eq. (9) due to the deriva-
tives of Gk

c(M, Q). However, the computation of these additional elementary integrals involving the integrands, the kernel 
M∞·gradQGk

c(M, Q) given by Eq. (4) and the terms in (M∞·nQ) of ∂Gk
c(M, Q)/∂nQ in Eq. (3) leads to a significant increase in 

computation and implementation expenses. In contrast, the numerical approximation of Eq. (9) does not contain these ele-
mentary integrals, which significantly reduces the computational burden of elementary integrals and makes easy numerical 
implementation.

3. Axisymmetric convected Helmholtz integral equation formulation

Consider the revolution boundary S around the axis (Oz) of cylindrical coordinate system (r, θ, z) where θ is the angle 
of revolution. The cylindrical coordinates of the points M and Q are respectively denoted by (rM, θM, zM) and (rQ, θQ, zQ). 
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The generator of S is a piecewise regular curve �, contained in the r–z meridian plane in which the points M and Q are 
identified by lowercase letters m and q having respective coordinates (rM, zM) and (rQ, zQ). Thus, the unit tangent vector tM
and unit normal nM to the generator � at point M on S are defined by (Fig. 1)

tM = trM er(M) + tzM ez (10)

nM = tM ∧ eθ (M) = nrM er(M) + nzM ez (11)

with (er(M), eθ (M), ez) is the cylindrical natural basis at point M. Then, the geometric quantities can be expressed in terms 
of the difference between azimuthal angles β = θM − θQ, as follows:

MQ·nQ =
(

rQnrQ + (zQ − zM)nzQ

)
− rMnrQ cos(β) (12)

R = ‖MQ‖ =
(

r2
M + r2

Q + (zQ − zM)2 − 2rMrQ cos(β)
) 1

2
(13)

R∗ =
(

r2
M + r2

Q + (zQ − zM)2 + (zQ − zM)2M∗ 2∞ − 2rMrQ cos(β)
) 1

2
(14)

By introducing the convected distance ρ∗(m, q) and the physical distance ρ(m, q) between the two points m and q in the 
meridian plane:

ρ∗(m,q) =
(
‖mq‖2 + (mq·M∗∞)2

) 1
2

(15)

ρ(m,q) = ‖mq‖ =
(
(rQ − rM)2 + (zQ − zM)2

) 1
2

(16)

R∗ can be rewritten as

R∗ = d∗(1 − κ∗2
cos2(β/2)

) 1
2

(17)

where d∗ and κ∗ are defined as

d∗2 = ρ∗2 + 4rQrM, κ∗2 = 1 − ρ∗2

d∗2 (18)

The parameter d∗ can be interpreted as a convected characteristic distance and corresponds to β = π. Using Eqs. (15)
and (16), d∗ can be rewritten in the form

d∗2 = d2 + (mq·M∗∞)2,d2 = ρ2 + 4rQrM (19)

Thus, Eq. (2) rewritten as

Gk
c(M,Q) = e

−jk∗(
mq·M∗∞+d∗(

1−κ∗2
cos2(β/2)

) 1
2
)

4πd∗(1 − M2∞)
1
2

(
1 − κ∗2 cos2(β/2)

) 1
2

(20)

The convected Green function Gk
c(M, Q) and its non-standard normal derivative Hk

c(M, Q) are then 2π periodic in the variable 
β . In Eq. (20), the parameter κ∗ is dimensionless (0 ≤ κ∗ ≤ 1) and its limit value is κ∗

L = 1, which can be obtained when 
ρ∗(m, q) = 0 in the case when m = q. Thus, the limit value κ∗

L describes the singularity of the functions Gk
c(M, Q) and 

Hk
c(M, Q) when M = Q. The parameter κ∗ is an indicator to measure “the reduced distance” ρ∗2

/d∗2
to the singularity 

κ∗
L = 1 when β = 0.

On the other hand, for a surface of revolution S that is generated by a curve �. The area element dS(M) at a point M 
on S and the surface gradient gradsM

φ(M) of a scalar fields φ(M) are conventionally given by

dS(M) = rMdθM�(m) (21)

gradsM
φ(M) = ∂φ(M)

∂tM
tM + 1

rM

∂φ(M)

∂θM
eθ (M) (22)

where d�(m) and ∂/∂tM are respectively the elementary length and the tangential differential operator at point m on the 
generator �.

