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In this paper, we show that there is a strong correlation between the strength differential 
(SD) effects in the plastic flow of the matrix, which arise from its dependence on the third 
stress invariant, void evolution, and ultimately the ductility of porous metallic polycrystals. 
For this purpose, detailed micromechanical finite-element analyses of three-dimensional 
unit cells are carried out. The plastic flow of the matrix is described by a criterion that 
accounts for strength-differential effects induced by shear deformation mechanisms of the 
constituent grains through a macroscopic parameter, k; only if there is no SD, k is zero, and 
the von Mises criterion is recovered. Numerical analyses are conducted for macroscopic 
proportional tensile loadings corresponding to fixed values of the stress triaxiality (ratio of 
the mean stress to the second stress invariant). It is shown that for the same macroscopic 
loading, the local plastic strains and the local stress distribution are strongly dependent 
on the sign of the parameter k. This in turn has a huge impact on damage accumulation, 
and ultimately affects the ductility of the porous polycrystals. Specifically, for axisymmetric 
loadings at third stress invariant positive, the rate of void growth is the slowest in the 
material with k negative, while the reverse holds true for equibiaxial tension (third stress 
invariant negative). Consequently, the ductility in axisymmetric tension at third-stress 
invariant positive is also markedly different from that in equibiaxial tension (third-stress 
invariant negative).

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Beginning with the pioneering studies of Needleman [1], Tvergaard [2], Koplik, and Needleman [3], micromechanical 
finite-element (FE) analyses of unit cells have been used to provide a better understanding of the mechanical response of 
porous solids (e.g., Richelsen and Tvergaard [4], Zhang et al. [5]; Srivastava and Needleman [6], etc.). In all these microme-
chanical studies, the plastic flow of the matrix (void-free material) is isotropic and is governed by the von Mises criterion.

However, early on it was recognized that the plastic flow of certain isotropic polycrystalline metallic materials is not 
governed by the von Mises criterion (e.g., Drucker [7]; the monograph of Prager and Hodge [8]; data reported by Lenhart 
[9] on pure copper; Billington [10] on iron; etc.). First, Hosford and Allen [11] demonstrated that strength differential 
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(SD) effects whereby the compressive yield strength σC is different from the tensile yield strength σT arise in isotropic 
fully-dense face-centered cubic (FCC) and body-centered-cubic (BCC) polycrystals if deformation twinning is operational at 
the single-crystal level. Twinning being a shear deformation mechanism, these SD effects imply a dependence of the plastic 
flow of the polycrystal on the third invariant of the stress deviator (rather than say the mean stress, for more details see 
Cazacu and Barlat [12]). Concerning modeling of deformation twinning and its effects on the texture evolution of hexagonal 
close packed (HCP) polycrystals within the framework of crystal plasticity, the reader is referred to the seminal work of 
Van Houtte and collaborators, e.g., Van Houtte [13]; Leffers and Van Houtte [14]; Philippe et al. [15]; Coghe et al. [16]). As 
concerns very recent experimental studies devoted to the characterization of texture evolution in HCP polycrystals, see for 
example Khan et al. [17], Meredith and Khan [18].

In this paper we demonstrate that such SD effects of the plastic flow of the matrix have a significant influence on the 
porosity evolution and most importantly, the ductility of porous metallic polycrystals. To this end, a micromechanical study 
is conducted. It is assumed that the porous polycrystal contains a regular array of initially spherical voids. The matrix is 
considered to be elastic/plastic, the plastic flow being described by the isotropic form of the yield criterion of Cazacu et 
al. [19]. This yield criterion is pressure-insensitive, involves all principal values of the stress deviator, and a scalar material 
parameter, k, which accounts for SD effects.

The outline of the paper is as follows. After briefly reviewing the isotropic form of the criterion of Cazacu et al. [19], 
in Section 2 we present the micromechanical unit-cell model and the method used for the analysis. In Sections 3–4 are 
shown some results for three porous isotropic materials with a matrix characterized by different values of the parameter 
k, i.e. −0.3, 0, +0.3. For each porous polycrystal, the macroscopic loadings imposed are such that the principal values of 
the macroscopic stresses, Σ1, Σ2, Σ3, follow a prescribed proportional loading history. Specifically, the dilatational response 
is investigated under axisymmetric loadings (Σ1 = Σ2) where the axial overall stress is adjusted so that a fixed ratio 
Σ3/Σ1 be maintained. Detailed analyses are presented for tensile loadings corresponding to (Σ1 = Σ2 and Σ3/Σ1 = 2.5) 
and equibiaxial tension (Σ1 = Σ2 and Σ3 = 0), respectively. It is shown that for the same imposed macroscopic stress 
loading, the distribution of the local plastic strain and local stresses in the porous polycrystal is strongly influenced by 
the value of the macroscopic material parameter k, which accounts for the particularities of the plastic flow of the matrix. 
Moreover, a direct correlation is established between the sign of this macroscopic material parameter and the rate of void 
growth, which in turn affects all aspects of the macroscopic response of the porous polycrystal, most importantly its overall 
ductility.

