
C. R. Mecanique 343 (2015) 533–544
Contents lists available at ScienceDirect

Comptes Rendus Mecanique

www.sciencedirect.com

Discrete simulation of fluid dynamics

Lattice Boltzmann formulation for flows with acoustic porous 

media

Chenghai Sun ∗, Franck Pérot, Raoyang Zhang, Phoi-Tack Lew, Adrien Mann, 
Vinit Gupta, David M. Freed, Ilya Staroselsky, Hudong Chen

Exa Corporation, 55 Network drive, Burlington, MA 01803, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 March 2015
Accepted 17 July 2015
Available online 17 August 2015

Keywords:
Porous medium
Acoustics
Lattice Boltzmann

Porous materials are commonly used in various industrial systems such as ducts, HVAC, 
hoods, mufflers, in order to introduce acoustic absorption and to reduce the radiated 
acoustics levels. For problems involving flow-induced noise mechanisms and explicit 
interactions between turbulent source regions, numerical approaches remain a challenging 
task involving, on the one hand, the coupling between unsteady flow calculations 
and acoustics simulations and, on the other hand, the development of advanced and 
sensitive numerical schemes. In this paper, acoustic materials are explicitly modeled in 
lattice Boltzmann simulations using equivalent fluid regions having arbitrary porosity 
and resistivity. Numerical simulations are compared to analytical derivations as well as 
experiments and semi-empirical models to validate the approach.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Porous media are widely used as sound-absorbing materials in various industries to reduce noise emission. For example, 
in modern turbofan engines, the inlet wall is treated with acoustic liners. Highway and railway noise barriers often use 
acoustic treatments for solving community noise issues. At a microscopic scale, propagation of sound in porous media is 
difficult to characterize because of the topological complexity of materials. At a macroscopic scale, some porous materials 
can be treated as regions of fluid that have modified properties relative to air [1], in the rigid or limp frame approximation. 
Sound propagation in such media is theoretically well characterized and can be expressed in the terms of two intrinsic 
frequency-dependent properties of the material: the characteristic impedance and the complex acoustic wavenumber. Vari-
ous models for these properties based on experimental studies are presented in the literature. Under certain assumptions, 
a given sound propagation model in an absorbing material can be put in the form of locally-reacting, frequency-dependent, 
complex impedance at the interface between two different media. Such surface impedance models appear in most tradi-
tional numerical acoustics solvers such as Boundary Element Methods (BEM), Finite Elements Methods (FEM), and Statistical 
Energy Analysis (SEA) methods, and are relatively easy to implement as boundary conditions in the frequency domain.

For problems involving flow-induced noise, suitable CFD (Computational Fluid Dynamics) and/or CAA (Computational 
Aero-Acoustics) numerical methods are non-linear and often time-explicit. For a time-explicit solver, time-domain surface 
impedance boundary conditions could likewise allow the modeling of acoustic absorption due to porous materials [2]. 
Ozyoruk et al. [3] proposed a curve fitting of the experimental impedance data in the form of fractional polynomials in 
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the z-domain and derived an efficient implementation of the above impedance boundary condition in the time domain by 
using the z-transform. The simulations of the NASA Langley grazing flow tube case using this model [3–5] showed good 
agreement with experimental data. References [6,7] applied this scheme within a lattice Boltzmann method (LBM) flow 
solver and also showed similarly good correlations with the experiment. However, fitting the measurement data into this 
fractional polynomials might be challenging because causality, reality, and passivity listed by Rienstra [8] can not be always 
satisfied. Violation of these constrains could result in unphysical behavior or numerical instability.

Another possible approach is to model absorbing materials as equivalent fluid regions, such that sound waves travel 
through the materials. Analytical derivations show that the acoustic absorption is governed (or at least dominated) by the 
same physical mechanisms as the flow resistivity. As a consequence, the same equations used to achieve the correct flow 
resistivity for a particular porous material also achieve the correct acoustic impedance for that material. This approach was 
demonstrated valid for passive and homogeneous porous materials with high porosity near φ = 1.0 [9].

In the present paper, in addition to the resistivity of porous materials, we account for the porosity as well in LBM, which 
greatly increases the applicability of the PM for solving acoustic and aero-acoustic problems.