The procedure for deriving the 3D convected boundary integral formulation is based on the transformation of Eq. (9) into 
the cylindrical coordinated system. For the fully axisymmetric problems, the sound pressure p(M) and its normal derivative 
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σ(M) = ∂ p(M)/∂nM are independent of the revolution angle θM. Taking into account that S = � × [0, 2π] and M∞ = M∞ez , 
then using Eqs. (10), (11), (21), and (22), we have

p (m) =
∫
�

p (q) rQ

⎧⎨
⎩

2π∫
0

Hk
c (M,Q)dθQ

⎫⎬
⎭d� (q)

−
∫
�

(
1 − M2∞n2

zQ

)
σ (q) rQ

⎧⎨
⎩

2π∫
0

Gk
c (M,Q)dθQ

⎫⎬
⎭d� (q)

− M2∞
∫
�

nzQnrQ

∂ p (q)

∂tQ
rQ

⎧⎨
⎩

2π∫
0

Gk
c (M,Q)dθQ

⎫⎬
⎭d� (q)

+ jkM∞
∫
�

nzQ p (q) rQ

⎧⎨
⎩

2π∫
0

Gk
c (M,Q) dθQ

⎫⎬
⎭d� (q) (23)

As the functions Gk
c(M, Q) and Hk

c(M, Q) are 2π periodic in the variable β , we get

2π∫
0

Gk
c (M,Q) dθQ =

2π∫
0

Gk
c (M,Q) dβ = 2πGk

c0 (m,q) (24)

2π∫
0

Hk
c (M,Q) dθQ =

2π∫
0

Hk
c (M,Q) dβ = 2πHk

c0 (m,q) (25)

where Gk
c0 and Hk

c0 are the axisymmetric convected Green’s function and its non-standard normal derivate, respectively. 
Thus, using Eqs. (24) and (25), Eq. (23) can be re-written for all point m located in the exterior medium ωe (see Fig. 1) as 
follows:

p (m) = 2π
∫
�

p (q) rQ Hk
c0 (m,q)d� (q)

− 2π
∫
�

(
1 − M2∞n2

zQ

)
σ (q) rQGk

c0 (m,q)d� (q)

− 2πM2∞
∫
�

nzQnrQ

∂ p (q)

∂tQ
rQGk

c0 (m,q)d� (q)

+ j2πkM∞
∫
�

nzQ p (q) rQGk
c0 (m,q)d� (q) ,m /∈ � (26)

When the source point m is taken on the generator, the kernels Gk
c0(m, q) and Hk

c0(m, q) are singular at m = q.
Following the usual practice [12,13], we isolate the singular point m located on the outside face �+ of �, by adding to 

the exterior medium ωe an exclusion neighborhood D−
ε of a disk Dε = D−

ε ∪D+
ε with centre m and radius ε = ρ(m, q), while 

D−
ε is the lower half disk and D+

ε is the upper half disk. The boundary of this disc Dε is the circle Cε = C−
ε ∪ C+

ε (Fig. 2).
Let sε denote the boundary between D−

ε and D+
ε , in the increased external domain ωe

ε of boundary �ε ∪ C−
ε with 

�ε = � − sε , Eq. (26) is valid. Thus, by passage to the limit ε → 0 (ωe = limε→0 ωe
ε and � = limε→0 �ε), the integral 

equation for the acoustic pressure p at point m ∈ � is given as follows:

p(m) = 2π lim
ε→0

∫
�ε

p(q)Hk
c0(m,q)rQd�(q)

− 2π lim
ε→0

∫
�ε

(
(1 − M2∞n2

zQ
)σ (q) + M2∞nzQnrQ

∂ p (q)

∂tQ
− jkM∞nzQ p(q)

)
Gk

c0(m,q)rQd�(q)

+ 2π lim
ε→0

∫
−

p (q) Hk
c0 (m,q) rQd� (q)
Cε
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Fig. 2. (Color online.) The singular point m on the boundary �: the exclusion procedure.

− 2π lim
ε→0

∫

C−
ε

(
(1 − M2∞n2

zQ
)σ (q) + M2∞nzQnrQ

∂ p(q)

∂tQ
− jkM∞nzQ p(q)

)
Gk

c0(m,q)rQ d�(q) (27)

It is noted that the passage to the limit in Eq. (27) requires to study of behavior of kernels Gk
c0(m, q) and Hk

c0(m, q) near 
the singularity.