2. Problem formulation and method of analysis

2.1. Yield criterion for the matrix

We consider that the void-free material is elastic–plastic, its yielding behavior being described by the isotropic form of 
the criterion of Cazacu et al. [19]. This criterion is expressed as:

√√√√ 9
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3∑
i=1

(∣∣σ ′
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∣∣ − kσ ′
i

)2 = σT (1)

where σ ′
1, σ

′
2, σ

′
3 are the principal values of the deviator of the Cauchy stress tensor, σ ′ = σ −σmI; with σm = tr(σ )/3 denot-

ing the mean stress and I the second-order identity tensor, while σT is the yield stress in uniaxial tension. The only material 
parameter involved in the criterion is the parameter k, which is intimately linked with specific single-crystal plastic defor-
mation mechanisms (e.g., see Lebensohn and Cazacu [20]). Its range of variation is (−1, 1). If the constituent grains of a FCC 
polycrystal with uniform texture deform by {111}〈110〉 slip obeying Schmid law, plastic flow has no tension–compression 
asymmetry, i.e. the yield stress in uniaxial tension, σT, is the same as the yield stress in uniaxial compression, σC, the pa-
rameter k in Eq. (1) is zero and the isotropic form of the criterion of Cazacu et al. [19] reduces to the von Mises criterion. 
If twinning contributes to plastic deformation of the constituent grains, the polycrystal displays strength differential effects 
and k �= 0, which means that the plastic flow depends on the sign and ordering of all principal values of σ ′ or alternatively 
on both invariants J2 and J3 of the stress deviator. For example, for a fully-dense isotropic FCC polycrystal that deforms 
at single-crystal level only by ({111}〈112〉) twinning (the usual conventions { } and 〈 〉, indicating respectively the twinning 
plane and direction types, are used), Hosford and Allen [11] showed that the plastic flow is pressure-insensitive, but the 
ratio between the yield stresses in uniaxial tension and compression is: σT/σC = 0.83, which corresponds to k = −0.3 (see 
Eq. (1)). On the other hand, for a fully-dense BCC polycrystal, for which the constituent grains deform solely by ({112}〈111〉) 
twinning the macroscopic yield stress in uniaxial tension is larger than in uniaxial compression, σT/σC = 1.21 (the reciprocal 
of the ratio for the FCC polycrystal), which according to the criterion given by Eq. (1) corresponds to k = +0.3 (minus the 
FCC value). Thus, the effect is just the opposite for BCC twinning in the easy direction. Note that these SD ratios reported by 
Hosford and Allen [11] represent a maximum obtained by assuming that all the twinning systems are able to twin in the 
easy direction. These results obtained with a Taylor-type crystal plasticity model were very recently confirmed by full-field 
calculations (see Lebensohn and Cazacu [20]). In Fig. 1a is shown the projection in the octahedral plane (plane normal to 
the hydrostatic axis, σ1 = σ2 = σ3) of the yield criterion given by Eq. (1) for k = −0.3 in comparison with the von Mises 
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Fig. 1. (Color online.) Representation in the octahedral plane of the yield locus according to the isotropic form of Cazacu et al. [19] criterion (Eq. (1)) for 
fully-dense polycrystals with uniform texture deforming solely by twinning in comparison with the von Mises criterion (k = 0 in Eq. (1)): (a) FCC (k = −0.3) 
and (b) BCC polycrystals (k = +0.3).

Fig. 2. (Color online.) (a) Schematic two-dimensional projection of the three-dimensional cubic cell model adopted in this study; 2C0 and r0 denote the 
length of the undeformed cubic cell and the initial radius of the spherical void, respectively. (b) Finite-element mesh of one-eighth of the unit cell with a 
spherical void at its center.

yield criterion, which corresponds to k = 0 (σT/σC = 1), respectively; in Fig. 1b is shown the projection of the yield locus 
for the fully-dense BCC polycrystal (k = +0.3). Note the strong dependence of the yield loci on the third invariant of the 
stress deviator.

