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A generalized macroscopic nonlocal theory of sound propagation in rigid-framed porous 
media saturated with a viscothermal fluid has been recently proposed, which takes into 
account both temporal and spatial dispersion. Here, we consider applying this theory, 
which enables the description of resonance effects, to the case of sound propagation 
through an array of Helmholtz resonators whose unusual metamaterial properties, such as 
negative bulk moduli, have been experimentally demonstrated. Three different calculations 
are performed, validating the results of the nonlocal theory, related to the frequency-
dependent Bloch wavenumber and bulk modulus of the first normal mode, for 1D 
propagation in 2D or 3D periodic structures.
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r é s u m é

Une théorie macroscopique nonlocale générale de la propagation du son dans les milieux 
poreux à structure rigide saturés par un fluide viscothermique a récemment vu le jour. 
Tenant un compte complet des dispersions, tant temporelles que spatiales, elle décrit 
entièrement les résonances. Nous l’appliquons ici au cas de la propagation du son dans 
un réseau de résonateurs de Helmholtz, dont les propriétés non usuelles (modules de 
compressibilité négatifs) ont été établies expérimentalement. Trois calculs différents sont 
présentés, qui valident les résultats de la théorie non locale, relatifs au nombre d’onde et 
module de compressibilité, qui sont fonctions de la fréquence, du mode de Bloch principal 
(le moins atténué), pour une propagation 1D en géométries périodiques 2D ou 3D.
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Fig. 1. (Color online.) Left: illustration of a 2D array of Helmholtz resonators. Right: a periodic cell of the structure, with L = 1 cm, � = 0.2L, σ = 0.015L, 
and l = 0.15L.

1. Introduction

We employ here a generalized macroscopic nonlocal theory of sound propagation in rigid-framed porous media satu-
rated with a viscothermal fluid [1] to describe the behavior of an acoustic metamaterial made of an array of Helmholtz 
resonators filled with air (see Fig. 1 left). Inspired by the electromagnetic theory and a thermodynamic consideration re-
lating to the concept of acoustic part of energy current density, this macroscopic theory allows us to go beyond the limits 
of the classical local theory and within the limits of linear theory, to take into account not only temporal dispersion, but 
also spatial dispersion. By macroscopic theory we mean that the theory is concerned with averaged fields only. Assuming 
that there is a suitable ensemble of realizations of the medium, the macroscopic theory then is developed to describe 
the dynamics of the ensemble-averaged fields. A special case will be that of a periodic medium. The ensemble will be 
the collection of configurations generated by random translations of a single sample, and the ensemble average will be 
related to cell average of one sample. In the framework of the new approach, a homogenization procedure is proposed, 
through solving two independent microscopic action-response problems each of which related to the effective density and 
effective bulk modulus of the material. Contrary to the classical (two-scale asymptotic) method of homogenization, no 
asymptotic approach has been employed and there is no length-constraint to be considered within the development of 
the new method. Thus, there would be no frequency limit for the medium effective properties to be valid; in addition, 
materials with different length scales can be treated. The homogenization procedure offers a systematic way of obtain-
ing the effective properties of the materials, regardless of their geometries. These characteristics of the nonlocal approach 
permits the description of the porous media with specific geometries causing metamaterial behavior. A metamaterial with 
periodic structure will be studied: two-dimensional and three dimensional chain of Helmholtz resonators connected in 
series.

By local theory, we refer to space locality. Nonlocality in time, or temporal dispersion, has been already taken into 
account through models for wave propagation in porous media [2–5]. That is, in Fourier space the effective density and 
bulk modulus depend on the frequency ω. In other words, the field dynamics at one location retains a memory of the field 
values at this location but is not affected by the neighboring values. The local description is usually based on retaining only 
the leading order terms in the two-scale homogenization method [6–11,5]. An asymptotic two-scale approach is applied 
in terms of a characteristic length of the medium, the period L in periodic media, which is assumed to be much smaller 
than the wavelength λ [12,13]. Efforts have been performed to extend the asymptotic method of homogenization to higher 
frequencies for the periodic composite materials [14,15] and rigid porous media [16] by introducing another type of scale 
separation to which the asymptotic multi-scale procedure applies. An enhanced asymptotic method has been adapted to 
describe sound propagation in rigid porous media with embedded damped Helmholtz resonators [17] exhibiting scattering 
different from Bragg scattering at high frequency in periodic media.

An effective medium approach has been proposed for periodic elastic composites based on surface responses of a struc-
tural unit of the material [18], which can describe the macroscopic parameters beyond the frequencies within the long 
wavelength limit. Unlike the classical methods, based on the introduction of two-scale asymptotic expansions, or coher-
ent potential approximation [19] based on the effective-medium parameters minimizing scatterings in the long-wavelength 
limit, the homogenization scheme presented in [18] uses matching the lowest-order scattering amplitudes arising from a pe-
riodic unit cell of the metamaterial with that of a homogenized material. As such, local resonant scattering can be captured 
as well by the latter method in the elastic metamaterials. The asymptotic method of homogenization has been enhanced to 
provide the weak nonlocal effects as a small correction to the local behavior [20]. An approach has been presented [21] for 
random elastic composites based on ensemble averaging of the material responses to a body force, giving rise to effective 
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parameters of the medium depending on frequency and wavenumber. By this method, the case of periodic media can be 
treated as well.

The nonlocal theory we use here takes fully the temporal dispersion and spatial dispersion into account. The medium 
is assumed unbounded and homogeneous in the stationary random statistical sense; therefore, the spatial dispersion refers 
only to the dependence of the permittivities, i.e. effective density and bulk modulus, on the Fourier wavenumbers k present 
in the macroscopic fields [22]. As mentioned above, the theory can be applied with certain considerations to a periodic 
medium; in particular it gives the Bloch wavenumbers and defines Bloch impedances. The materials susceptible to show-
ing the nonlocal behavior may be classified into two main groups regarding their microgeometry. The first comprises the 
materials which exhibit this behavior in sufficiently high frequency regime. The second one concerns materials with micro-
geometry constituting the resonators, which exhibit spatial dispersion phenomena even at not very high frequencies; the 
resonance phenomena act as a source generating nonlocal behavior. In this article, we investigate the second type of these 
geometries in the form of daisy-chained Helmholtz resonators. We will see the first one in a forthcoming paper, where 
1D propagation in a two-dimensional lattice of rigid cylinders will be studied. A material made of an array of Helmholtz 
resonators filled by water has been studied experimentally, and has been found to show negative bulk modulus in the 
resonance frequency range [23]. Later, Helmhotz resonators as structural units were used to design novel metamaterials for 
focusing ultrasound waves [24] and broadband acoustic cloaking [25].