3.1. Behavior of kernels Gk
c0 and Hk

c0 near the singularity

The modal Green’s functions Gk
c0(m, q) and Hk

c0(m, q) are singular at m = q, but the singularities can be isolated by 
decomposing the convected Green function Gk

c0(M, Q) and its non-standard normal derivative Hk
c0(M, Q) into a singular 

static part (k = 0) and non-singular part depending on the wave number k as follows:

Gk
c (M,Q) = G0

c (M,Q) + gk
c (M,Q) (28)

Hk
c (M,Q) = H0

c (M,Q) + hk
c (M,Q) (29)

with

G0
c (M,Q) = 1

4π
(
1 − M2∞

) 1
2 R∗

(30)

gk
c(M,Q) = e−jk∗(MQ·M∗∞+R∗

) − 1

4π(1 − M2∞)
1
2 R∗

(31)

while

H0
c (M,Q) = − MQ·nQ

4π
(
1 − M2∞

) 1
2 R∗3

(32)

hk
c(M,Q) =

(
− e−jk∗(MQ·M∗∞+R∗)(1 + jk∗R∗) + 1

)

4π(1 − M2∞)
1
2 R∗2

MQ·nQ

R∗ (33)

The functions gk
c and hk

c are non-singular near the singularity. This result is easily obtained by a Taylor expansion of func-
tion e(−jk∗(.)) in Eqs. (31) and (33), knowing that (MQ·nQ)/R∗ = O(R) [13] and (MQ·M∗∞)/R∗ = O(‖M∗∞‖), and by taking 
into account R/R∗ ≤ 1. Thus, when the source point m approaches the field point q, the Fourier coefficients of zero or-
der gk

c0(m, q) and hk
c0(m, q) are regular.

By virtue of parity and 2π-periodicity in the variable β of the function G0
c0(M, Q), then using a change of variable 

θ = β/2, the axisymmetric static convected Green’s function G0 (m, q) can be expressed in the form [5,6,10]
c0



M. Beldi, B. Barhoumi / C. R. Mecanique 343 (2015) 457–470 463
G0
c0(m,q) = 1

2π
1

πd∗√1 − M2∞
F (π/2, κ∗) (34)

where F (π/2, κ∗) is the elliptic complete integral of first kind.
Then, substituting Eq. (12) in Eq. (32), and using Eq. (25) with k = 0 and taking into account the properties of the 

complex Fourier coefficients, the non-standard normal derivative of G0
c0(m, q) satisfies the following relation,

H0
c0 (m,q) = [

nrQ rQ + nzQ

(
zQ − zM

)]
hc0 (m,q) − nrQ rM

2

(
hc1 (m,q) + hc−1 (m,q)

)
(35)

where

hcn (m,q) = 1

2π

2π∫
0

hc (M,Q) e−jnβdβ (36)

with hcn is the nth Fourier coefficient of the function hc defined by

hc (M,Q) = −1

4π
√

1 − M2∞R∗3
(37)

According to [15], when m → q (or κ∗ → 1), one obtains

lim
κ∗→1

F (π/2, κ∗) = 1

2
Log

(
16/(1 − κ∗2

)

)
(38)

Thus, taking into account Eqs. (18), (34) and (38), the static modal Green’s function G0
c0(m, q) exhibits a logarithmic behavior 

near the singularity, as follows:

G0
c0 (m,q) ∼ − 1

2π
√

1 − M2∞

Log

(
ρ∗(m,q)

)

2πrQ
(39)

On the other hand, by introducing a regular function Ec(M, Q) = R∗/4π
√

1 − M2∞ , we infer that hc and Ec satisfy the 
following relation:

d∗4
(κ∗2 − 1)hc = Ec + 4

d2 Ec

dβ2
(40)

where Ec is considered as a function of variable β only.
Then, when m → q, the function hcn exhibits a singular behavior of the form

hcn (m,q) ∼ − 1

2π
1

2πrQ

1√
1 − M2∞ρ∗2

(m,q)
(41)

It follows from Eqs. (35) and (41) that the behavior of the static modal Green’s function H0
c0 near the singularity is charac-

terized by

H0
c0 (m,q) ∼ − 1

2π
1

2πrQ

mq·nQ√
1 − M2∞ρ∗2

(m,q)
,ρ (m,q) → 0 (42)

Since ρ/ρ∗ ≤ 1 and (mq·nQ)/ρ = O(ρ) as ρ(m, q) → 0, then the Fourier coefficient H0
c0(m, q) is bounded at the neighbor-

hood of the singular point. The singularity of the static kernel H0
c0(m, q) is thus only apparent.