2.2. Unit-cell model

Full three-dimensional finite-element (FE) unit cell model computations are conducted. It is assumed that the porous 
polycrystal contains a regular array of initially spherical voids. The inter-void spacing is considered to be the same in any 
direction. Thus, the unit cell is initially cubic with side lengths 2C0 and contains a single void of radius r0 at its center. The 
initial porosity is:

f0 = π

6

(
r0

C0

)3

(2)

The Cartesian tensor notation is used and the origin of the coordinate system is taken at the center of the void (see Fig. 2(a)). 
Let u denote the incremental displacement between the current and reference configuration, and t the prescribed Cauchy 
stress vector, defined on the current configuration. Symmetry conditions are imposed on the planes x = 0, y = 0, and z = 0, 
respectively:

u1(0, y, z) = 0, t2(0, y, z) = 0, t3(0, y, z) = 0
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u2(x,0, z) = 0, t1(x,0, z) = 0, t3(x,0, z) = 0

u3(x, y,0) = 0, t1(x, y,0) = 0, t2(x, y,0) = 0 (3)

Therefore, only one-eighth of the unit cell needs to be analyzed numerically (see Fig. 2(b)). To simulate the constraints of 
the surrounding material, we enforce that the faces of the unit cell, which are initially planes parallel to the coordinate 
planes, remain planes and are shear-free. The boundary conditions imposed on the faces of the unit cell are:

u1(C0, y, z) = U∗
1(t), t2(C0, y, z) = t3(C0, y, z) = 0

u2(x, C0, z) = U∗
2(t), t1(x, C0, z) = t3(x, C0, z) = 0

u3(x, y, C0) = U∗
3(t), t1(x, y, C0) = t2(x, y, C0) = 0 (4)

The time histories of the displacements, U∗
1(t), U∗

2(t), and U∗
3(t) in Eq. (4) are determined during the analysis in such a way 

that the overall Cauchy stresses Σ1, Σ2, Σ3 follow a prescribed proportional loading history. The macroscopic true stresses 
Σ1, Σ2, Σ3 are defined as:

Σ1 = 1

C2C3

C2∫
0

C3∫
0

t1 dz dy, Σ2 = 1

C1C3

C3∫
0

C1∫
0

t2 dz dx

Σ3 = 1

C1C2

C1∫
0

C2∫
0

t3 dx dy, where Ci = C0 + U∗
i (5)

are the current cell dimensions. The void is considered to be traction-free. For any given material, the strain paths imposed 
are such that the principal values of the macroscopic stresses, Σ1, Σ2, and Σ3 follow a prescribed proportional loading 
history corresponding to either (Σ1 = Σ2 and Σ3/Σ1 = 2.5) or equibiaxial tension (i.e. Σ1 = Σ2 and Σ3 = 0). The porous 
materials being isotropic, their mechanical response is fully characterized by the isotropic invariants of the overall stress, Σ , 
i.e.:

Σm = 1

3
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√
3 JΣ
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where Σ ′
i = Σi − Σm, i = 1 . . . 3 . The stress triaxiality ratio TΣ is defined as the ratio between the first and second stress 

invariants, i.e. TΣ = Σm/

√
3 JΣ

2 . The overall (macroscopic) principal strains, and the second-invariant of the macroscopic 
strain being calculated as follows:
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where C0 and Ci , i = 1, . . . , 3 are the initial and current cell dimensions and Ee is the macroscopic von Mises equivalent 
strain.

The void volume fraction, f , is evaluated at the end of each time increment as:

f = 1 − V matrix

V cell

In the above equation, V cell = C1C2C3, where Ci denote the current dimensions of the cell, while the volume of the de-
formed matrix, V matrix, is determined directly from the integration of the FE domain using the FE formulation (V matrix =
NE∑

i=1
V i , where V i is the volume of the element i and NE is the total number of finite elements in the mesh).

The finite-element analyses were performed with DD3IMP [21,22], an in-house quasi-static elastoplastic code, using 
a fully-implicit time integration scheme FE solver. Fig. 2 shows the initial FE mesh of one-eighth of the unit cubic cell 
consisting of 12,150 elements (8-node hexahedral finite elements; selective reduced integration technique, with 8 and 1 
Gauss points for the deviatoric and volumetric parts of the velocity field gradient, respectively) and a total of 13,699 nodes. 
A mesh refinement study was done to ensure that the results are mesh-independent.