Here, we apply the nonlocal theory to quantitatively describe the macroscopic dynamics of such a metamaterial filled 
with air as a viscothermal fluid, in 2D as well as in 3D. For the 2D case, using a simplified analytical solution of the 
complete equations, we present the method of obtaining the nonlocal effective density and effective bulk modulus. When 
these effective parameters satisfy the dispersion equation based on the nonlocal theory, we can compute the wavenumber 
of the least attenuated mode, among other modes. We can then check that the wavenumber resulting from the macroscopic 
nonlocal theory coincides with the wavenumber associated with the Bloch wave propagating and attenuating in the medium. 
The Bloch solution is determined using the same simplifying way of solving as in the nonlocal modeling. Thus the results 
based on the two calculations should be comparable. Finally, as a check of the validity of the simplifying assumptions 
introduced in our modeling calculations, we have performed direct Finite Element Method (FEM) computations based on 
the exact equations in the framework of nonlocal homogenization.

In Section 2, we review briefly the general framework of the nonlocal theory which is used in this paper. The microscopic 
equations governing sound propagation in a rigid porous medium are summarized, before mentioning the macroscopic 
Maxwellian equations describing the macroscopic nonlocal dynamics of the homogenized equivalent fluid. In Section 3, 
we will see the nonlocal modeling allowing the calculation of the effective parameters and the wavenumber of the least 
attenuated wave in the medium. The direct calculation of the Bloch wavenumber, using similar simplifications, is presented 
in Section 4. Section 5 is devoted to the results of the three different calculations in 2D, and also the results based on the 
nonlocal modeling and Bloch wave calculations which have been generalized to 3D structures.

2. General framework of the nonlocal theory

In the following, we state the microscopic equations applied at the pore level, and the nonlocal Maxwellian macroscopic 
equations that describe the dynamics of the material as a homogeneous equivalent fluid medium. Then, we recall briefly the 
upscaling procedures allowing to obtain the frequency and wavenumber dependent effective parameters of the macroscopic 
equivalent fluid medium, i.e. effective density and effective bulk modulus. This section is a summary of the results which 
have been discussed in detail in [1]. Hence, we will frequently refer to [1], for the in-depth explanations.

2.1. Microscopic equations

The dynamics of a small amplitude perturbation in a rigid-framed porous material filled with a viscothermal fluid is 
governed by the linearized equations of the mass, momentum, and energy balance, and a general fluid state equation as 
follows: in the fluid region V f

ρ0
∂ v

∂t
= −∇p + η∇2 v + (ζ + η

3
)∇(∇ · v) (1a)

∂b

∂t
+ ∇ · v = 0 (1b)

γχ0 p = b + β0τ (1c)

ρ0cp
∂τ

∂t
= β0T0

∂ p

∂t
+ κ∇2τ (1d)

where v , b ≡ ρ/ρ0, p and τ , are the fluid velocity, excess condensation, thermodynamic excess pressure, excess temperature, 
respectively, and ρ is the excess density. The fluid constants ρ0, η, ζ , γ , χ0, β0, cp , T0, κ , represent the ambient density, 
first viscosity, second viscosity, ratio of the heat capacity at constant pressure to heat capacity at constant volume cp/cv , 
adiabatic compressibility, coefficient of thermal expansion, specific heat capacity per unit mass at constant pressure, ambient 
temperature, and coefficient of thermal conduction, respectively.
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In the (rigid) solid phase region V s , energy balance equation is reduced to ρscs
p(∂τ s/∂t) = κ s∇2τ s , where ρs is the 

constant solid density, τ s solid excess temperature, and κ s solid coefficient of thermal conductivity. On the fluid/solid 
interface ∂V , we have the conditions of continuity of the excess temperature τ = τ s and the heat flux κ∇τ = κ s∇τ s . We 
admit that the coefficient of thermal conductivity of the solid is much larger than that of the fluid κ s � κ , and the heat 
capacity at constant pressure of the solid part is much larger than that of the fluid part, i.e., (1 − φ)ρscs

p � φρ0cp ; where 
φ is the fluid volume fraction (porosity). The latter assumptions combined with the Fourier heat diffusion in the solid, and 
the temperature and heat flux continuity relations, generally result in the vanishing of the fluid excess temperature at the 
fluid/solid boundaries. In addition, we assume no-slip condition on the fluid/(rigid) solid interface. The boundary conditions 
for the velocity and excess temperature on ∂V are finally written as

v = 0, τ = 0 (2)

2.2. Macroscopic Maxwellian acoustics

Before going through the macroscopic equations for sound propagation in rigid-framed porous media, and the homoge-
nization procedure, we will precise the notion of field averaging in the nonlocal approach.

Averaging: The present macroscopic theory is statistical in nature and has been developed in principle for fluid-saturated 
rigid-framed media which are homogeneous in an ensemble-averaged sense; this is the case of stationary random media. 
The macroscopic properties represented in the theory refer to the ensemble of realizations. Thus, for example, the propaga-
tion constants of the medium would refer to the propagation constant of coherent waves in multiple-scattering theory. Here, 
the material we wish to study is not defined by stationary random realizations. It belongs to the important class of periodic 
materials. The macroscopic theory can still be applied by considering the ensemble obtained through random translation 
of one sample. It turns out that the ensemble-average 〈 〉 properties of the space are, in this case, precisely computable 
by spatial averaging over a periodic cell in a single realization. This, in a sense, reminds of ergodicity in stationary random 
media.

The macroscopic condensation and velocity are defined as the average of pore scale microscopic fields: V ≡ 〈v〉, and 
B ≡ 〈b〉; average over the periodic cell in the case of the periodic media. A macroscopic equation can be obtained directly 
by averaging Eq. (1b), using the commutation relation 〈∇.v〉 = ∇.〈v〉 which is automatically satisfied owing to (2) (see 
Eq. (56) in [1]). The second macroscopic field equation, as well as the macroscopic constitutive relations, are written using 
the electromagnetic analogy. This analogy suggests that the system of macroscopic equations can be carried through by 
introducing new Maxwellian fields H and D , as well as linear operators ρ̂ and χ̂−1. The field equations and constitutive 
relations are written as (see section 3.3 in [1])

Field equations:
∂ B

∂t
+ ∇ · V = 0,

∂ D

∂t
= −∇H (3)

Constitutive relations: D = ρ̂V , H = χ̂−1 B (4)

where the integral operators of density ρ̂ and bulk modulus χ̂−1 are such that

D(t, r) =
t∫

−∞
dt′

∫
dr′ρ(t − t′, r − r′)V (t′, r′) (5a)

H(t, r) =
t∫

−∞
dt′

∫
dr′χ−1(t − t′, r − r′)B(t′, r′) (5b)

We notice that the kernels ρ and χ−1 depend on the difference t − t′ and r − r′ , which is due to the homogeneity in 
time and material space. Therefore, we can write (5a) and (5b) in the Fourier space, respectively, as

D(ω,k) = ρ(ω,k)V (ω,k), H(ω,k) = χ−1(ω,k)B(ω,k) (6)