3.2. Analytical evaluation of the free terms

We are now able to evaluate the integrals along C−
ε when ε → 0 in integral Eq. (27). In the polar coordinate system 

with origin at source point m located on the outer face �+ , the elementary length at point q ∈ C−
ε is given by d�(q) =

ρ(m, q)dϕ(q) and, taking into account the regularity of functions p and σ , then the integral on C−
ε , when ρ(m, q) → 0 and 

due to Eqs. (28), (29), (39) and (42), is given by

lim
ε→0

2π
∫

C−
ε

(
p(q)Hk

c0(m,q) − (...)Gk
c0(m,q)

)
rQ d�(q) = lim

ε→0
2πp(m)

∫

C−
ε

H0
c0(m,q)rQ d�(q) (43)
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Fig. 3. (Color online.) Geometric model for the evaluation of free terms at an angular point m of boundary �.

with

lim
ε→0

2πp (m)

∫

C−
ε

H0
c0 (m,q) rQ d� (q) = p (m)

θ−
c (m)

2π
(44)

where

θ−
c (m) = − lim

ε→0

∫

C−
ε

mq·nq√
1 − M2∞ρ∗2

d� (q) ,m ∈ �+ (45)

The function θ−
c (m) is the free term related to singular integrals derived from the exterior acoustic problem in ωe. We set:

dθ−
c (q) = ρ2√

1 − M2∞ρ∗2
dθ(q) (46)

where

dθ (q) = −mq·nq

ρ2
d� (q) (47)

We observe that the differential element dθ(q) given by Eq. (47) represents in the meridian plane the elementary angle 
under which the arc element at point q of elementary length d�(q) is seen from point m. In this no-flow case, it is easy 
to evaluate analytically the free term θ(m) that takes the value π when m is a regular point on � where a unique tangent 
exists, and the value of the angle between the two tangent vectors at an angular point m of � where the normal nM
is discontinuous. Consequently, in the presence of uniform flow, the differential element dθ−

c (q) can be regarded as a 
convected elementary angle. Substituting Eqs. (15) and (16) into Eq. (45), the convected angle θ−

c (m) is given by

θ−
c (m) =

θ2∫
θ1

d(arctan(
tan θ(q)√
1 + M∗2∞

)) = arctan(
tan θ2√
1 + M∗2∞

) − arctan(
tan θ1√
1 + M∗2∞

) (48)

where for q ∈ C−
ε , θ(q) = ̂(M∞,mq) is the angle between the Mach vector M∞ and the position vector mq, with θ1 and θ2

are the angles of the half-tangents to the generator � at point m (Fig. 3).
To complete this interpretation, it is necessary to introduce the free term θ+

c (m) associated with the interior acoustic 
problem in ωi . In this case, for a point m located on the inner face �− , we obtain an equation similar to Eq. (26) where the 
normal nQ is substituted by −nQ , the exclusion neighborhood is D+

ε , and the increased interior domain is given by ωi
ε with 

the boundary ∂ωi
ε = �ε ∪ C−

ε (see Fig. 2). Then, the free term θ+
c (m) is defined as follows

θ+
c (m) = lim

ε→0

∫

C+
ε

mq·nq√
1 − M2∞ρ∗2

d� (q) ,m ∈ �− (49)

and satisfies the following properties:
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θ+
c (m) + θ−

c (m) = 2π,m ∈ � (50)

θ+
c (m) = θ−

c (m) = π, if m is a regular point on � (51)

Note that these results are not dependent on the shape of the curves C±
ε . For a regular point m on the generator �, where 

θ2 = θ1 + π, the convected angles θ±
c (m) are independent of the Mach number M∞ and take the classical values of the 

angle subtended by the half space 2D at point m. When m is an angular point of the generator �, θ−
c (m) and θ+

c (m) are 
complementary angles that may be interpreted as the convected angles subtended by the arc C−

ε and the arc C+
ε at the 

centre m, respectively. The value of θ−
c (m) is given by Eq. (48).