In the FE implementation, special attention and care was paid so that all initially planar boundary surfaces remain 
strictly flat during the entire loading history. Specifically, the degrees of freedom of all FE nodes belonging to the same 
planar bounding surface of the cube were associated in the global stiffness matrix, and the equations of all these degrees of 
freedom were replaced by only one unknown variable.

Using the cell model, the mechanical response of porous isotropic materials with matrix characterized by: k = −0.3, 
k = 0 (von Mises), and k = 0.3. in Eq. (1) is investigated. The initial void volume fraction, f0 = 0.0104 (which corresponds
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Fig. 3. (Color online.) Comparison between the macroscopic stress–strain response for porous materials with matrix displaying SD effects: k = −0.3, and 
k = +0.3 and von Mises behavior (k = 0), respectively for axisymmetric tensile loadings (Σ1 = Σ2 and Σ3/Σ1 = 2.5). Black dots mark the onset of failure.

to r0/C0 = 0.271) is considered to be the same in all materials. Thus, in the computations, only the material parameter k is 
varied. All the other input material parameters are kept the same, i.e. the elastic properties (E = 200 GPa, ν = 0.33, where 
E is the Young modulus and ν is the Poisson coefficient) and the material parameters involved in the isotropic hardening 
law describing the evolution of the matrix tensile yield strength with local equivalent plastic strain, ε̄p , i.e.

Y = A
(
ε0 + ε̄p)n

(8)

where Y is the current matrix tensile flow stress, A, n and ε0 are material parameters. The numerical values of these pa-
rameters are: Y0 = Y |ε̄p=0 = 400 MPa, A = 881.53 MPa, n = 0.1, ε0 = 0.00037. It follows that all the differences in behavior 
between the porous materials are due solely to the specificities of the plastic flow of the matrix (SD effects), which are 
described by the macroscopic parameter k.

3. Mechanical response of the porous materials for axisymmetric tensile loading corresponding to Σ1 = Σ2 and 
Σ3/Σ1 = 2.5 ( J Σ

3 > 0)

Using the micromechanical unit-cell model, we first examine the porosity evolution and its effects on the mechanical 
response of the porous materials for tensile loading corresponding to the following constant ratios between the principal 
stresses: Σ1 = Σ2 and Σ3/Σ1 = 2.5. This loading corresponds to a constant macroscopic stress triaxiality TΣ = 1 (such 
level of triaxiality arises in tensile loading of blunt notched specimens, see also Tvergaard and Needleman [23]) and JΣ

3 > 0
during the entire loading history. Fig. 3 shows a comparison between the macroscopic effective stress vs. macroscopic 
effective strain (Σe vs. Ee) curves of the three porous materials; Fig. 4 shows the evolution of the void volume fraction, 
f , while Fig. 5 depicts the rate of void growth as a function of the macroscopic effective strain Ee . In each figure, and for 
each material, the onset of failure is marked by a black dot, while the final collapse is designated by an open circle. For 
all materials, the macroscopic strain Ee corresponding to the onset of failure is determined by monitoring the evolution 
of the cell’s cross section that sustains the maximum applied load. For the macroscopic imposed loading, this is the cell’s 
cross-section perpendicular to the axial axis Oz. For example, for the porous material with k = +0.3, in Fig. 6 is depicted 
the ln(C2

0/C1C2) vs. Ee curve (solid curve), with Ci being the current values of the cell dimensions (see Eq. (5)) as well 
as the evolution of its first derivative i.e. δ ln(C2

0/C1C2) vs. Ee (interrupted line). The onset of failure corresponds to the 
strain at which there is an abrupt change in the slope of the δ ln(C2

0/C1C2) vs. Ee curve, while failure is considered to 
take place when the ln(C2

0/C1C2) vs. Ee curve reaches a maximum, which corresponds to total loss of the load-carrying 
capacity (see also the discussion in Koplik and Needleman [3]). For each material, in Fig. 7 is highlighted the critical phase 
of the deformation process, where accelerated damage accumulation occurs (onset of failure to failure). It is clearly seen 
that all aspects of the mechanical response of the porous materials are influenced by the specificities of the plastic flow of 
the matrix. Specifically, the maximum effective stress that is reached, the onset of failure, and the maximum strain that is 
reached (which is a measure of the material’s ductility) depend on the value of parameter k. Note that the porous material 
characterized by k = −0.3 has the highest ductility but the stress drop is also the most rapid (see the stress–strain curve 
of Fig. 3). This indicates that for this material the succession of events from onset of failure to final collapse is very fast 
(occurs within few percents of the macroscopic effective strain) and thus failure is more catastrophic than in a porous von 
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Fig. 4. (Color online.) Evolution of the void volume fraction with the macroscopic equivalent strain Ee, obtained by cell calculations for porous materials 
with matrix displaying SD effects: k = −0.3 and k = +0.3 and von Mises behavior (k = 0), respectively for axisymmetric tensile loadings (Σ1 = Σ2 and 
Σ3/Σ1 = 2.5). Black dots mark the onset of failure.

