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When using acoustic emission to locate the friction fault source of rotating machinery, the
effects of strong noise and waveform distortion make accurate locating difficult. Applying
neural network for acoustic emission source location could be helpful. In the BP Wavelet
Neural Network, BP is a local search algorithm, which falls into local minimum easily. The
probability of successful search is low. We used Shuffled Frog Leaping Algorithm (SFLA)
to optimize the parameters of the Wavelet Neural Network, and the optimized Wavelet
Neural Network to locate the source. After having performed the experiments of friction
acoustic emission’s source location on the rotor friction test machine, the results show that
the calculation of SFLA is simple and effective, and that locating is accurate with proper
structure of the network and input parameters.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Time Difference Of Arrival (TDOA) location method is a usual approach to locate the position of a fault using the
acoustic emission technology [1–3] in the fault location. The TDOA location method detects the time differences of arrival
at different sensors from homologous acoustic emission signals, and calculates the source location in accordance using the
space array between the sensors.

When we use the signals measured above the default threshold of the acquisition system to calculate the arrival time, the
latter not only depends on the parameters of acoustic emission instrumentations, e.g. the position of transducers, frequency
dispersion, attenuation, noise interference, and other factors, but also depends on the experience of the operator. In order
to decrease the impact of man-made factors, it is important to design a smart algorithm for source locating [4–6].

In the intelligent algorithms, the Neural Network is a usual and effective method, and it is with the characteristics of
self-organizing, self-adaptive, self-learning, and better robustness. With the rational structure of the network, right input
samples, and enough training samples, this method can provide the precise activity of the acoustic emission [7–9].

This paper introduces the Wavelet Neural Network module, uses the Shuffled Frog Leaping Algorithm (SFLA) [10–12]
instead of the traditional decreasing gradient algorithm, optimizes the parameters of the network, and implements the
acoustic emission source location method. The experimental results show that its accuracy and efficiency are much higher
than those of traditional positioning methods.
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2. Shuffled Frog Leaping Algorithm

In a d-dimensional target searching space, D frogs (solutions) are randomly generated to compose initial population.
The i-th frog represents a potential solution of the problem Xi = (xi1, xi2, . . . , xid). Frogs are arranged from good to bad
according to their fitness values to divide the whole population into N sub-populations. Among them, the frog ranked 1st
is assigned into the 1st sub-population, the one ranked 2nd into the 2nd sub-population, the one ranked Nth into the Nth
sub-population, the one ranked N + 1 into the 1st sub-population, the one ranked N + 2nd into the 2nd sub-population,
and the sequence continues until all frogs have been assigned.

Every sub-population is used for local area deep searching, that is for each sub-population, the worst individual Xw, the
best one Xb, and the global best one Xg of the sub-population in each iteration are determined first. The update operation
is applied only to the current worst individual Xw, which is described as:

Ωi = rand() ∗ (Xb − Xw) (−Ωmax � Ωi � Ωmax) (1)

new Xw = Xw + Ωi (2)

where rand() represents random number uniformly distributed between 0 and 1, Ωmax represents the maximum of update
steps allowed. If the fitness value of new Xw is better, Xw will be replaced. If it is not improved, Xb in Eq. (1) and Eq. (2) is
replaced with Xg. Then, the new update strategy is:

Ωi = rand() ∗ (Xg − Xw) (−Ωmax � Ωi � Ωmax) (3)

new Xw = Xw + Ωi (4)

If the fitness value of new Xw is still not improved, then a new Xw will be generated randomly. We then repeat this update
operation until the update number is satisfied. After the local area deep-searching of all sub-populations has been finished,
all frogs in the whole sub-population are mixed and reordered into sub-population and the worst individual in each sub-
population is replaced. The fitness values of all individuals are changed as a consequence. Therefore, we may reorder the
population according to the new fitness values from the highest value to the lowest one, and the corresponding individual
frogs can be assigned into N sub-groups in the same way as the first time. Then, the local area deep-searching are processed
until satisfying the number of mixed iterations.

