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We use POD and EPOD (extended POD) analysis to extract the main features of the flow 
over a thick flat plate simulated with an LES. Our goal is to better understand the coupling 
between the velocity field and the surface pressure field. We find that POD modes based on 
the full velocity and energy fields contain both flapping and shedding frequencies. Pressure 
modes are found to be uniform in the spanwise direction and the most intense variations 
take place at the mean reattachment point. Velocity modes educed from the pressure 
modes with EPOD are seen to correspond to eddies shed by the recirculation bubble.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On considère l’écoulement au-dessus d’une plaque plane épaisse. Nous utilisons la 
simulation aux grandes échelles et l’analyse POD/EPOD pour comprendre le couplage entre 
le champ de vitesse et le champ de pression à la paroi. Les modes POD extraits de la vitesse 
contiennent des fréquences correspondant aux phénomènes de flapping et de shedding. 
Les modes de pression sont uniformes dans la direction transverse et les variations les 
plus intenses sont observées au point de réattachement. Les modes de vitesse construits 
à partir des modes de pression avec l’approche EPOD correspondent à des tourbillons 
associés à la bulle de recirculation.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Aerodynamics of vehicles are characterized by the physics of massively separated flows. Kiya and Sasaki [1] showed that 
the flow in the separation zone is governed by two mechanisms: the shedding of large-scale vortices and a low-frequency 
unsteadiness called “flapping”. The connection between these two mechanisms is still not clear. Another connection that 
needs to be elucidated is the relationship between the velocity dynamics and the pressure fluctuations. Understanding this 
coupling represents a challenge for the control of acoustic disturbances. The present paper builds on the results obtained by 
Tenaud et al. [2] for the LES of the flow over a thick flat plate. We apply POD analysis and EPOD (extended POD) analysis 
to their numerical data in order to determine the salient features of the pressure and velocity field.

* Corresponding author.
E-mail address: berengere.podvin@limsi.fr (B. Podvin).
http://dx.doi.org/10.1016/j.crme.2014.05.006
1631-0721/© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.crme.2014.05.006
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:berengere.podvin@limsi.fr
http://dx.doi.org/10.1016/j.crme.2014.05.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crme.2014.05.006&domain=pdf


418 B. Podvin et al. / C. R. Mecanique 342 (2014) 417–424
Fig. 1. (Color online) Isosurface of zero streamwise velocity – the arrow indicates the flow direction.

2. The numerical method

We consider the flow over a flat thick plate of thickness H and length L. The total dimensions of the plate in the 
simulation are Lx, Lz = (25, 17)H . The portion of the domain used for POD analysis, which excludes the downstream part of 
the plate x > 20H , is represented in Fig. 1. The height of the numerical domain is 5H . The Reynolds number based on the 
constant velocity imposed at the upstream boundary-located at a distance 10H from the leading edge of the plate and the 
plate thickness is R = 7500.

The equations of motion are those for a compressible flow. We consider air with a constant specific heat ratio γ = 1.4. 
The Prandtl number is taken to be Pr = 0.73. The equations are solved using an LES approach. Results reported here were 
obtained with a dynamic viscosity model [3]. A high-order coupled scheme in time and space was implemented in the 
parallel code CHORUS. More details can be found in [2].

3. POD analysis

3.1. The POD technique

POD is a statistical technique [4] which extracts the most energetic motions of the flow. Any physical quantity q(x, t)
(which can be the velocity field, density, or any combination thereof) can be written as

q(x, t) =
∑
n≥1

(
λn)1/2

an(t)φn
q
(x) (1)

where

• the spatial mode φn
q

is the n-th eigenvector of the eigenproblem

∫ 〈
q(x, t)q

(
x′, t

)〉
φn

q

(
x′)dx′ = λnφn

q
(x) (2)

where 〈q(x, t)q(x′, t)〉 is the time-averaged spatial autocorrelation tensor of the quantity q. By construction the eigen-
vectors φ

q
constitute an orthonormal family;

• λn represents the energy of the n-th mode, with λ1 ≥ λ2 ≥ . . . ;
• the temporal coefficient an(t) represents the amplitude of the n-th mode and is also normalized to be 1. By construction 

the coefficients are uncorrelated with each other.

If the autocorrelation tensor is constructed from N selected snapshots of the flow at instants tk , it can be shown [5] that

φn
q
(x) =

N∑(
λn)1/2

an(tk)q
(
x, tk) (3)
k=1
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Fig. 2. a) POD spectrum of the full field; b) POD spectrum of the wall pressure.