Fig. 5. (Color online.) Evolution of the void growth rate ( ḟ ) with the macroscopic equivalent strain Ee, obtained by cell calculations for voided polycrystals 
with matrix displaying SD effects: k = −0.3 and k = +0.3(σT/σC = 1.21) and von Mises behavior, respectively for axisymmetric tensile loadings (Σ1 = Σ2

and Σ3/Σ1 = 2.5). Black and white dots mark the onset of failure and total loss of load carrying capacity (collapse).

Mises material (k = 0) or in the porous material for which the plastic flow in the matrix is characterized by k = 0.3. The 
same conclusion can be drawn by examining the void volume fraction evolution (Fig. 4), the rate of void growth (Fig. 5), 
and the extent of the critical zone (depicted in Fig. 7). Indeed, for the material with k = −0.3 the rate of void growth is 
almost constant for most of the deformation process, i.e. until a macroscopic effective strain is reached when the rate of 
void growth increases very rapidly, indicating the onset of coalescence. Also, it is very worth noting that for this material 
the “critical zone” (from onset of failure to final collapse) is very limited, the macroscopic effective strain Ee corresponding 
to coalescence being very close to that at which final collapse occurs (see Fig. 7). In contrast, for the porous von Mises 
material and for the porous material characterized by k = 0.3, damage is more gradual. The results presented highlight the 
difficulty in evaluating the life in service of metallic components, i.e. the value of the porosity (damage level) alone is not sufficient to 
estimate the safety of the structural parts.

The paramount importance played by the plastic flow in the matrix on the ductility of the porous solids is clearly seen. 
For the porous material characterized by k = −0.3, the rate of void growth is significantly lower (see Fig. 4) than in the 
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Fig. 6. (Color online.) Evolution of the load carrying cross-section with the macroscopic strain Ee (solid line) and δ ln(C2
0/C1C2) vs. Ee (interrupted line), 

respectively for the porous material with k = +0.3 for axisymmetric tensile loadings at Σ1 = Σ2 and Σ3/Σ1 = 2.5. The critical phase of the deformation 
process, where accelerated damage accumulation occurs (onset of coalescence to final collapse), is highlighted.

Fig. 7. (Color online.) Evolution of the load carrying cross-section with the macroscopic strain Ee for porous polycrystals with matrix displaying SD effects: 
k = −0.3 and k = 0.3 and von Mises behavior (k = 0), respectively for axisymmetric tensile loadings Σ1 = Σ2 and Σ3/Σ1 = 2.5. The dots mark the onset 
of void coalescence and total collapse, respectively.

other two materials, the macroscopic strain at the onset of failure being about three times higher than in a material with 
k = 0.3 (see Fig. 7). On the other hand, in the latter material (k = 0.3), the void growth is most rapid, which explains why 
this material exhibits the lowest ductility (see also Figs. 3–4).

To better understand the reasons for the very strong difference in void evolution between the three porous materials, 
we compare the local state fields corresponding to the same level of macroscopic true strain Ee = 0.15. Note that this strain 
level corresponds to the early stages of the deformation process where macroscopically only a very slight difference in the 
stress–strain response of the three materials can be observed (see Fig. 3). Fig. 8 shows the isocontours of constant local 
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Fig. 8. (Color online.) Isocontours of the local effective equivalent plastic strain ε̄p, corresponding to the same value of the macroscopic strain Ee = 0.15 for 
the three porous materials for axisymmetric tensile loadings Σ1 = Σ2 and Σ3/Σ1 = 2.5. The upper figure corresponds to 0 ≤ ε̄p ≤ 0.01; the lower figure 
corresponds to 0.01 ≤ ε̄p ≤ 0.91. The white regions in the lower figure mark the elastic zones; only in the material with k = −0.3, the entire domain is 
plastic.

equivalent plastic strain, ε̄p, corresponding to Ee = 0.15. The local plastic strain ε̄p is the work-equivalent conjugate of the 
effective stress according to the criterion given by Eq. (1), i.e.