However, we show that the function θ−
c (m) can be extended to a function defined in the half-plane ω̄ =R+ ×R, namely:

θ−
c (m)

2π
=

⎧⎨
⎩

0, m ∈ ωe∫
�

−2πH0
c0 (m,q) rQ d� (q) , m ∈ �

1, m ∈ ωi
(52)

By virtue of Eqs. (35) and (40), the static axisymmetric nonstandard kernel H0
c0 can be rewritten as

H0
c0(m,q) = − 1

2π
1

π
√

1 − M2∞d∗ρ∗2

(
(mq·nQ)E(π/2, κ∗)

+ ρ∗2 nrQ

2rQ

(
F (π/2, κ∗) − E(π/2, κ∗)

))
(53)

where F (π/2, κ∗) and E(π/2, κ∗) are the complete elliptic integrals of the first and the second kind, respectively, defined 
by

F
(
π/2, κ∗) =

π
2∫

0

(
1 − κ∗2

cos2 (β)
)−1

2 dβ

E
(
π/2, κ∗) =

π
2∫

0

(
1 − κ∗2

cos2 (β)
) 1

2 dβ (54)

We observe that the integrand H0
c0(m, q) is expressed by an extremely simple formula as that used in the literature [9,10], 

and that in addition it has a similar form to the classical formula in the no-flow case [14].
A numerical integration of integral in Eq. (52) can be used to evaluate the free term θ−

c (m), but in this work we 
use the analytical expression given by Eq. (48), which has the advantage of not depending on complete elliptic integrals. 
This analytical method can be used as an alternative method for the evaluation of free terms derived from the boundary 
integral formulations for acoustic problems in 2D axisymmetric domain with an acoustic medium at rest [5–9] or in uniform 
flow [10,11].

3.3. The axisymmetric convected Helmholtz integral equation

The study of the behavior of the kernels Gk
c0 and Hk

c0 near the singularity show that Gk
c0 present a logarithmic singularity 

(weak), whereas Hk
c0 present an apparent singularity. Hence, the integrals along �ε in Eq. (27) are convergent in the usual 

sense when ε → 0, and it is not necessary to consider them in Cauchy’s principal value sense. In addition, taking into 
account the properties of the free terms θ±

c (m), the acoustic pressure field p may be written for m ∈ R+ ×R, thus yielding 
the following convected integral representation

c+(m)p (m) = 2π
∫
�

p (q) Hk
c0 (m,q) rQ d� (q)

− 2π
∫
�

(
(1 − M2∞n2

zQ
)σ (q) + M2∞nzQnrQ

∂ p(q)

∂tQ

− jkM∞nzQ p(q)

)
Gk

c0(m,q)rQ d�(q) (55)

with

c+(m) = 1 − θ−
c (m)

(56)

2π
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Eq. (55) is the axisymmetric convected Helmholtz integral equation for exterior acoustic problems. As in the classical no-flow 
case [9], Eq. (55) is not valid for certain values of the wave number k, called irregular frequencies. This irregular frequencies 
problem is not discussed in this study.

Compared to conventional axisymmetric convected boundary integral formulas [10,11], the integral formula (55) does 
not contain the derivative in the flow direction of the axisymmetric kernel Gk

c0 and significantly reduces the convected 
effects incorporated in the normal derivative ∂Gk

c0/∂nQ. An additional advantage is that the dimensionless outer convected 
angle c+(m) at point m ∈ � is expressed independently of complete elliptic integrals and evaluated analytically. Thus, the 
convected boundary integral formulation represented by Eqs. (55)–(56) and (48)–(53) simplifies the numerical treatments 
allowing one to predict the axisymmetric radiated acoustic field in a subsonic uniform flow.

However, integral equation (55) requires an accurate evaluation of the axisymmetric kernels Gk
c0(m, q) and Hk

c0(m, q). But 
the main difficulty in computing these kernels is the treatment of the singularity of the axisymmetric convected Green’s 
function Gk

c0(m, q) at m = q.
This problem also arises in solving the standard Helmholtz integral equation in a 2D axisymmetric space. The singularity 

extraction method is used extensively to compute the Fourier coefficients of the Green’s function in free space at rest and 
its normal derivative by decomposing them into a static singular part and a dynamic regular part depending on the wave 
number k. The regular parts are computed by using standard Gauss quadrature rules while the static singular parts are 
evaluated analytically [5–9].