Fig. 3. (Color online) The frequency is adimensionalized with the plate thickness. a) Spectral density of the pressure POD coefficients an
p . The arrow indicates 

the location of the Kelvin–Helmholtz frequency. b) Spectral density of the POD energy ∑N+1
n=2 λn|ân( f )|2.

This formulation constitutes the basis of the method of snapshots, which allows the numerical computation of the spatial 
modes.

POD analysis was applied to the full field q = (ρ, u, e) over the entire numerical domain as well as to a restriction of 
the domain below the plate. The nondimensional variables used were the same as the ones in the code (no renormalization 
or relative rescaling between the different physical quantities was applied). Since the flow is nearly incompressible, the 
decomposition is essentially equivalent to performing that of the velocity field, so that no rescaling is needed. In any case, 
it has been shown in the case of thermal convection [6] that rescaling had very little influence on POD results. We also 
performed POD analysis of the surface pressure field on the bottom surface. In both cases the method of snapshots was used 
with 320 fields with a time separation of 0.08 time units. The full flow was included in the analysis and its time-average 
was found to be identical with the first POD mode. The POD energy λ1 associated with the mean flow is higher than the 
total fluctuating energy by a factor of 106.

3.2. Full-field POD

As shown in [2] a quasi-2D vortex can be distinguished in the recirculation bubble for the mean flow. The height of 
the vortex is about 0.5H , where H is the height of the plate and its length is about 2.5H – the length of the bubble 
was about 3.38H . The recirculation time associated with the vortex was found to be about 20–25H/U0, where U0 is the 
free-stream velocity. Fig. 2a shows the higher-order eigenvalues n ≥ 2 when the POD was applied to the full field (over the 
entire domain). No significant differences were observed when the domain was restricted to the volume below the plate. 
The relatively slow convergence of the spectrum illustrates the complexity of the flow.
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Fig. 4. (Color online) Modes associated with the frequency f H/U0 = 1.2: a) cross-section y = 0 of streamwise velocity φn
u

for n = 68; b) spectral density 
of a68; c) cross-section y = 0 of streamwise velocity φn

u
for n = 69; d) spectral density of a69.

Fig. 5. Horizontal view of the second velocity POD mode at z = 0.4H .
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Fig. 6. (Color online) The frequency is adimensionalized with the plate thickness. a) Spectral density of the pressure POD coefficients an
p . b) Spectral density 

of the POD energy ∑N+1
n=2 λn|ân

p( f )|2.

Fig. 7. Pressure POD mode: a) n = 2, b) n = 3, c) n = 4, d) n = 5.

The temporal coefficients of the spatial modes were computed and their Fourier transform is represented in Fig. 3. As 
can be expected higher-order modes are associated with higher frequencies. Fig. 3a shows that the 50 first modes of the 
full field are characterized by low frequencies f H/U0 ≤ 0.2.

Fig. 3b indicates that four peaks can be clearly identified in the total spectrum – one at the frequency of f1 H/U0 =
0.04–0.05, another at a frequency of f2 H/U0 = 0.12, still another at the frequency of f3 H/U0 = 0.24, and a distant peak at 
the frequency of f4 H/U0 = 1.28. The highest frequency peak matches the Kelvin–Helmholtz frequency of the mixing layer, 
and is associated with modes 68 and 69. Fig. 4 confirms that this frequency corresponds to mixing layer modes (which is 
particularly clear for mode 69).

We believe the two lowest frequencies to be associated with the recirculation bubble (the third frequency f3 H/U0 =
0.24 is simply likely to be a harmonic of f2 H/U0 = 0.12). The lowest frequency f1 H/U0 = 0.04–0.05 can be seen to 
correspond to the flapping frequency which is associated with the growth and shrinkage of the bubble [7]. If this frequency 
is renormalized with the recirculation length, we find an adimensional frequency of f LR/U0 = 0.12 which matches results 
in the literature [1]. We note that this frequency corresponds to the circulation time scale associated with the main vortex 
inside the recirculation bubble.
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Fig. 8. Pressure-educed spanwise-averaged velocity mode: a) n = 2, b) n = 3, c) n = 4, d) n = 5.