Ẇ p = ˙̄εp

√√√√ 9

2(3k2 − 2k + 3)

3∑
i=1

(∣∣σ ′
i

∣∣ − kσ ′
i

)2
(9)

Because of the drastic difference in the level of local plastic strains that develop in the three materials and in order to be 
able to better distinguish the distribution of the plastic zones while having the same scale (i.e. the same maximum and 
minimum levels for ε̄p), for all materials, the upper Fig. 8 shows isocontours corresponding to ε̄p ≤ 0.01, while the lower 
Fig. 8 presents the isocontours corresponding to 0.01 ≤ ε̄p ≤ 0.91.

Examination of the upper part of Fig. 8 reveals that in the porous polycrystal characterized by k = −0.3 the entire 
domain (cell) has yielded. However, for the porous von Mises (σT/σC = 1) and the porous polycrystal characterized by 
k = 0.3, there exists a zone in the vicinity of the void along the vertical axis of the cross-section (Oz, which is the direction 
of the maximum applied load) where yielding did not occur. Specifically, for the porous von Mises material, the elastic zone 
is contiguous to the void, while for the material characterized by k = 0.3, the elastic zone is slightly shifted away from the 
void. Examination of the isocontours of local plastic strain for the range 0.01 ≤ ε̄p ≤ 0.91 show very marked differences in 
terms of the heterogeneity of plastic deformation and the distribution of the plastic zones within the cell. Note that for the 
porous polycrystal characterized by k = −0.3, the plastic deformation is more homogeneous than in the other materials. 
In contrast, at the same level of the macroscopic plastic strain Ee = 0.15, in the von Mises material and in the polycrystal 
characterized by k = 0.3, the strain gradients along both the axial and transverse directions are much stronger. The highest 
levels of local plastic deformation and most heterogeneity are found in the material characterized by k = +0.3. A measure 
of the heterogeneity in plastic deformation within the domain is the ratio between the maximum local plastic strain in the 
entire domain, ε̄p

max, and the average of the local plastic strain, 〈ε̄p〉 defined as:

〈
ε̄p〉 = 1

V

∫
V

ε̄p dV (10)

Thus, the highest is the ratio ε̄
p
max〈ε̄p〉 , the most heterogeneity there is. For the materials with k = +0.3, k = 0, and k = −0.3, 

these ratios are 5.95, 5.4, and 4.16, respectively. Note that the highest ratio (highest heterogeneity) is observed in the 
material with k = +0.3, while the lowest is in the material with k = −0.3.
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Fig. 9. (Color online.) Isocontours of the local normalized mean stress σm/Y0 for the three porous polycrystals for axisymmetric tensile loadings Σ1 = Σ2

and Σ3/Σ1 = 2.5. Only for the material with k = −0.3 (σT/σC = 0.83), an extended zone of negative (compressive) pressure contiguous to the void develops.

Fig. 10. (Color online.) Isocontours of the normalized local Cauchy stress components σ11 and σ22 for the three porous polycrystals for axisymmetric tensile 
loadings Σ1 = Σ2 and Σ3/Σ1 = 2.5.

Moreover, the distribution of the local stresses is markedly different depending on the value of k. Contours of constant 
mean stress σm/Y0 are shown in Fig. 9. Note that in the material with k = +0.3 (σT/σC = 1.21), the local mean stress, 
σm/Y0, is positive in the entire domain, while in the material with k = −0.3, which is fully plasticized, zones of negative 
mean stress develop near the void. As a consequence, for the latter material void growth is slowed down as compared to 
the material characterized by k = +0.3. This correlates with the differences in porosity evolution evidenced in Figs. 3–4.

To better understand why zones of negative mean stress develop only in the polycrystal with k = −0.3, in Fig. 10 are 
shown the isocontours of the components of the local Cauchy stress tensor σ11 and σ33 (normalized by the respective 
values of the macroscopic lateral stress Σ1 and macroscopic axial stress, Σ3, respectively). Note that only in the material 
with k = −0.3, the local lateral stress, σ11, is negative (compression) in the vicinity of the void along the Oz direction 
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Fig. 11. (Color online.) Comparison between the macroscopic stress–strain response (equivalent stress Σe vs. macroscopic equivalent strain Ee) for porous 
polycrystals with matrix displaying SD effects: subjected to equibiaxial tensile loading (Σ1 = Σ2 and Σ3 = 0; JΣ

3 < 0).

(direction of the maximum macroscopic loading direction), which results in negative values of the local mean stress, σm in 
the vicinity of the cavity.