The LBM has evolved over the last two decades as an alternative numerical method to traditional CFD [10–13]. The 
resulting compressible and unsteady solver is well suited for predicting a variety of complex flow physics [14,15] including 
aeroacoustics [16–20] and pure acoustics problems [21]. The present extension of porous media model with arbitrary poros-
ity can be used to represent the flow resistivity of air filters, radiators, heat exchangers, evaporators, and other components 
that are encountered in simulating the flow through HVAC systems, vehicle engine compartments, and other applications.

In Section 2, numerical details related to LBM, and implementation of the porous media model is proposed. In Section 3, 
some background on acoustic propagation in porous media is described and analytical and semi-empirical models are given. 
In Section 4, two numerical setups are used to validate the predictions of the complex acoustic impedance and pressure 
losses of PM by comparison to analytical results. In the last section, some more realistic materials are investigated and 
further comparisons to experiments and semi-analytical models discussed.

2. LBM model for porous media

To model porous media we need to consider the PM resistance and the interface constraint.
The flow resistance σ of a porous medium is described by Darcy’s law, which states that the pressure drop �p is 

proportional to the flow velocity u and the thickness L of the PM, i.e.:

�p = −σuL (1)

It can be generalized in 3-D in term of the resistance tensor σ of order 2 and velocity vector u:

∇p = −σ · u (2)

In order to simulate the acoustic behavior in the PM, it is essential that the density and the velocity solved represent 
the real fluid density and velocity in the pores, excluding the solid portion of the porous media because the objective is 
to model the sound wave propagation in fluid. Meanwhile, the mass flux conservation should be satisfied at the fluid–PM 
interface. For non moving infinitely rigid solid micro-structure of PM it is expressed as:

(ρun)f = φ(ρun)PM (3)

with un = u · n, n the interface normal vector, and φ the porosity. The indices f and PM represent fluid side and PM side, 
respectively.

Another aspect of interface is the interface resistance due to the presence of the solid structure. This interface resistance 
depends on the porosity, flow velocity and microscopic structure of the PM.

In the current study these PM related properties are incorporated in the 3-D 19-speed LBM (D3Q19) [11]:

f i(x + ci, t + �t) = f i(x, t) − 1

τ
( f i(x, t) − f eq

i (x, t)) (4)

with f i(x, t) the particle density distribution function, τ is the single relaxation time, ci the discrete particle velocity, and 
�t the time step. The equilibrium distribution function f eq

i (x, t) has the following 3rd order form [22]:

f eq
i (x, t) = ρ wi

[
1 + ci · u

T0
+ (ci · u)2

2T 2
0

− u2

2T0
+ (ci · u)3

6T 3
0

− (ci · u)u2

2T 2
0

]
(5)

with w0 = 1/3 for stop state, wi = 1/18 for states in Cartesian directions and wi = 1/36 for states in bi-diagonal directions. 
Here T0 = 1/3 is the constant lattice temperature. The hydrodynamic quantities ρ and ρ u are the zero-th and first-order 
moments of the distribution functions, respectively:

ρ(x, t) =
∑

f i(x, t), ρ(x, t)u(x, t) =
∑

ci f i(x, t) (6)

i i
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In LBM, external forces can be included in the fluid dynamics by altering the local-instantaneous particle distributions 
during the collision step. This technique can be used for example to model buoyancy effects due to gravity, interacting force 
for multiphase flows [23], and reduction of speed of sound for high-Mach-number flows [24]. To achieve the porous media 
resistance defined by Darcy’s law (Eq. (2)), an external force proportional to the local flow velocity is applied [25,26].

By the Chapman–Enskog expansion, the evolution of Eq. (4) matches the Navier–Stokes equations:

∂ρ

∂t
+ ∇ · (ρu) = 0 (7)

∂ρu

∂t
+ ∇ · (ρuu)

= −∇p − σ · u + ∇ · {μ[∇u + (∇u)T]} (8)

with viscosity, pressure and sound speed c0 given by:

μ = (τ − 1/2)ρ, p(x, t) = c2
0ρ(x, t), c0 = 1√

3

�x

�t
(9)

�x is the unit lattice length.
In general, standard wall boundary conditions impose zero normal velocity for both no-slip and slip impermeable walls. 

Ref. [27] provides details of the generalized BCs for arbitrary geometry with extensive validations in [28,29]. For the fluid–PM 
interface, double-sided surfaces are employed like the sliding mesh algorithm [30]. The fluid can flow through the interface 
and a normal velocity satisfying Eq. (3) can be imposed at the interface. Following the algorithm [7], this is achieved by 
adding a corresponding mass flux on the interface [30].