In nonlocal theory, the macroscopic H field is defined through the Poynting–Schoch condition of acoustic part of energy 
current density [1,26] which is postulated as (see section 3.4 in [1]):

S = H V = 〈pv〉 (7)

As a result of this definition, the operators density and bulk modulus become susceptibility functions determinable 
in principle through independent action-response problems (see Section 2.4 in [1]). Regarding Eqs. (5) and (6), it is vis-
ible that the theory allows for both temporal dispersion, shown by integration over time variable t′ in physical space 
and frequency dependence in Fourier space, and spatial dispersion, shown by integration over space coordinates r ′ and 
wavenumber dependence in Fourier space. We will recognize the quantities in physical space (t, r) and Fourier space (ω, k)

by their arguments. Now, in order to clarify the relationship between constitutive operators and microgeometry, the kernel 
functions ρ(ω, k) and χ−1(ω, k) are needed to be determined, by introducing action-response procedures coarse-graining 
the dissipative fluid dynamics of the pore scale.
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2.3. Procedures to compute effective density and bulk modulus

In the 1D case of macroscopic propagation along a symmetry axis, for instance x-axis with the unit vector x̂, we will 
have D = D x̂ and V = V x̂, r = xx̂, and k = kx̂ in the above equations (3–7). To determine the Fourier functions ρ(ω, k)

and χ−1(ω, k) for the 1D acoustic propagation in a medium with porosity φ, we solve two independent action-response 
problems (see section 4 in [1]). For computing the effective density we consider the macroscopic response of the fluid 
subject to a single-component (ω, k) Fourier bulk force. The effective bulk modulus is related to the response of the fluid 
subject to a single-component Fourier rate of heat supply.

Two sets of equations to be solved: the two systems of equations to be solved are written as
In the fluid region V f :

∂b

∂t
+ ∇ · v = 0 (8a)

ρ0
∂ v

∂t
= −∇p + η∇2 v +

(
ζ + 1

3
η

)
∇ (∇ · v) + F e−iωt+ikx︸ ︷︷ ︸

added for determination of density

(8b)

ρ0cp
∂τ

∂t
= β0T0

∂ p

∂t
+ κ∇2τ + Q̇ e−iωt+ikx︸ ︷︷ ︸

added for determination of bulk modulus

(8c)

γχ0 p = b + β0τ (8d)

On the fluid/solid interface ∂V :

v = 0, τ = 0 (9)

For convenience, the excitation amplitudes are written as: Q̇ e−iωt+ikx = β0T0(∂/∂t) 
(
Pe−iωt+ikx

)
, and F e−iωt+ikx =

−∇ (
Pe−iωt+ikx

)
. Here, it is important to note that the excitation variables ω and k are set as independent variables. 

The solutions to the above systems for the fields p, b, τ , and components of v take the form p(t, r) = p(ω, k, r)e−iωt+ikx , 
and so on. Recall that the theory is formulated for a geometry that is stationary random, and the averaging operator 〈 〉
refers to the ensemble averaging. Thus, here, the amplitude fields v(ω, k, r), p(ω, k, r), b(ω, k, r), and τ (ω, k, r), are sta-
tionary random functions of r . Passing to the case of periodic geometry, we can limit ourselves to considering one periodic 
sample. The fields become periodic functions over a cell, and 〈 〉 is interpreted as a volume average over a cell.

Effective density and bulk modulus: Once the two systems of equations are solved independently, using the right hand 
Maxwellian macroscopic equations in (3) and (4), we arrive at the following expressions for the nonlocal effective density 
and bulk modulus

ρ(ω,k) = k (P + P (ω,k))

ω 〈v(ω,k, r)〉 (10a)

χ−1(ω,k) = P (ω,k) +P
〈b(ω,k, r)〉 + φγχ0P

(10b)

where P 〈v〉 = 〈pv〉, which has been inspired by (7).
Wavenumbers: Contrary to the case of local theory, here, since we fully take into account spatial dispersion, several 

normal mode solutions might exist, with fields varying as e−iωt+ikx . Each solution should satisfy the following dispersion 
equation

ρ(ω,k)χ(ω,k)ω2 = k2 (11)

which is easily derived from the Maxwellian macroscopic equations. With each frequency ω, several complex wavenumbers 
kl(ω), 	(kl) > 0, l = 1, 2, . . ., may be associated.

In what follows, with the aim of obtaining the nonlocal effective density, effective bulk modulus, and wavenumber of the 
least attenuated mode, we will apply this theoretical framework in analytical simplified manner, to a 2D array of Helmholtz 
resonators, illustrated in Fig. 1 right. Sound propagation through this material exhibits resonance phenomena resulting in 
metamaterial behavior.

3. Nonlocal modeling for 2D structure

We proceed to determine the functions ρ(ω, k) and χ−1(ω, k) sufficiently precise to give an appropriate modeling of 
the least attenuated mode, which results then in purely frequency dependent functions ρ(ω) and χ−1(ω). For this purpose, 
we do not need to consider in full detail the microscopic fields v and p. In the waveguide t and cavity c, instead of the 
microscopic fields, we can use the mean values Vt(c) = 〈v〉S · x̂ and Pt(c) = 〈p〉S , where 〈 〉S denotes the average at a given 
x over the waveguide or the cavity width; and in the neck n, we can use the mean values Vn = 〈v〉S · ŷ and Pn = 〈p〉S , 
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Fig. 2. (Color online.) Illustration of slit portions and plane waves propagating in different parts of the resonator. Different positions are indicated by m, and 
different amplitudes by Am , m = 1, . . . , 10.

where 〈 〉S denotes the average at a given y over the neck width, and ŷ is the unit vector in the y direction. At the same 
time, we make some simplifications consistent with describing the propagation of these averaged quantities in terms of the 
Zwikker and Kosten densities ρ(ω) and bulk moduli χ−1(ω), in the different slit portions. These depend only on the slit 
half-widths, which we shall denote by st , sn , and sc , in the tube, neck, and cavity, respectively. The different slit-like tube 
portions are illustrated in Fig. 2. The main tube t is divided in two Zwikker and Kosten ducts, a left duct, and a right duct, 
oriented in the x direction. The same separation is made for the cavity c, whereas the neck n is not divided but viewed as 
one Zwikker and Kosten duct oriented in y direction.