In conclusion, although all materials were subjected to the same macroscopic tensile loading history corresponding to 
a constant macroscopic stress triaxiality TΣ = 1 and JΣ

3 > 0 during the entire deformation process, the local fields are 
markedly different. All the results presented highlight the strong correlation between the value of the macroscopic parameter k and 
the local plastic strain heterogeneity, which in turn leads to markedly different void evolution and ultimately ductility of the porous 
metallic materials (see Figs. 3–4).

4. Mechanical response of the porous materials for equibiaxial tension (Σ1 = Σ2 > 0 and Σ3 = 0)

Next, we examine the porosity evolution and its effects on the mechanical response of the three porous materials under 
equibiaxial tension, a loading of great practical importance in metal forming. Note that for such loading, JΣ

3 < 0 during 
the entire deformation process. Comparison between the macroscopic equivalent stress Σe vs. macroscopic equivalent strain 
Ee curves, obtained using the cell model for the three materials, is presented in Fig. 11. The evolution of the void volume 
fraction and the rate of void growth as a function of the macroscopic effective strain Ee are respectively shown in Figs. 12
and 13. Note that the specificities of the plastic flow of the matrix described by the parameter k affect every aspect of the 
mechanical response of the porous solid.

Under equibiaxial tension, only the material, which is characterized by k = −0.3 displays softening; furthermore it has the lowest 
ductility. On the other hand, for this macroscopic stress path history, the von Mises material and the material characterized by k = +0.3
exhibit enhanced ductility (for these materials calculations were stopped at Ee = 1). This correlates with the void volume fraction 
evolution (see Fig. 12) and the rate of void growth (Fig. 13) in each material. Indeed, under equibiaxial loading, in the 
material with k = −0.3 (σT/σC = 0.83) the void grows much faster than in the other materials and at some point in 
the deformation process, there is a very rapid increase in void volume fraction, which corresponds to the drop in the 
macroscopic effective stress (see Figs. 11–13). However, in the von Mises material (k = 0), the void grows much slower than 
in the material with k = −0.3, the rate of void growth being almost constant for most of the deformation process, while 
in the material with k = 0.3 there is a very little change in porosity for the entire process. To gain understanding of the 
differences in porosity evolution, we also examined the distribution of the local equivalent plastic strains (Fig. 14) and local 
stresses (Figs. 15–16) in each material corresponding to the same level of macroscopic effective strain Ee = 0.5. It is very 
worth noting that in the material where there is the least plastic heterogeneity, which is the material with k = +0.3, there 
is little damage accumulation (see also Figs. 12–13). For this material, the local stress distribution is more homogeneous 
(see Figs. 15–16), and the levels of mean stress σm/Y0 are very low in most of the cell. In contrast, in the material with 
k = −0.3, the mean stress is much higher than in the others, the gradients of mean stress are much stronger and are 
due to the heterogeneity in the local stress component σ33. Fig. 17 shows the evolution of the local strain heterogeneity 
ratio ε̄p

max/〈ε̄p〉 vs. Ee for the three materials. Irrespective of the level of the macroscopic strain Ee, the local plastic strain 
heterogeneity is most pronounced in the material with k = −0.3, while in the material with k = 0.3 the local plastic strain 
is homogeneous for most of the deformation process.
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Fig. 12. (Color online.) Evolution of the void volume fraction with the macroscopic equivalent strain Ee, obtained by cell calculations for porous polycrystals 
matrix displaying SD effects: k = −0.3, k = +0.3, and von Mises behavior (k = 0), respectively, subjected to equibiaxial tensile loading.

Fig. 13. (Color online.) Evolution of the void growth rate ( ḟ ) with the macroscopic equivalent strain Ee, obtained by cell calculations for porous polycrystals 
with matrix displaying SD effects: k = −0.3, k = +0.3, and von Mises behavior (k = 0), respectively, subjected to equibiaxial tensile loading. Note an almost 
constant and very low value of the rate of void growth for the material with k = +0.3.