For PM, since the velocity profiles inside pores can not be resolved, the viscous term of the Navier–Stokes equation can 
not be evaluated correctly using the resolved velocity gradients. In the present model, the viscous term is replaced by the 
Darcy’s force σ · u to account for the viscous drag force or the friction caused by solid structures of the PM. Therefore the 
resistance effects due to complex solid structures inside the PM are modeled in terms of the Darcy’s force and the viscous 
term (last term in Eq. (8)) is neglected. In the regular fluid region outside the PM the PM resistance disappears and the 
momentum equation (8) recovers the standard Navier–Stokes equation with viscous term. The system can describe both the 
regular fluids and PM.

3. Acoustic propagation in homogeneous porous media

Hersh and Walker [31] derived analytically the expression of the impedance introduced by the presence of similar porous 
media. Assuming non-viscous linear mechanisms and isothermal transformations, the 1-D mass and momentum equations 
in PM write:

∂ρ ′

∂t
= −ρ0

φ

∂u′

∂x
(10)

ρ0

φ

∂u′

∂t
= −∂ p′

∂x
− σ

u′

φ
(11)

Assuming a simple harmonic solution, ρ ′(x, t) = eiωtρ ′(x), u′(x, t) = eiωt u′(x), p′(x, t) = eiωt p′(x) and p′(x) = Ae−(α+iβ)x , 
the p′(x, t) and u′(x, t) can be solved from Eqs. (10) and (11) and the equation of state. The material characteristic 
impedance Z is derived from the definition:

Z ≡ p′(x, t)

u′(x, t)
= ρ0ωβ + ασ

φ(α2 + β2)
+ i

ρ0ωα + βσ

φ(α2 + β2)
(12)

where α and β are functions of ω (as shown in Ref. [31]).
For the special case with φ = 1 and σ = 0, Eqs (10) and (11) become the governing equations of sound propagation in 

air. Compared to the sound propagation in air, the velocity for PM is scaled up by 1/φ.
Considering the governing equations (7) and (8) resulting from the LBM model, since the density and the velocity solved 

represent the real fluid density and the velocity in the pores of the PM, the velocity is automatically scaled up. The lin-
earization of these equations by assuming small perturbations ρ = ρ0 + ρ ′ , p = p0 + p′ and u = u0 + u′ and neglecting 
the viscous term in the 1-D case recovers the Hersh–Walker’s equations (10) and (11) with exactly the same PM resistance 
term. Hersh–Walker’s model will be used as one of validations of our LBM PM model in next section.

4. Numerical results

Three validation studies are described in this section. First, a one-dimensional channel flow with a PM in the middle of 
the channel is used to validate the PM properties. Second, a digital normal impedance tube is used to verify that under pure 
acoustics (no-flow) conditions, the present implementation recovers the normal incidence impedance properties of the PM. 
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Fig. 1. Schematic representation of a 1-D channel setup.

Fig. 2. (Color online.) Pressure, density, velocity, and ρu distribution along the channel.

The third study uses the NASA Langley grazing incidence impedance tube case [32], which includes a mean flow together 
with tangentially incident acoustics, and is a commonly used validation case in the open literature [3,6,7,4].

4.1. 1-D channel flow

The case setup is illustrated in Fig. 1. The channel width is D = 2 inches and 40 grid points are used across the channel. 
The NASA ceramic liner properties [32] are used to setup the PM properties. The liner is composed of micro circular channels 
with a ceramic filler arranged in honeycomb form. The micro channel diameter is dc = 0.64 mm and the resulting liner 
porosity is φ = 0.57. The resistivity is not provided in [32]. However, it can be calculated from the micro channel diameter, 
porosity and viscosity of air by [1]:

σ = 32μ

d2
c φ

(13)

which results in σ = 2522 kg m−3 s−1 for air. At the inlet of the tube, a fixed velocity boundary condition at Mach number 
M = 0.05 is applied. At the outlet, the ambient pressure is imposed. The time step of simulation is �t = 2.112 · 10−6 s. 
Fig. 2 shows the pressure, density, velocity and ρ u distribution along the channel when the simulation reaches the steady 
state. The two pressure drops at the two PM interfaces are due to the interface pressure resistance. The resistivity inside 
PM should be equal to the pressure slope over inlet velocity according to Darcy’s law. The measured resistivity from the 
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(a)

(b)