3.1. Determination of nonlocal effective density

Considering the periodic cell of Fig. 1 right, and the corresponding cell average operation 〈 〉, we look for the response 
of the fluid when a harmonic driving force f (t, x) = f e−iωt+ikx in the direction of x̂ is applied. If we can determine the 
microscopic response velocity and pressure fields v , p, then we will have the function ρ(ω, k) through the relation (see 
Eq. (10a))

ρ(ω,k) = f − ikP(ω,k)

−iω〈v(ω,k, r)〉 (12)

with P(ω, k) = 〈pv〉/ 〈v〉, where the v is the x-component of the microscopic velocity v .
In [26, Appendix], the Zwikker and Kosten local theory is expressed for tubes of circular cross-section. For 2D slits, exactly 

the same general principles of modeling may be used; only some details of the calculations are changed. In particular, the 
Bessel functions J0 and J1 are replaced by cosh and sinh functions. Zwikker and Kosten’s effective densities ρα(ω) and 
bulk moduli χ−1

α (ω) in the guide, neck and cavity, will be [27]

ρα(ω) = ρ0

⎡
⎣1 −

tanh
(√−iωρ0s2

α/η
)

√−iωρ0s2
α/η

⎤
⎦

−1

,χ−1
α (ω) = γ P0

⎡
⎢⎣1 + (γ − 1)

tanh
(√

−iωρ0cp s2
α/κ

)
√

−iωρ0cp s2
α/κ

⎤
⎥⎦

−1

(13)

for α = t, n, c, where the indexes t , n, and c are related to the tube, neck, and cavity, respectively; P0 the fluid pressure 
at rest. The corresponding wavenumbers kα(ω) and characteristic admittances Yα(ω) are expressed as kα = ω/cα , and 
Yα(ω) = 2sα/(ραcα), for α = t, n, c, where cα = 1/

√
ραχα , is the corresponding Zwikker and Kosten’s phase velocity. Notice 
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that we include the slit width 2sα (resp. �, σ , and L − � − 2l in the resonator, see Fig. 1 left) in the definition of the 
characteristic admittance, because it simplifies the subsequent writing of continuity conditions.

We start writing the Zwikker and Kosten’s equations in the different parts of the periodic cell. For the tube and the 
cavity, i.e., α = t, c, we have

−iω
ρα(ω)

Sα
Vα = −∂ Pα

∂x
+ f eikx (14a)

iωSαχα(ω)Pα = ∂Vα

∂x
(14b)

where Vα = V x Sα is the flow rate field across the cross section Sα , with V x the x-component of the velocity in the sense 
of Zwikker and Kosten (averaged over the section), and Pα is the Zwikker and Kosten’s pressure. In the neck, the external 
excitation having no y-component, we have

iω
ρn(ω)

σ
Vn = ∂ Pn

∂ y
(15a)

iωσχn(ω)Pn = ∂Vn

∂ y
(15b)

where Vn = V yσ is the flow rate, with V y the y-component of the velocity, and Pn is the Zwikker and Kosten’s pressure in 
the neck.

The general solution of the non-homogeneous equations in the tube and the cavity, (Pα, Vα), α = t, c, is written as 
the sum of the general solution (Pα,h, Vα,h) of the homogeneous equations and a particular solution (Pα,p , Vα,p) of the 
non-homogeneous equations. A general solution of the homogeneous equations (14) is written as(

Pα,h
Vα,h

)
=

(
1

Yα

)
A+eikαx +

(
1

−Yα

)
A−e−ikαx (16)

where A+ and A− are the amplitudes of the plane waves in direction of the positive x-axis and negative x-axis, respectively. 
The following particular solution can be considered(

Pα,p

Vα,p

)
=

(
Bα

Cα

)
f eikx (17)

where Bα and Cα represent four constants (for each ω) to be determined. Substituting (17) in (14) gives the four constants 
Bt = ik/(ω2ρtχt − k2), Ct = iωχt�/(ω2ρtχt − k2), Bc = ik/(ω2ρcχc − k2), and Cc = iωχc(L − � − 2l)/(ω2ρcχc − k2). The 
particular solution is the same in the left and right portions of the tube and the cavity. On the contrary and because of the 
presence of the neck, the general solution will have different amplitude constants in the left and right portions. Thus, the 
general solution of Eqs. (14) can be written as:(

Pt

Vt

)
=

(
1
Yt

)
A1,3 f eikt x +

(
1

−Yt

)
A2,4 f e−ikt x +

(
Bt

Ct

)
f eikx (18a)(

Pc

V c

)
=

(
1
Yc

)
A7,9 f eikc x +

(
1

−Yc

)
A8,10 f e−ikc x +

(
Bc

Cc

)
f eikx (18b)

where (18a) with amplitudes A1 and A2 corresponds to the left-hand part of the tube, and with amplitudes A3 and A4 to 
the right-hand part (Fig. 2); similarly for (18b): A7 and A8 for the left part of the cavity, and A9 and A10 for the right part 
(Fig. 2). These eight amplitudes are to be determined. The general solution of Eqs. (15), (Pn, Vn) has the form(

Pn

Vn

)
=

(
1

Yn

)
A5 f eikn y +

(
1

−Yn

)
A6 f e−ikn y (19)

where A5 and A6 are the neck amplitude-relating constants to be determined (Fig. 2).
Indeed, in the framework of our simple plane-wave modeling, there are 10 relations concerning the flow rate and pres-

sure, which are assumed to be verified. These continuity relations involve the values of the fields at different locations 
indicated by numbers m = 1, . . . , 10, in Fig. 2. We now proceed to write them.

The Bloch condition results in P (4)
t = eikL P (1)

t and V (4)
t = eikL V (1)

t . Then A3eikt L/2 + A4e−ikt L/2 = eikL(A1e−ikt L/2 + A2eikt L/2)

and A3eikt L/2 − A4e−ikt L/2 = eikL(A1e−ikt L/2 − A2eikt L/2). We assume the continuity of the pressure at the junction (2)–(3), 
P (3)

t = P (2)
t , then A3 + A4 = A1 + A2. We assume the continuity of the pressure at the junction (5)–(2), P (5)

n = P (2)
t , then 

A5e−iknl/2 + A6eiknl/2 = A1 + A2 + Bt . The flow rate at the junction (2)–(3)–(5) is assumed to verify V (2)
t − V (3)

t = V (5)
n , 

which yields Yt
(

A1 − A2 − A3 + A4
) = Yn

(
A5e−iknl/2 − A6eiknl/2

)
. The continuity of the pressure at the junction (6)–(7), 

P (6)
n = P (7)

c results in A5eiknl/2 + A6e−iknl/2 = A7 + A8 + Bc . The flow rate at the junction (6)–(7)–(8) is assumed to 
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verify V (6)
n + V (7)

c = V (8)
c , therefore Yn

(
A5eiknl/2 − A6e−iknl/2

) + Yc(A7 − A8) = Yc(A9 − A10). The pressure is continu-

ous at (7)–(8), P (7)
c = P (8)

c , then A7 + A8 = A9 + A10. The flow rate vanishes at the interface solid–fluid, V (9)
c = 0; we 

have Yc
[

A7e−ikc(L−l)/2 − A8eikc(L−l)/2
] = −Cce−ik(L−l)/2. The flow rate vanishes at the interface solid–fluid, V (10)

c = 0, thus 
Yc

[
A9eikc(L−l)/2 − A10e−ikc(L−l)/2

] = −Cceik(L−l)/2.
As such, we have 10 equations for 10 unknown amplitudes A1, . . . , A10. Once these are determined, we will have all the 