When the acoustic medium is in uniform motion, an extension of this singularity extraction method has been employed 
in [10,11] for evaluation of the axisymmetric convected kernel Gk

c0(m, q), its normal derivative ∂Gk
c0(m, q)/∂nQ and the 

derivative in the flow direction ∂Gk
c0(m, q)/∂zQ. This technique is based on the splitting of the symmetric part of the 

convected Green function into a static singular part and a dynamic regular part. Therefore, the singular and regular parts of 
∂Gk

c0(m, q)/∂nQ and ∂Gk
c0(m, q)/∂zQ contain several additional terms compared to the singular part and the regular part of 

the normal derivative of classical axisymmetric Green’s function in free space at rest. The non-singular parts are evaluated 
by a standard Gaussian quadrature, whereas the non-static singular parts are evaluated analytically. They are expressed in 
terms of the non-symmetric part of the convected Green function Gk

c(M, Q) and several terms involving complete elliptic 
integrals. However, we observe that the computational burden of the evaluation of these singulars kernels is significantly 
higher in comparison with the treatment of singular kernels of the standard axisymmetric Helmholtz integral equation in a 
fluid at rest [5].

As regards the evaluation of singular axisymmetric kernels in formula (55), we use the singularity extraction method 
by applying the Fourier transform to Eqs. (28) and (29). The axisymmetric convected Green’s function Gk

c0(m, q) and its 
non-standard normal derivative Hk

c0(m, q) can be split into a static singular part and a non-singular part depending on the 
wave number k as follows

Gk
c0 (m,q) = G0

c0 (m,q) + gk
c0 (m,q) (57)

Hk
c0 (m,q) = H0

c0 (m,q) + hk
c0 (m,q) (58)

The regular functions gk
c0(m, q) and hk

c0(m, q) can be evaluated numerically using a standard Gauss quadrature according 
to the azimuth angle. In contrast, the static kernels G0

c0(m, q) and H0
c0(m, q) given by Eqs. (34) and (53) are evaluated 

analytically, because they are expressed in terms of the complete elliptic integrals F (π/2, κ∗) and E(π/2, κ∗), which can 
be computed with high precision even when κ∗ is very close to 1 using a polynomial approximation [15] or by a recent 
method [16] with an error of the order 10−8 and 10−16, respectively.

We observe that the evaluation of convected singular kernels Gk
c0(m, q) and Hk

c0(m, q) in the axisymmetric integral for-
mula (55) presents a major advantage compared to the evaluation of convected singular kernels Gk

c0(m, q), ∂Gk
c0(m, q)/∂nQ

and ∂Gk
c0(m, q)/∂zQ involved in the conventional axisymmetric integral formulas [10,11]. The static singular parts and the 

regular parts of the axisymmetric convected Green function Gk
c0(m, q) and of its non-standard normal derivative Hk

c0(m, q)

have very similar forms compared to the static singular part and the regular part of the conventional axisymmetric Green 
function in a free space at rest, and its normal derivative, which makes the computational burden of the evaluation of these 
convected singular kernels comparable to that of singular kernels involved in the standard axisymmetric Helmholtz integral 
formula.

Furthermore, we note that the modal non-standard kernel Hk
c0(m, q) can be evaluated by standard Gauss quadrature 

rules, because it has an apparent singularity at m = q. However, a combination of the analytical integration of the static 
part H0

c0(m, q) coupled with a numerical integration of the dynamic part hk
c0(m, q) leads to a greater accuracy than the use 

of a purely numerical integration procedure to compute Hk
c0(m, q).

4. Numerical implementation

The Boundary Element Method is used for solving Eq. (55) by discretizing the generator � with N one-dimensional 
quadratic isoparametric elements, denoted by Ti , i = 1, . . . , N . Each of these curvilinear elements is mapped onto the refer-
ence element ti = [−1, 1]. This transformation is used for describing both the geometric quantities (rQ, zQ) and the physical 
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Table 1
Relative error for the evaluation of the weakly singular integral J by the standard Gauss quadrature.