Fig. 3. (a): Schematic representation of the cylindrical Digital Normal Impedance Tube (DNIT). (b): Incident (red) and reflected (blue) velocity signals 
measured at t = 2 ms and t = 3 ms, respectively. (For interpretation of references to color in this figure caption, the reader is referred to the web version 
of this article.)

pressure slope is σ = 2516 kg m−3 s−1, which is about 0.2% from the input resistivity value. While pressure and density 
degrease, velocity increases inside the PM, keeping ρ u constant and therefore the flux constant. The validation of the 
achieved porosity is obtained by measuring the ratio of the momentum inside and outside the PM following Eq. (3). A value 
of φ = 0.57 is obtained, which is in perfect agreement with Eq. (3).

4.2. Normal impedance tube

The complex impedance Z of a material can be experimentally measured in a Normal Impedance Tube (NIT) [33], and 
this setup is reproduced in the simulation. The geometry of the Digital Normal Impedance Tube (DNIT) proposed in this 
paper is composed of a 3-D cylindrical waveguide, in which the PM sample to be characterized is placed on the right end 
side, as represented in Fig. 3(a). The diameter of the waveguide is D = 40 mm and the walls are defined as frictionless. On 
the left end side of the waveguide, an anechoic termination is applied. The complex surface impedance and the absorption 
coefficient of the PM sample are calculated using a one-microphone method [34]. This method is based on the signal 
post-processing of pressure and velocity signals measured at different locations p j inside the waveguide. The excitation 
consists in an incident single period sine signal in pressure and velocity propagating in the x-direction toward the PM 
sample. In the frequency domain, this excitation has a broadband content from a frequency f = 10 Hz to f = 4000 Hz
corresponding to the frequency range over which the sample is characterized. In Fig. 3(b), the mechanisms occurring in 
the waveguide are schematized. At a time t = 0 s, the initial excitation propagates in +x-direction, as represented with the 
red signal in Fig. 3(b). When reaching the sample, this signal is reflected, transmitted and absorbed and after t = 3 ms, 
the resulting signal propagates in the −x-direction, as shown with the blue plot in Fig. 3(b). The anechoic termination 
implemented on the left side of the waveguide insures the full damping of the incoming signal in such a way no information 
travels back in the +x-direction.

From the incident and reflected pressure and velocity time histories recorded inside the DNIT, the normalized complex 
impedance Ẑ = Z/Z0 with Z0 = ρ0c0 is derived as follows. At a given location p j , the complex pressure P̄ J and velocity V̄ J

are decomposed as follows:

P̄ J = P̄ J
I exp(−ikx J ) + P̄ J

R exp(ikx J ) (14)

V̄ J = 1 [
P̄ J

I exp(−ikx J ) + P̄ J
R exp(ikx J )

]
(15)
ρ c
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Fig. 4. Porosity dependence study. Absorption coefficient, real and Imaginary parts of the impedance as a function of the frequency. PM thickness is 
L = 10 cm and resistivity is σ = 23,750 kg m−3 s−1. Lines: analytical solution. Symbols: LBM simulations. Cyan, pink, blue, green, and red correspond to 
φ = 0.2, 0.4, 0.6, 0.8, and 1.0, respectively. (For interpretation of references to color in this figure caption, the reader is referred to the web version of this 
article.)

with k the spatial wavenumber, x J the position of the probe relative in the waveguide, P̄ J
I the incident complex pressure 

and P̄ J
R the reflected complex pressure. The reflection coefficient is obtained by solving the system formed of Eqs. (14) and 

(15):

R̄ J = P̄ J
R

P̄ J
I

= P̄ J − ρ c V̄ J

P̄ J + ρ c V̄ J
exp(−2ikx J ) (16)

The normalized impedance Ẑ of the PM and the absorption coefficient α are given by the following expressions:

Ẑ = 1 + R̄ J

1 − R̄ J
(17)

α = 1 −
∣∣∣R̄ J

∣∣∣2
(18)

The values of Ẑ and α in the frequency domain are available at each location j. Since the results are observed to be 
independent with the location, the analysis performed at microphone j = 7 i.e. x = −32.7 mm are used in the rest of this 
study.