Zwikker and Kosten’s fields through Eqs. (18) and (19). At this point, we can easily obtain the cell averages 〈v〉 and 〈pv〉. 
Let us start with 〈v〉 regarding the fact that the Zwikker and Kosten’s flow rate has no component along the y-axis

〈v〉 = 1

L2

⎛
⎜⎝

0∫
−L/2

Vt dx +
L/2∫
0

Vt dx +
0∫

−(L−l)/2

V c dx +
(L−l)/2∫

0

V c dx

⎞
⎟⎠ (20)

Similarly, we can compute 〈pv〉 through the following relation:

〈pv〉 = 1

L2

⎛
⎜⎝

0∫
−L/2

Pt Vt dx +
L/2∫
0

Pt Vt dx +
0∫

−(L−l)/2

Pc V c dx +
(L−l)/2∫

0

Pc V c dx

⎞
⎟⎠ (21)

Now, we can obtain explicitly the effective density function ρ(ω, k) through Eq. (12). In the next section, the effective 
bulk modulus is computed in a similar way, but with a different excitation term, and with exactly the same conditions on 
the flow rate and pressure fields at different junctions.

3.2. Determination of nonlocal effective bulk modulus

Considering the periodic cell (Fig. 2), when a harmonic heating Q̇ (t, x) = Q̇ 0e−iωt+ikx = −iωβ0T0Pe−iωt+ikx is applied in 
the medium, we write the Zwikker and Kosten’s equations, in each part of the resonator: tube, neck, and cavity. The aim is 
to obtain the function χ−1(ω, k) as it is indicated in Eq. (10b). In the main tube and the cavity, for α = t, c, we write:

−iω
ρα(ω)

Sα
Vα = −∂ Pα

∂x
(22a)

iωSαχα(ω)Pα + iωSα (χα(ω) − γχ0)P = ∂Vα

∂x
(22b)

The second term in the second equation might not seem to be obvious, but follows the very procedure of obtaining (10b). 
In the neck, the equations are written as

iω
ρn(ω)

σ
Vn = ∂ Pn

∂ y
(23a)

iωσχn(ω)Pn + iωσ (χn(ω) − γχ0)P
〈
eikx

〉
σ

= ∂Vn

∂ y
(23b)

where the term P
〈
eikx

〉
σ

comes from the averaging of Q̇ over the neck cross section. Here also, the second equation might 
not appear obvious, but follows the procedure of the determination of (10b) in nonlocal theory [1].

As in Section 3.1, the general solution of the non-homogeneous equations (22) in the right or left part of the tube 
and the cavity, is written as the sum of the general solution (Pα,h, Vα,h) of the homogeneous equations and a particular 
solution (Pα,p, Vα,p) of the non-homogeneous equations. A general solution of the homogeneous equations (22) is written 
as Eq. (16). The following particular solution can be considered(

Pα,p

Vα,p

)
=

(
Bα

Cα

)
Peikx (24)

where Bα and Cα are four constants to be determined. Substituting (24) in (22) gives the four constants Bt = ω2ρt(χt −
γχ0)/(k2 −ω2ρtχt), Ct = ωk(χt − γχ0)�/(k2 −ω2ρtχt), Bc = ω2ρc(χc − γχ0)/(k2 −ω2ρcχc), and Cc = ωk(χt − γχ0)(L −
� − 2L)/(k2 − ω2ρcχc). Thus, the general solution of Eqs. (22) can be written as Eqs. (18), replacing f with P . The ampli-
tudes A1, A2, A3, A4, A7, A8, A9, and A10 (Fig. 2) are to be determined.

As for the tube and the cavity, the general solution of the non-homogeneous equations (23) in the neck, is written as 
the sum of the general solution (Pn,h, Vn,h) of the homogeneous equations and a particular solution (Pn,p, Vn,p) of the 
non-homogeneous equations. We can find a particular solution in the following form(

Pn,p

V

)
=

(
Bn

C

)
P (25)
n,p n
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where Bn and Cn are two constants which will be determined by substituting (25) in (23): Bn = (2/kσ) (γ χ0/χn − 1)×
sin(kσ/2), and Cn = 0. To obtain the above expression for Bn , the average 

〈
eikx

〉
σ

can be easily calculated

〈
eikx

〉
σ

= 1

σ

σ/2∫
−σ/2

eikxdx = 2

kσ
sin

kσ

2

Therefore, the general solution of Eq. (23) in the neck can be written as

(
Pn

Vn

)
=

(
1

Yn

)
A5Peikn y +

(
1

−Yc

)
A6Pe

−ikn y+
(

Bn

0

)
P

(26)

where A5 and A6 are amplitude-relating constants to be determined (Fig. 2).
As in the previous Section 3.1, in the framework of our modeling, there are 10 relations which are assumed to be verified, 

allowing to relate the flow rates and pressures at different indicated points in Fig. 2. These relations result in 10 equations 
by which we can compute the amplitudes A1, . . . , A10. Consequently, all Zwikker and Kosten’s fields will be found. The 
averages 〈v〉 and 〈pv〉 are found through rewriting the equations (20) and (21) for the actual fields. We need also the 
expression for 〈b〉 to obtain finally χ−1(ω, k). We have

−iω 〈b〉 = − 1

L2

∫
∇ · v dx dy

= − 1

L2

∮
v · n dS = − 1

L2

(
−V (1)

t + V (4)
t

)
= − P

L2

[
2iCt sin

kt L

2
+ Yt

(
−A1e−i kt L

2 + A2ei kt L
2 + A3ei kt L

2 − A4e−i kt L
2

)]
where n is the normal unit vector outward from the border of integration.

Now, we can obtain explicitly the effective bulk modulus function χ−1(ω, k) through Eq. (10b).

4. Bloch wave modeling

In this section, without using the principles of the nonlocal macroscopic theory but within the same plane wave mod-
eling, we directly seek the macroscopic Bloch wavenumber kB of the least attenuated wave propagating in the direction of 
positive x-axis, such that(

P (4)
t

V (4)
t

)
= eikB L

(
P (1)

t

V (1)
t

)
(27)

With the field constituted of 10 Zwikker and Kosten’s slit waves, as illustrated in Fig. 2, are associated 10 complex ampli-
tudes A1, . . . , A10. As before, between these 10 amplitudes there are a set of 10 relations; where two of them express the 
Bloch condition (27), and 8 relations are based on the continuity equations. Here, all these relations are homogeneous rela-
tions, so that nontrivial solutions will be obtained only if the determinant of the coefficient matrix vanishes. This condition 
will give the Bloch wavenumber kB.