3. Wavelet Neural Network

The main idea of Wavelet Neural Networks (WNN) [13–15] consists in using the wavelet function as a neuronal activation
function and relating the wavelet to the BP network. Since wavelet transform has a good local time-frequency feature and
multi-resolution analysis capability, Wavelet Neural Network performs well for identification and approximation to any
functions.

The wavelet transform should satisfy ψ(t) ∈ L2(R), where L2(R) is the square integrable space of real numbers, and it is
an energy-limited signal space. Ψ (ω) denotes the Fourier transform of ψ(t), and it should satisfy:

CΨ =
∫
R

|Ψ (ω)|
|ω| dω < ∞ (5)

where ψ(t) is the basic wavelet or mother wavelet. After stretching and shifting, we can get a wavelet sequence:

ψa,b(t) = |a|−1/2ψ

(
t − b

a

)
, a,b ∈ R; a �= 0 (6)

where a is the stretching factor, and b is the shift factor. If the function f (t) ∈ L2(R), the wavelet transform of f (t) is
defined as:

W f (a,b) = 〈 f ,ψa,b〉 = |a|−1/2
∫
R

f (t)ψ

(
t − b

a

)
dt (7)

Its inverse transform is defined as:

f (t) = 1

Cψ

∫
R

1

a2
W f (a,b)ψ

(
t − b

a

)
da db (8)

The discrete form of f (t) is:

f (t) =
k∑

i=1

ωiψ

(
t − bi

ai

)
(9)

where k is the number of wavelets.
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Fig. 1. The structure of the wavelet network.

Table 1
Algorithm: SFLA-based parameter learning.

Step 1: Decide the model dimensions according to the hidden layers and the wavelet neural network parameters.
Step 2: Prepare the pairwise training data.
Step 3: Initialize the population, calculate the fitness of each individual, if the fitness satisfies the required accuracy, go to step 5.
Step 4: Find the worst individual and replace it according to SFLA algorithm; if the best individual satisfies the required accuracy,

go to step 5, otherwise repeat step 4 until the required accuracy is satisfied.
Step 5: Output the optimized parameters and implement the wavelet neural network.

The diversity and the complexity of the wavelet function construction decide the diversity and the complexity of the
wavelet network structure. At present, the majority of scholars have adopted compact structures. Practically, we generally
make the number of hidden layers one, which is a triple layer of neural networks with a single hidden layer. In Eq. (9),
a signal function f (t) can be fitted by the wavelet in the form of linear superposition, the network structure as Fig. 1,
where ωi is the weight between the hidden layer and the output layer, and ψ(

t−bi
ai

) is the output value of the input node.
The required parameters include the number of hidden nodes k, scale factor ai , shift factor bi and the weight between the
hidden layer and output layer ωi .

4. The application of the Shuffled Frog Leaping Algorithm in Wavelet Neural Network

In the BP Wavelet Neural Network, the most common learning algorithm is BP algorithm, which is based on gradient
information to adjust the connection weights. It may easily fall into local extreme points. SFLA has a characteristic of fast
convergence and high robustness, global search capability. If it is used to optimize the neural network connection weights,
we can overcome the local extreme points of the BP neural network. In addition, the proposed algorithm improves the
convergence rate of neural networks with a pan-neural network capability and learning ability.

When using SFLA to train neural networks, we firstly define the vector position of the frog. As shown in Fig. 1 for the
wavelet neural network, the number of frogs is initialized at 40, and the vector position of each particle is:

x(i) = [ωi1, . . . ,ωi j,ai1, . . . ,aij,bi1, . . . ,bij], i = 1,2, . . . ,40 (10)

where j is the number of hidden layer neurons. The fitness function for the neural network is the mean square error
indicator, and the formula is given as follows:

J (k, i) =
n∑

m=1

(
ym,i − ŷk

m,i

)2
, k = 1,2, . . . , N (11)

where J (k, i) is the i-th frog fitness value after k iterations, n is the number of training samples, ym,i is the ideal output
value for the network after the m-th sample input of the i-th particle, ŷk

m,i is the practical output value for the network
after the m-th sample input of the i-th particle, k is the iteration number, and N is the maximum number of iterations.