Number of Gaussian points 3 5 7 10

Jnum 3.8892 3.9547 3.9755 3.9875
E1 (%) 2.7 1.1 0.6 0.3

quantities (p, σ) on the reference element using the same quadratic shape functions [5]. In the local coordinate system, the 
tangential derivative operator ∂/∂tq along the generator � at point q of Ti is given by

∂

∂tq
= 1

J i(ξq)

∂

∂ξq
(59)

where ξq is the local coordinate, ξq ∈ ti = [−1, 1], and J i(ξq) is the Jacobian of the transformation. Thus, the tangential 
derivative ∂ p/∂tq is expressed in terms of nodal values of the sound pressure p on the element Ti .

Thereafter, the discretization of Eq. (55) is obtained by the collocation method so that the point m coincides with the 
nodes of the discretized generator �. This leads to a complex linear system

[A]p = [B]σ (60)

where [A] and [B] are the axisymmetric acoustic matrices, whereas p and σ are the nodal vectors containing the values 
of the acoustic pressure p and its normal derivative σ at each node, respectively. The elements of matrix [A] contain the 
convected angles and elementary integrals related to the axisymmetric convected Green’s function Gk

c0 and its non-standard 
normal derivative Hk

c0, while the elements of matrix [B] are composed only by elementary integrals containing the inte-
grand Gk

c0.
When the collocation point m is located on the element Ti and the field point q is on the element T j with (i �= j), these 

elementary integrals are regular when Ti and T j are disjoined and singular in the contrary case. If the elements Ti and T j

coincide (i = j) or have a common border (one node in this case), the singular elementary integrals are of the form

1∫
−1

f (ξq)G0
c0

(
m(ξm),q(ξq)

)
dξq (61)

where f is a regular function, whereas the static kernel G0
c0

(
m(ξm),q(ξq)

)
is singular at ξm = ξq (κ∗ = 1).

In this work, the collocation points m are located at nodes of the element Ti , which leads to ξm = ξq = −1, 0 or 1. It 

must be noted that G0
c0

(
m(ξm), q(ξq)

)
is evaluated analytically with high accuracy, even if the point ξm is very close to 

the point ξq. As a result, it is not necessary to isolate the logarithmic singularity of G0
c0 for the evaluation of the weakly 

singular integral (61).
Therefore, when the singular point ξm is localized at the boundaries of integration ±1, an accurate evaluation of Eq. (61)

can be performed numerically using a standard Gaussian quadrature. We therefore illustrate the use of this numerical 
scheme when compared to an analytical method. Taking into account the expression G0

c0 given by Eq. (34), we will consider 
the evaluation of the weakly singular integral

I =
1∫

−1

F (π/2, κ)dκ = 4 × cat (62)

where cat is Catalan’s constant. In Table 1, we compare numerical values of the integral J = I/cat obtained using various 
numbers of Gaussian points with the exact one, and the corresponding relative error (in percent) defined by

E1(% ) = 100 ×
∣∣∣∣ Jexa − Jnum

Jexa

∣∣∣∣ (63)

where Jexa = 4 is the exact value and Jnum is the computed value.
The numerical results show the effectiveness and accuracy of this standard numerical scheme where, with only seven 

Gaussian points, the relative error is 0.6%. Note that the principal advantages of the numerical procedure proposed are that 
it requires no special treatment of the integrands containing complete elliptic integral of the first kind with singular values 
at boundaries of integration, and that only a standard Gaussian quadrature is required.

An extension of this numerical scheme to the case when ξm = 0 involves the subdivision of the reference element 
ti = [−1, 1] into two elements ti

1 = [−1, ξm] and ti
2 = [ξm, 1]. Thus, the singular point ξm is moved from the inside of the 

element ti at the common border of the subelements ti and ti (Fig. 4).
1 2
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Fig. 4. (Color online.) Subdivision of the reference element.

Fig. 5. (Color online.) The directivity pattern of the amplitude of the monopole source along the boundary for ka = 5, with M∞ = 0 and M∞ = 0.1.

5. Test cases

In this section, several numerical tests are proposed to validate the accuracy of the boundary integral formulation devel-
oped in this paper. Numerical results are compared with analytical solutions to sound radiation problems generated from a 
monopole source, of strength S located at the origin O of the coordinate system.