The first step is to determine the entrance admittance of the resonator Yr = V (5)
n /P (5)

n . The general solution of the 
homogeneous form of Eqs. (14) for the cavity, α = c, without the forcing term, is written as(

Pc

V c

)
=

(
1
Yc

)
A7,9eikc x +

(
1

−Yc

)
A8,10e−ikc x (28)

where A7 and A8 are the amplitudes of the waves in the left part of the cavity, and A9, A10 are the amplitudes of the waves 
in the right part. Regarding the above equation, the three conditions P (7)

c = P (8)
c , V (9)

c = 0, and V (10)
c = 0, result in the three 

following relations: A8 = A7e−ikc(L−l) , A9 = A7e−ikc(L−l) , and A10 = A7. Using (28), there follows P (7)
c = A7

(
1 − eikc(L−l)

)
, 

V (7)
c = Yc A7

(
1 + eikc(L−l)

)
, and V (8)

c = Yc A7(eikc(L−l) − 1). Then, we can obtain the expressions for P (6)
n and V (6)

n , through 
already indicated continuity conditions P (6)

n = P (7)
c , and V (6)

n + V (7)
c = V (8)

c , which, subsequently, yields the impedance Y6 =
V (6)

n /P (6)
n :

Y6 = −2iYc
1 − e−ikc(L−l)

1 + e−ikc(L−l)
(29)

Once P (6)
n and V (6)

n are known, we can obtain P (5)
n and V (5)

n through
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Table 1
Fluid properties used in all computations (air).

ρ0

(kg·m−3)
T0

(K)
c0

(m·s−1)
η
(kg·m·s−1)

ζ

(kg·m·s−1)
κ
(W·m−1·K−1)

χ0

(Pa−1)
cp

(J·kg−1·K−1)
γ

1.205 293.5 340.14 1.84 × 10−5 0.6 η 2.57 × 10−2 7.17 × 10−6 997.54 1.4

(
P (5)

n

V (5)
n

)
=

(
cos knl − i

Yn
sin knl

−iYn sin knl cos knl

) (
P (6)

n

V (6)
n

)
(30)

Hence, the impedance of the resonator Yr is expressed as

Yr = −iYn sin knl + Y6 cos knl

cos knl − i
Y6

Yn
sin knl

(31)

Now, we look for the macroscopic wavenumber kB. The following relations are satisfied in the right and left part of the tube(
P (1),(3)

t

V (1),(3)
t

)
=

(
cos kt L

2 − i
Yt

sin kt L
2

−iYt sin kt L
2 cos kt L

2

) (
P (2),(4)

t

V (2),(4)
t

)
(32)

Making use of Eq. (27), the above equations result in(
P (3)

t

V (3)
t

)
= eikB L

(
cos kt L − i

Yt
sin kt L

−iYt sin kt L cos kt L

) (
P (2)

t

V (2)
t

)
(33)

In addition, as we have seen before, the three following conditions are assumed in the resonator: P (3)
t = P (2)

t , P (5)
n = P (2)

t , 
and V (2)

t − V (3)
t = V (5)

n . We have immediately P (3)
t = P (2)

t = (1/Yr) 
(

V (2)
t − V (3)

t

)
. Writing the two equations resulting from 

(33), and eliminating P (3)
t and P (2)

t in these equations, gives( 1
Yr

− eikB L
(

1
Yr

cos kt L − i
Yt

sin kt L
)

− 1
Yr

(
1 − eikB L cos kt L

)
eikB L

(
i Yt

Yr
sin kt L − cos kt L

)
1 − eikB L iYt

Yr
sin kt L

) (
V (2)

t

V (3)
t

)
=

(
0
0

)
(34)

The determinant of the coefficient matrix must vanish if the above equations have non-zero solutions. This yields a sec-
ond degree algebraic equation e2ikB L − DeikB L + 1 = 0, with D = 2 cos kt L − i(Yr/Yt) sin kt L. The Bloch wavenumber is then 
immediately expressed as

kB = − i

L
ln

⎛
⎝ D

2
±

√
D2

4
− 1

⎞
⎠ (35)

5. Results

Here, we present the results of the nonlocal modeling, Bloch wave modeling and FEM simulations for the two-
dimensional metamaterial made of Helmholtz resonators. Once the simplified nonlocal and Bloch wave modeling are 
validated by the results of the FEM simulations which are based on the solutions of the exact equations (8), we employ 
the same nonlocal modeling framework to compute the macroscopic acoustic properties of the three-dimensional mate-
rial. For both 2D and 3D structures, the resonators are filled with air as a viscothermal fluid. The fluid properties for all 
computations are indicated in Table 1. In 2D and 3D cases, the results relating to the wavenumber of the least attenuated 
mode and the effective bulk modulus of the material will be shown, versus a dimensionless frequency parameter. Moreover, 
we will present a simple method allowing to obtain the 2D geometry roughly equivalent to the 3D material, regarding the 
macroscopic dynamic behavior of the material in the resonance regime of the fundamental mode.

5.1. 2D structure filled with air

For the geometry considered in Fig. 1 right, to perform the computations, we have set L = 1 cm, � = 0.2 L, and 
σ = 0.015 L. The functions ρ(ω, k) and χ−1(ω, k) are first determined within the approximations of our nonlocal mod-
eling in Section 3. Given these expressions, we know that according to nonlocal theory the possible wavenumbers in the 
medium will be the solutions of the dispersion relation (11). Solving the equation (11) by a Newton–Raphson scheme, we 
have checked that the obtained expressions for ρ(ω, k) and χ−1(ω, k) are such that a complex solution k(ω) to (11) exists, 
which is very close to the value kB(ω) in (35). The frequency dependent effective density ρ(ω, k(ω)) = ρ(ω), and effec-
tive bulk modulus χ−1(ω, k(ω)) = χ−1(ω), are then obtained by putting k = k(ω) in the aforementioned excitation terms 
(Sections 3.1 and 3.2).
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Fig. 3. (Color online.) Wavenumber (left) and bulk modulus (right) in terms of a dimensionless frequency, for the 2D structure filled with air. For the 
wavenumber, results by three calculations are compared: Bloch-wave modeling, nonlocal modeling, and nonlocal theory by FEM.

Solving the equation (11) by the Newton–Raphson method, we varied frequency step by step, taking as initial value for 
k(ω) at a given frequency, the solution value obtained at the preceding frequency. Only for the starting frequency ω0 in the 
range of interest, we have chosen the value kB(ω0) with a 10% discrepancy.

In order to ascertain the validity of the modeling, we have also performed direct FEM simulations to solve the action-
response problems, giving, subsequently, FEM evaluations of the functions ρ(ω, k) and χ−1(ω, k). Based on these functions, 
the computation of the wavenumber of the least attenuated wave was performed in the same way as just seen, with the 
only difference that (due to computation time) the initial k(ω) value at a given frequency was systematically taken to be 
kB(ω) with 10% discrepancy. Finally, FEM evaluations of the frequency dependent effective density ρ(ω, k(ω)) = ρ(ω), and 
effective bulk modulus χ−1(ω, k(ω)) = χ−1(ω), were obtained by putting k = k(ω) in the aforementioned excitation terms.