5. Conclusions

In this paper, the SD effects in plastic flow of the matrix, which arise from the dependence of the plastic flow on 
the third invariant due to intrinsic single-crystal deformation mechanisms, on porosity evolution and the overall ductility 
of voided polycrystals was assessed for the first time. In doing this, a unit cell model for the porous media was used. 
Specifically, numerical analyses of three-dimensional unit cells were carried out for isotropic metallic polycrystals with 
constituent grains deforming solely by twinning. The twinning induced tension–compression asymmetry in the plastic flow 
at the polycrystal scale was modeled using the isotropic form of the yield criterion of Cazacu et al. [19]. This yield criterion is 
pressure-insensitive, it involves all principal values of the Cauchy stress deviator, and a scalar material parameter, k, which 
is intimately related to specific single-crystal plastic deformation mechanisms. For each porous polycrystal, the imposed 
macroscopic loadings were such that the principal values of the macroscopic stresses, Σ1, Σ2, Σ3, followed a prescribed 
proportional loading history. Detailed analyses were presented for tensile axisymmetric loadings corresponding to (Σ1 = Σ2
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Fig. 14. (Color online.) Isocontours of the local effective equivalent plastic strain ε̄p corresponding to the same value of the macroscopic strain Ee = 0.5: 
material with k = −0.3, von Mises material, and material with k = +0.3 subjected to equibiaxial tension. The white areas shown for the material with 
k = −0.3 and k = 0 represent either ε̄p < 0.32 or ε̄p > 0.88. The vertical axis is along the axial direction (no load), horizontal axis along the Ox lateral 
direction.

Fig. 15. (Color online.) Isocontours of the normalized local means stress σm/Y0, corresponding to the same value of the macroscopic strain Ee = 0.5 for the 
three porous materials with k = −0.3, k = +0.3, and von Mises behavior (k = 0), respectively, subjected to equibiaxial tensile loading.
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Fig. 16. (Color online.) Isocontours of the normalized local Cauchy stress components σ11/Σ1 and σ22/Y0, corresponding to the same value of the macro-
scopic strain Ee = 0.5 for the three porous materials with k = −0.3, k = +0.3, and von Mises behavior (k = 0), respectively, subjected to equibiaxial tensile 
loading (axial stress Σ3 = 0).

Fig. 17. (Color online.) Evolution of the local strain heterogeneity ratio ε̄p
max/〈ε̄p〉 with the macrocopic strain Ee for the three porous polycrystals subject to 

macroscopic equibiaxial tension; for each material ε̄p
max is the maximum local plastic strain in the cell, and 〈ε̄p〉 is the average of the local plastic strain in 

the cell.
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and Σ3/Σ1 = 2.5) and equibiaxial tension (Σ1 = Σ2 and Σ3 = 0), respectively. The first loading corresponds to axisymmetric 
tensile loading at JΣ

3 > 0 during the entire deformation process; the second loading corresponds to JΣ
3 < 0 for the entire 

deformation process.
It was clearly shown that irrespective of the imposed macroscopic loading, the tension–compression asymmetry in the 

plastic flow of the matrix, described by the parameter k, has a very strong influence on all aspects of the mechanical 
response of the porous materials.

For loading at positive third stress invariant, ( JΣ
3 > 0) the porous material, which is characterized by k = −0.3 (yield in 

tension less than in compression) has the highest ductility (∼300% more than the material with k = +0.3—yield in tension 
larger than in compression), but the “critical zone” in the deformation process (onset of coalescence to failure) is very 
limited, the macroscopic effective strain Ee corresponding to coalescence being extremely close to that at which failure 
occurs (see Fig. 7). In contrast, for the porous von Mises material (k = 0) and for the porous material characterized by 
k = 0.3, damage is more gradual. Moreover, it was shown that even if at the macroscopic level there is very little difference in the 
macroscopic stress–strain response between the porous polycrystals, the differences in the local state fields is very strong.

However, for equibiaxial tension loadings, which corresponds to negative third-stress invariant ( JΣ
3 < 0) comparison between 

the rate of void growth and ductility in the same materials lead to completely different findings: only the material, which is char-
acterized by k = −0.3 (yield in tension less than in compression) displays softening; furthermore, it has the lowest ductility. 
The strong influence of the stress path history on plasticity–damage couplings is clearly evidenced. Specifically, for loadings 
such that JΣ

3 > 0, the fastest void growth rate occurs in the material characterized by k = +0.3; on the other hand, for 
loadings such that JΣ

3 < 0, the fastest void growth rate occurs in the material characterized by k = −0.3. Thus, this study 
indicates a direct correlation between a macroscopic material parameter that is intimately related to the particularities of 
the plastic flow (i.e. the parameter k describing the SD ratio of the matrix) and the rate of void growth for a given strain 
path.

While in the examples shown here the tension–compression asymmetry of the polycrystalline materials was induced 
by twinning at the single-crystal level, this strength differential at the polycrystal level may arise from other single-crystal 
plasticity mechanisms, e.g., when different components of the applied stress affect the single crystal plastic deformation by 
climb and glide [24].
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