However, the sound pressure p due to the monopole source is accessible only by the acoustic velocity potential φ via 
p = −ρ∞D∞φ/Dt , where ρ∞ is the static density of the medium at D∞/Dt = ∂/∂t + v∞∂/∂z. Then, φ/S is obtained by 
substituting M∞ by −M∞ into Eq. (2), and is given by [3]:

ϕ (Q) = S
e−jk∗[−OQ·M∗∞+R∗]

4π
(
1 − M2∞

) 1
2 R∗

, Q �= O (64)

Thereafter, the acoustic pressure p is related to the acoustic velocity potential through

p(Q) = −ρ∞c∞ [jkϕ(Q) + M∞·gradϕ(Q)] (65)

Substituting Eqs. (4) and (5) into Eq. (65), then the sound pressure p is obtained in the form:

p (Q) = − ρ∞c∞S√
1 − M2∞

[
jk∗ − (

1 + jk∗R∗) OQ·M∗∞
R∗2

]
Gk

c (Q,O) (66)

We note that compared to the case without flow, two additional terms appear in Eq. (66). Now consider the monopole 
source inside a virtual sphere Sa of center O and radius a, where the poles axis coincides with the flow direction. Thus, 
when ∂ p/nQ is a given Neumann boundary condition on the generator �a of Sa for the normal derivative σ = ∂ p/∂nQ, 
then p is the analytic solution to the acoustic radiation problem in a 2D axisymmetry space outside the generator �a .

In all numerical tests, the dimensionless wave number ka is fixed to a value equal to 5, while the Mach number takes 
values M∞ = 0, 0.1, 0.3, and 0.5. The boundary �a is discretized by 30 isoparametric quadratic elements with a total of 61 
nodes. We put A∞ = ρ∞c∞ S/a2. Figs. 5, 6 and 7 show the directivity patterns of the dimensionless amplitude |p|/A∞ of 
the numerical and analytical sound pressure along the generator �a , which are in very good agreement. We denote by pexa
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Fig. 6. (Color online.) The directivity pattern of the amplitude of the monopole source along the boundary for ka = 5, with M∞ = 0 and M∞ = 0.3.

Fig. 7. (Color online.) The directivity pattern of the amplitude of monopole source along the boundary for ka = 5, with M∞ = 0 and M∞ = 0.5.

Table 2
The relative L2 error of the numerical solution on the boundary for ka = 5.

Mach number M∞ 0 0.1 0.3 0.5

E2 (%) 0.024 0.029 0.11 0.4

the exact solution computed using Eq. (66) and by pnum the numerical solution to Eq. (60). The relative error in the L2
norm is defined by (in percent)

E2(% ) = 100 × ‖pexa − pnum‖2

‖pexa‖2
(67)

where ‖pexa − pnum‖2 = [ 1
N

∑N
j=1(p j

exa − p j
num)2]1/2 and p j

exa and p j
num are the exact and computed values at the nodes j, 

with N is the total number of mesh node. Table 2 gives the relative L2 error for different values of the Mach number.
We observe that, in the absence of flow, the distribution of this amplitude is uniform and symmetrical. But it becomes 

asymmetric non-uniform in the presence of a flow. In addition, the effect of the flow led to the subdivision of the genera-
tor �a into two regions. In the upstream region, the amplitude of the sound pressure field is amplified to be greater than 
that obtained in a medium without flow. On the contrary, in the downstream region, the convected effect caused a decrease 
in the acoustic amplitude.

6. Conclusion

In this work, we have developed an axisymmetric Helmholtz integral formula in a subsonic uniform flow. The use of a 
non-standard kernel has proved its effectiveness to substantially reduce the complexity due to the presence of flow in the 
conventional axisymmetric boundary integral formulations. A new property of free term resulting from the singular integrals 
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shows that it can be expressed independently of complete elliptic integrals and evaluated analytically as a convected angle 
in the meridian plane. An additional advantage is that the numerical implementation avoids special treatments for the 
evaluation of integrals containing a logarithmic singularity of the complete elliptic integral of the first kind, and requires 
only the use of standard Gaussian quadrature formulae. Numerical tests confirm the accuracy and efficiency of the numerical 
methods developed in this paper.
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