The FEM computations have been performed using FreeFem++ [28], an open source tool solving partial differential equa-
tions. Adaptive meshing was employed. According to all of the calculations, the effective density remains practically constant 
and, therefore, does not play an important role in the macroscopic dynamics of this material.

We see in Fig. 3 left, that the real and imaginary parts of k(ω) computed by nonlocal theory via Newton’s method 
converge exactly to the real and imaginary parts of kB which have been computed by a simple Bloch-wave modeling without 
any use of nonlocal theory. The horizontal axis is the dimensionless frequency k0 L/π , where k0 = ω/c0. The results based on 
the FEM simulations are also in good agreement with those obtained by the Bloch wave modeling and nonlocal modeling. 
The frequency range has been chosen so that it covers the resonance regime. In the same frequency range, Fig. 3 right, 
shows the real and imaginary parts of K (ω) = φχ−1(ω), representing the effective bulk modulus, computed by nonlocal 
FEM simulations and nonlocal modeling. Here also, we see excellent agreement between the two calculations. We notice the 
metamaterial behavior demonstrated in the real part of effective bulk modulus which becomes negative in a frequency range 
within the resonance regime. It is clear that the results by FEM computations based on the exact microscopic equations, can 
be considered more precise compared with our two modeling results in which we have applied simplifying approximations. 
As such, the good agreement between FEM results and others, validate the modeling framework. The discrepancies between 
the results based on the models and FEM simulations can be due in particular, to the fact that the model describes the 
admittance of the resonator Yr , without considering the length correction of the neck; what might generate errors in the 
calculation of the wavenumber.

We observe here the same kind of behavior for the wavenumber and bulk modulus as it has been demonstrated experi-
mentally in [23] (see Figs. 1 and 2 in that reference) for the case of the 3D material embedded in water. We have observed 
that removing the thermal effects by decreasing the coefficient of thermal conductivity κ to a value close to zero, would 
have a negligible effect on the wavenumber and the effective bulk modulus. That is the case also for the second viscosity ζ , 
associated with losses in the compressional/dilatational motions in the bulk fluid. On the contrary, the material dynamics 
in terms of the macroscopic wavenumber and bulk modulus is quite sensitive to the values of the shear viscosity η. In 
a frequency range, for instance, between k0 L/π = 0.1 and 0.4, a maximum and minimum appear for the real part of the 
wavenumber. By decreasing the value of the shear viscosity, the maximum becomes sharper and finally diverges as the 
viscosity tends to zero at the resonance frequency of the ideal fluid ωH = c0[σ/l(L − 2l)(L −� − 2l)] 1

2 , namely k0L/π = 0.15
here; the minimum flattens and a band gap is created. As a matter of fact, the important feature, here, is the resonant 
behavior that induces important values of the velocity in the neck, and thus also important viscous dissipation. Further-
more, at small enough η, at frequencies close but smaller than resonance frequency, the corresponding neck flow becomes 
predominant and the effective wavelength is drastically reduced, leading to a so-called slow speed. However, when the shear 
viscosity increases, the neck flow adjusts to a smaller value, eventually leading to the disappearance of the slow speed. The 
viscous losses also smooth out the extrema of the real and imaginary parts of the modulus in Fig. 3 right. Consequently, 
a wider frequency range of the negative real part of the bulk modulus is achieved by increasing the viscous losses. The 
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Fig. 4. (Color online.) Schematic of the 2D periodic unit of an array of Helmholtz resonator. Shown here are the geometrical parameters, which should be 
obtained in order to have a 2D equivalent of the 3D structure.

thermal boundary layers close to the cavity walls, where the fluid bulk modulus passes from adiabatic to isothermal value, 
mainly bring a small correction to the cavity spring constant (the cavity dimension is much larger than the boundary layer 
thickness δt = (2κ/ρ0cpω)

1
2 ). Therefore, their presence do not affect much the effective bulk modulus.

As explained before, the dynamics of the material will be very sensitive to the width of the neck, where a considerable 
part of the viscous losses take place. In our case (see values of the parameters in Fig. 1), between the frequencies k0 L/π =
0.1 and 0.4, the ratio of the viscous boundary layer thickness δv = (2η/ρ0ω)

1
2 to the width of the neck, insensibly changes 

from 0.35 to 0.39. We observed that, in general, to maintain the similar behavior of the wavenumber and modulus, this 
ratio should remain in the same order, regardless of changing the scale of the material or the saturating fluid. Here, well 
above the resonance, at k0 L/π = 0.5, we can check that the effective wavelength in the material λeff is comparable to that 
in air λ0: λeff /L ∼ 5, and λ0/L = 4. At the resonance frequency k0 L/π = 0.15, we find that λeff /L ∼ 8. Roughly, this is a 
reduction by a factor of two of the wavelength in air (λ0/L ∼ 13.33), and an illustration of the mentioned trend of a slow 
speed close to the resonance. Although this structure represents a subwavelength material, and therefore, can be regarded in 
the large wavelength limit λeff � L, the local theory based on the two-scale homogenization at order zero does not predict 
correctly the acoustics, ignoring the resonance behavior. The origin of the failure is the presence of widely different length 
scales, allowing for resonances.

Once the simplifying assumptions within our two modeling schemes have been validated by the precise results of the 
FEM simulations, we can use the same modeling framework to treat the case of 3D material.

5.2. 3D structure filled with air

Here, the resonators are placed in a periodicity L = 1 cm, composed of a rectangular cavity of volume 8.5 × 5 × 5 mm, 
a cylindrical neck l = 1 mm long and σ = 1 mm in diameter, and a main duct portion. The neck opens in the main square 
air duct with a � × � = 0.2L × 0.2L mm opening. The strategy of calculation to obtain the effective density, effective bulk 
modulus and the least attenuated wavenumber through nonlocal modeling and Bloch wave modeling, are the same as for 
2D case in Sections 3 and 4. We can consider that the z-axis is outward from the plane of Fig. 2 which is regarded as a 
cross section of the 3D periodic unit. As before, Zwikker and Kosten’s plane waves are propagating and attenuating in the 
different parts of the resonator. The only change which should be applied in the 3D calculations with respect to 2D model, 
is related to the Zwikker and Kosten’s density and modulus which have been expressed for slits in Eq. (13). Here, we use 
the expressions (80) and (81) in [29] to obtain the Zwikker and Kosten’s density and bulk modulus for tubes of rectangular 
cross section (main conduit and cavity); for the neck (tube of circular cross section) we use the expression mentioned in 
[26, Appendix], and also in [27,29].

Fig. 5 left, shows the real and imaginary parts of the frequency dependent wavenumber k(ω) associated with the least 
attenuated mode. The results based on the calculations of nonlocal modeling and Bloch wave modeling appear to be in 
perfect agreement. In Fig. 5 right, the real and imaginary parts of the frequency dependent bulk modulus, via K (ω) =
φχ−1(ω, k(ω)) are presented, according to nonlocal modeling.