The other frequency does not match Kiya et al.’s results if we normalize it with our recirculation length. However it 
matches their value if the frequency is rescaled with the thickness of the plate. It is generally agreed that the vortex 
shedding process corresponds to a Karman instability [8] in which the vortices interact with the wall, which creates by 
reflection a row of aligned vortices (not staggered, unlike a classical vortex street) of opposite sign [9]. The frequency 
should therefore scale with the vertical distance between the vortex and the wall, which depends on the bubble height, 
while the flapping frequency is associated with the recirculation time scale within the bubble, and therefore depends on 
the recirculation length.

All modes n ≤ 10 contain both the shedding and the flapping frequencies – it was not possible to separate both con-
tributions in any of the modes (which could be done using Fourier transform or equivalently DMD decomposition). This 
coupling supports the idea of a single physical origin for the two different frequencies observed. Although both flapping and 
shedding can be viewed as primarily two-dimensional processes, the structure of the flow is strongly three-dimensional, 
as illustrated in Fig. 5 by a horizontal section of the most energetic fluctuating mode. A characteristic spanwise scale of 
L y/3 ∼ 1.3H can be identified beyond the reattachment point.

3.3. Surface pressure POD

POD analysis was also applied to the surface pressure along the plate. The pressure spectrum is shown in Fig. 2b. As 
could be expected, since the domain is limited to a plane and only one scalar is considered, the convergence of the spectrum 
is faster. The first two modes are nearly equal, which suggests the presence of a spatio-temporal symmetry. The spectral 
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Fig. 9. Spanwise-averaged full POD velocity mode: a) n = 2, b) n = 3, c) n = 4, d) n = 5.

content of the POD pressure modes can be seen to be very similar to that of the full field counterparts. Higher-order modes 
are associated with higher frequencies, with a significant low-frequency contribution observed in the first 100 modes of the 
field (Fig. 6a). In the first POD pressure modes, two main frequencies could be identified, which correspond to the flapping 
and shedding frequencies observed for the POD velocity modes, as is shown in Fig. 6b). For the first ten modes, a peak 
is present at f H/U0 = 0.05, and a second one at f H/U0 = 0.13, with a significant content in the range [0.13, 0.17]. The 
Kelvin–Helmholtz frequency does not appear in the pressure spectrum. Fig. 7 shows the first four fluctuating POD pressure 
modes. It is clear that the two most energetic fluctuating modes are mostly invariant in the spanwise direction, as was 
argued by Peter Jordan (private communication). The idea that the wall pressure fluctuations constitute the signature of 
vortices is supported by application of the extended POD. The extended POD velocity modes based on the pressure were 
computed, using the technique first put forth by Borée [10]. If the n-th pressure mode Φn

p can be written as

Φn
p(x, y) =

∑
an

p

(
tm)

p
(
x, y, tm)

(4)

where p(x, y, tm) is the pressure field at the instant tm , the corresponding extended velocity mode can be obtained from

Φn
u(p)(x, y, z) =

∑
an

p

(
tm)

u
(
x, y, z, tm)

(5)

Since the pressure is constant in the spanwise direction (at least for the highest two fluctuating modes), it makes sense 
to look at the spanwise average of the extended velocity modes, which are represented in Fig. 8. The first two fluctuating 
modes consist of a strong vortex centered above the reattachment point and convected outside the recirculation bubble. This 
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is in full agreement with the observations of Tung [11]. The next two modes consist of two same-sign vortices located on 
either side of the mean reattachment point at a distance x = 2H and x = 4.2H from the edge of the plate. A counter-rotating 
vortex can be observed between these vortices.

The corresponding spanwise average of the POD velocity modes is represented for comparison in Figs. 9 with the same 
scale. One vortex is observed for the first fluctuating mode at x = 8H from the edge of the plate. The second mode contains 
a pair of unequal counter-rotating vortices with centers at a distance x = 6H and x = 8H from the edge of the plate. 
Respectively three and two vortices can be identified for fluctuating modes 3 and 4.

The vortical motions associated with the velocity POD modes are less intense than the ones associated with the pressure-
educed structures.

4. Conclusion

POD analysis of the flow along a flat thick plate shows that the most energetic motions consist of large-scale vortices 
shed behind the recirculation bubble. The spanwise extent of these vortices is of order H and their separation is about 2H , 
where H is the plate’s thickness. The motions are characterized by two frequencies f H/U0 = 0.04 and f H/U0 = 0.12, 
which are associated with the flapping of the recirculation bubble, and the shedding process. POD analysis of the surface 
pressure shows that the pressure modes are quasi-invariant in the spanwise direction. The vortical motions associated with 
the pressure modes are obtained by EPOD and are found to be most intense in the reattachment region.
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