4.2.1. Normal impedance for felt
A porous medium of thickness L = 10 cm and resistivity σ = 23,750 kg m−3 s−1 is used for validation. Several porosities, 

ranging from φ = 0.2 to 1.0, are tested. The real part of the impedance should be positive, since the material is passive. 
Fig. 4 shows excellent agreement with the analytical solution based on the Hersh–Walker model [31] for all porosities, 
except the discrepancy of the real part at very low frequency, which can not be resolved due to the finite simulation time.
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Fig. 5. Absorption coefficient, real and Imaginary parts of the impedance as a function of the frequency for NASA ceramic liner. PM thickness is L = 8.25 cm, 
porosity is φ = 0.57, and resistivity is σ = 2522 kg m−3 s−1. Black symbols: experimental data curve-fitted by [3]. Black lines: analytical solutions. Red lines: 
LBM simulations. (For interpretation of references to color in this figure caption, the reader is referred to the web version of this article.)

4.2.2. Normal impedance for NASA ceramic liner
Following the ceramic liner used in the experiment [32], the thickness of the PM imposed in the simulation is 

L = 8.25 cm. The same porosity φ = 0.57 and resistivity σ = 2522 kg m−3 s−1 are used as in Section 4.1. The results are 
compared to the data derived from the curve fitting of the measured complex surface impedance [3] and to the analytical 
solution based on the Hersh–Walker model.

As shown in Fig. 5, the result is again in good agreement with the analytical solution in the whole frequency range, which 
validates the numerical implementation of the model. Compared to experimental data, our simulation underestimated the 
absorption coefficient at a frequency around f = 2000 Hz, corresponding approximately to the resonance frequency for the 
given PM thickness. A possible reason might be that the current model misses the thermal effect and other porous media 
property effects, like the flexibility of the structure.

The overall satisfying comparison between experiments and predictions also highlight the correct modeling of absorption 
on the standing modes.

4.3. NASA Langley flow-impedance tube

The NASA Langley flow-impedance tube (also known as grazing flow tube) has been simulated following exactly the same 
setup as in experiments in [32]. The physical size of the tube is 33 × 2 inches. A ceramic liner of thickness h = 8.25 cm is 
embedded in the lower wall starting at 8.25 inches from the inlet and extending to 23.5 inches from the inlet (see Fig. 6). 
The porosity is φ = 0.57. The resistivities in the x-direction σx = ∞ and in the y-direction σy = 2522 kg m−3 s−1, which 
allows no flow in x-direction inside PM. Frictionless boundary conditions are imposed at the solid walls. A 661 × 41 2D grid 
is used, providing a number of points per wavelength NPPW = 89 at 3000 Hz. An acoustic plane wave is generated at the 
inlet:

pin = p0 + ε sin(2π f t), uin = u0 + ε
sin(2π f t), v in = 0 (19)
ρ0c0
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(a)

(b)

Fig. 6. (Color online.) (a): Instant snapshot of the static pressure field for ceramic liner grazing flow at M = 0. Comparison of lattice-aligned and 30-degree 
inclined channels. (b): Snapshots of x-velocity and eddy viscosity at M = 0.1.

with p0 and ρ0 the ambient pressure and density, ε and f the amplitude and frequency of the excitation, c0 the speed of 
sound, and u0 = Mc0.

The sound pressure level (SPL) is calculated by:



C. Sun et al. / C. R. Mecanique 343 (2015) 533–544 541
Fig. 7. (Color online.) Sound pressure level along the top wall for M = 0., 0.1, 0.3. Comparison of simulations (solid lines) with experimental data (symbols).

SPL = 20 log

(
prms

pref

)
, p2

rms = 1

t2 − t1

t2∫
t1

(p − p0)
2 dt, pref = 2 · 10−5 Pa (20)

A sound level of SPL = 130 dB is set, for which ε = 89.44 Pa. Two types of cases are tested: (1) lattice-aligned channel, 
(2) the channel inclined by 30 deg. For each type of case, the simulations are carried out at mean flow Mach numbers of 
M = 0.0, 0.1, and 0.3 and for frequencies ranging from f = 0.5 to 3.0 kHz with an increment of 0.5 kHz. SPL is measured 
along the upper wall at various locations and compared to experimental data [32].

Fig. 6 (a) shows instant snapshots of static pressure for the lattice-aligned and inclined channels at M = 0. Good agree-
ment indicates the grid-orientation independence of the approach, which demonstrates the capability for simulations of 
complex geometries because the inclined channel walls and PM interface interact with volume elements of various sizes.