For clarity, we summarize the algorithm of SFLA based parameter learning in Table 1.

5. Experiment analysis

The test bed of rotor system acoustic emission friction is shown in Fig. 2. The input voltage of the motor is used to
regulate the rotational speed. The semi-flexible shaft connects the electric motor with the shaft section, and the sliding
bearing chock supports the rotor. A mobile friction device is installed at the base of the test bed. The mobile friction device
is located in the space between shaft blocks 1 and 2. A retractable bolt is installed on the side of the screw along the center
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Fig. 2. Test bed of rotor friction acoustic emission.

Fig. 3. Two-way acoustic emission signals from the friction.

of the radial axis and the acoustic emission signals will be excited from the friction between the rotors by adjusting the
bolts.

The SR150 sensor is adopted for experiments, its frequency range covers from 20 kHz to 300 kHz. The A/D resolution of
the AE collection card is 12 bits. The two acoustic emission sensors are installed separately on the shaft blocks 1 and 2, and
the space coordinates are (x1, y1) = (0,0) and (x2, y2) = (50,0). The acoustic emission is on the shaft and its distance away
from the sensor is set at 20 cm. We set the sampling frequency at 1 MHz, the number of points at 16 384. Fig. 3 displays
the acoustic emission signals received by the two sensors when the rotors are rubbing. When friction happens, the AE event
will occur. Thus, the number of AE events depends on the friction time. More than 10 events were used at every location.

We get two-way signals’ amplitude and energy, and use the ratio between the coordinates of the sensor and the received
signal energy as the input of the neural network. In the experiment, we set the rotating shaft as the x-axis, while the y-axis
is perpendicular to the direction of the rotating shaft. The direction of acoustic emission signals is on the x-axis, and the
neuron output number of the network is 1.

We rub the rotors twenty times and use the data as the input of the network to train the neural network. From the
Fig. 4, if the number of hidden layer neurons is lower than 10, the network is not stable and the correct rate of the output
is volatile. As the number of hidden layer neurons increases, both the network and the correct rate of the output will be
stable. We set the number of hidden layer neurons at 10 for the accuracy and efficiency of the network.

We use the above network to carry out experiments at five different locations of rotor friction. The results give us the
information about the performance of SFLA and the wavelet neural network. Network prediction results and actual results
are listed in Table 2.

The wavelet neural network with the SFLA makes the correct rate high. The error rate is below 3%. As shown in Table 2,
the error rates are irregular, which is due to that the fact the training samples are not enough. Some unsuitable parameters
of the network also bring about the high error rates. Besides, the lack of de-noising makes the output error inevitable.

6. Conclusions

In this paper, a new algorithm called SFLA is proposed and is used in place of the traditional gradient descent method.
Through optimizing the parameters of the wavelet neural network, using the characteristic parameters of acoustic emission,
and setting the ratio of the sensor coordinates to signal energy as a neural network input, SFLA performs well when applied
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Fig. 4. The relationship between the correct rate and the hidden layer.

Table 2
Network prediction results and actual results.

Actual results
(away from the sensor 1)/cm

Network prediction results
(cm)

Error rate (%)

5 5.12 2.40
15 14.89 0.73
25 25.03 0.12
35 34.51 1.40
45 44.37 1.40

to acoustic emission source location. Besides, the obtained error variance when increasing the number of hidden layer
neurons helps us to determine the optimal number of hidden layer neurons.

The experimental results on the test bed of the rotor system show that the above-designed network is not only good at
predicting of the acoustic emission source location, but also displays a satisfying efficiency. However, as a new approach to
acoustic emission source location, there may be many other application fields, such as high-temperature detection, geological
seismic monitoring, fault localization of the complex structure, rock AE signal analysis, sound source classification, and so
on. Besides, SFLA may encounter the local minimum problem. These will be our on-going work for further investigation.
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