Between the frequencies k0 L/π = 0.05 and 0.3, the ratio of the viscous boundary layer to the diameter of the neck, 
changes from 0.15 to 0.06. Up to k0 L/π = 0.5, the wavelength in air remains at least 4 times larger than the periodicity 
L. At k0L/π = 0.5, as in the 2D case, λeff /L ∼ 5. At the resonance frequency k0L/π = 0.07, the effective wavelength in the 
material decreases to λeff /L ∼ 10, which is now a reduction by a factor of 3 of the wavelength in air.

2D equivalent of the 3D structure: We have performed a simple calculation to obtain the 2D structure made of Helmholtz 
resonators showing roughly the same macroscopic behavior as that of a 3D structure, in particular, in terms of the wavenum-
ber of the least attenuated mode and the effective bulk modulus. We will determine the geometrical parameters of the 2D 
resonator, illustrated in Fig. 4, in terms of the parameters of a 3D resonator, in a way that it exhibits resonance at the same 
frequency and shows approximately the same dissipative property as the 3D structure does.

In order to have roughly the same amount of both viscous and thermal losses in the main tube in 2D and 3D, it suffices 
to equate the hydraulic radius (see [27]). Let h2D

t be the width of the tube in 2D, and h3D
t the side of the square tube cross 

section in 3D. For the hydraulic radius be the same, we should set: h2D
t = h3D

t /2. In the same way, equating the hydraulic 
radius for the neck in 2D and 3D, gives the neck’s width in 2D, w2D

n in terms of the diameter of the circular neck cross 
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Fig. 5. (Color online.) Wavenumber (left) and bulk modulus (right) in terms of a dimensionless frequency, for the 3D structure filled with air. For the 
wavenumber, results by two calculations are compared: Bloch-wave modeling, nonlocal modeling.

section in 3D: w2D
n = w3D

n /2. The surface of the cavity in 2D, S2D
c is determined in an intuitive manner by assuming that 

the ratio of the cavity volume V 3D
c to the tube volume V 3D

t in 3D is equal to the ratio of the cavity surface S2D
c to the tube 

surface S2D
t in 2D: V 3D

c /V 3D
t = S2D

c /S2D
t . We will have S2D

c = V 3D
c h2D

t /(h3D
t )2. Finally, the equality of the resonance frequency 

in 2D, ω2D
H = c0(w2D

n /h2D
n S2D

c )
1
2 , and in 3D, ω3D

H = c0(S3D
n /h3D

n V 3D
c )

1
2 , results in the expression for the neck’s length in 2D: 

h2D
n = (V 3D

c h3D
n w3D

n )/(S3D
n S2D

c ), where h3D
n is the length of the neck in the 3D structure.

With the dimensions of our actual 3D structure, we find, for the geometrical parameters of the 2D version, h2D
t = 1 mm, 

w2D
n = 0.24 mm, and h2D

n = 8 mm. We have chosen the width w2D
c = 8.5 mm and the height h2D

c = 6.25 mm, so that the 
product of them is fixed by the value of S2D

c . We have also taken the same periodicity L for 2D, as in 3D. The complex 
wavenumber associated with the least attenuated mode, and complex effective bulk modulus of this 2D equivalent of the 
3D material is depicted in Fig. 5. The complex wavenumber relating to the 2D and 3D geometries present an excellent 
agreement, and a very good agreement is observed regarding the real and imaginary parts of the effective bulk modulus of 
these two structures.

We note that, if the structure with the same geometrical parameters is embedded in water, there would be less loss as 
the viscous boundary layer thickness is smaller compared with that of air. To keep the same dynamic behavior with water as 
with air, it would be necessary to very significantly decrease the width of the neck; at this point it should be born in mind 
that the complicated effect of nonlinearities would certainly have to be taken into account. Furthermore the thermal effects 
in water are not important. The general thermodynamic identity γ − 1 = β2

0 T0/ρ0cp , shows that the deviation of γ ≡ cp/cv
from unity, is a second order effect on the thermal expansion coefficient β0. For a liquid, like water, β0 is very small; what 
implies that γ is practically 1. In this case, adiabatic bulk modulus χ−1

0(adiab)
and isothermal bulk modulus χ−1

0(isoth)
are very 

close, since in general, χ−1
0(adiab)

= γχ−1
0(isoth)

. Therefore, thermal exchanges have practically no effects.

6. Conclusion

Applying the Maxwellian nonlocal theory of sound propagation in porous media to a material with the microgeometry 
of the porous matrix in the form of a two or three dimensional array of Helmholtz resonators embedded in air, we have 
described precisely the metamaterial behavior of the dissipative medium, demonstrated by the negative real part of the 
effective bulk modulus in the resonance frequency regime. Using the homogenization method corresponding to the recently 
developed nonlocal theory, we took advantage of a plane wave modeling to obtain the effective density and bulk modulus, 
functions of both frequency and wavenumber. In this modeling, we made use of Zwikker and Kosten’s equations governing 
the pressure and velocity fields’ dynamics averaged over the cross-section of the different parts of the Helmholtz resonators, 
in order to coarse-grain them to the scale of the periodic cell containing one resonator. Once these two effective param-
eters have been determined, the corresponding least attenuated wavenumber of the medium could be obtained through a 
dispersion equation established via nonlocal theory. The frequency range has been chosen such that the geometrical-based 
resonance phenomena could appear.

In addition, a direct analytical modeling has been performed to obtain the least attenuated Bloch mode propagating in 
the medium, without using nonlocal theory. We have shown that the values of Bloch modes obtained in the direct way 
match exactly those computed by the nonlocal modeling. Moreover, the FEM numerical simulations allowing the compu-
tation of the effective parameters and wavenumbers without any approximation validate the results of the two modeling 
calculations and their simplifying assumptions. The nonlocal theory takes fully into account all viscous and thermal dis-
sipation. However, we have observed that for this material, thermal effects are negligible, while viscous effects are quite 
important to describe the material’s effective dynamics. We have used the same modeling framework for 3D material to 
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compute the effective parameters and the wavenumber of the least attenuated mode, and performed a simple calculation 
to find a 2D equivalent of the material, showing the same macroscopic dynamics.

Finally, the resonance-induced metamaterial behavior that we have studied here can be interpreted as a demonstration 
of the importance of considering the spatial dispersion in the medium. Higher order modes propagating and attenuating in 
this material can also be computed by the nonlocal theory. It will require, however, relaxing the plane wave simplifications 
made here in the modeling. This will be the subject of future research. It is significant that the nonlocal theory provides 
higher order modes, each of which is associated with a wavenumber and impedance or, equivalently, with a density and 
bulk modulus. This is a signature of the nonlocal effects which are captured by our new macroscopic approach.
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