Fig. 6 (b) shows snapshots of x-velocity and eddy viscosity for the lattice-aligned channels at M = 0.1. Clearly, the 
boundary layer developed at the PM interface. This boundary layer is generated partially by the friction between the fluid 
from the fluid’s side and the PM structure, and partially by the friction between the fluid from the fluid’s side and that from 
the PM side, since the fluid inside the PM has zero x-velocity because of its infinite resistance in the x-direction.

Fig. 7 shows the comparison of the upper wall SPL results of lattice-aligned simulations with experimental data for 
M = 0, 0.1 and 0.3. At M = 0.3, the corresponding Reynolds number is Re = 2 · 105. The symbols indicate the SPL measured 
on the upper wall. For the three configurations, the predicted results are in good agreement with the experimental data. 
The model implemented in LBM is thus shown to be able to capture the effect of the PM on absorption in the presence of 
a mean flow.

The case has 46,225 lattice nodes with approximately one half regular fluid nodes and one half PM nodes. The simulation 
time for a PM node is comparable to a regular fluid node (within 10% difference). The case consumes total 0.85 CPU hours 
on 4 Intel Xeon 3.07 GHz processors for 47,357 time steps, i.e. 0.016 s per time step.

To better resolve the development of the boundary layer and study the impact on acoustics, 89 points per wavelength 
are used and the results are presented here. We have also done the resolution study for M = 0 at 1 kHz. The acoustic results 
are almost unchanged between resolutions 44 and 89 points per wavelength, and they all agreed very well with those of 
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Fig. 7. (continued)

Ozyoruk’s [3] and Delattre’s [4] high-order schemes, using 25 to 30 points per wavelength. Our results of the resolution 
with 22 points per wavelength show only slight differences.

5. Discussion

The present LBM model for porous materials characterized by their resistivity and porosity introduces a PM resistance 
described by Darcy’s law in the momentum equation, and precisely captures the porosity effect on the mass flux. As a 
consequence, the model takes both the hydrodynamics and acoustics behaviors of the PM into account simultaneously. In the 
pure fluid regions, the Darcy’s force disappears and the standard Navier–Stokes equation applies. Therefore, the model can 
simulate not only hydrodynamic problems but also acoustics in any combination of pure fluid, PM and walls encountered 
in real industrial applications. Our model simply solves a system defined by the equations (7)–(9) with a constraint (Eq. (3)) 
without using any other models. Neither surface impedance model nor frequency-dependent input parameters are used in 
our model. The acoustic properties are calculated from the simulated pressure distribution directly after the simulations.

The capability for solving for a complex main flow and acoustic damping in the presence of PM at the same time opens 
possibility for many practically important applications where the noise is induced by vortices that are in turn generated by 
shear layers. Examples include flow induced noise controls such as jet noise from an aircraft engine, car sunroof buffeting, 
fan noises, etc.

The channel flow test case demonstrates the correct hydrodynamic behavior of the PM. The normal impedance tube 
cases showed very satisfying agreement with the analytical solution of sound wave propagation in a PM. The present model 
is much more powerful than the analytical model in the sense that it is applicable to any complex 3-D PM and wall 
geometries, and is not limited to small perturbations and to normal incidence waves.

The NASA grazing flow test case showed good agreement with the experimental data, and is at least as accurate as 
surface-based impedance boundary condition approaches [3,4,6,7]. The commonly used impedance boundary conditions 
is formulated as a relation between pressure and velocity in the frequency space that is prescribed at the PM interface. 
When using this method to account for the PM effect, the thickness of PM is completely ignored [3,4,6,7]. It is well known 
that transferring this impedance boundary condition from the frequency to the time domain has to satisfy a number of 
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Fig. 7. (continued)

constrains [8]. These conditions are difficult to satisfy in a general case, their violation immediately causes instability of the 
method due to ill-posedness in the time domain. In contrast, our model naturally avoids the stability problem by directly 
solving in the time domain the PM equations that naturally damp acoustic waves.

Both the normal impedance tube and the grazing flow with ceramic liner showed how little information is required to 
get correct absorption behaviors of the porous material. The ceramic liner setup used only the geometric information of the 
porous material: porosity and diameter of the porous micro channels, from which the PM resistivity was calculated, together 
with the thickness of the PM layer. In a general setup, porosity, resistivity and PM geometry are needed. In some application 
cases, these information may not be available, and instead, the absorption coefficient is a priori characterized. A regression 
method as described in [9] can provide an equivalent modeling of the system and lead to broad range of applications.
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