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The paper is devoted to a numerical Limit Analysis of a hollow spheroidal model with a
Drucker–Prager solid matrix, for several values of the corresponding friction angle φ. In the
first part of this study, the static and the mixed kinematic 3D-codes recently evaluated
in [1] are modified to use the geometry defined in [2] for spheroidal cavities in the context
of a von Mises matrix. The results in terms of macroscopic criteria are satisfactory for
low and medium values of φ, but not enough for φ = 30◦ in the highly compressive part
of the criterion. To improve these results, an original mixed approach, dedicated to the
axisymmetric case, was elaborated with a specific discontinuous quadratic velocity field
associated with the triangular finite element. Despite the less good conditioning inherent
to the axisymmetric modelization, the resulting conic programming problem appears quite
efficient, allowing one take into account numerical discretization refinements unreachable
with the corresponding 3D mixed code. After a first validation in the case of spherical
cavities whose exact solution is known, the final results for spheroidal voids are given for
three usual values of the friction angle and two values of the cavity aspect factor.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The famous Gurson plasticity criterion [3] is based on the consideration of a hollow von Mises sphere or cylinder in the
framework of the Limit Analysis (LA) kinematic approach. Recent studies were devoted to porous materials with a matrix
exhibiting a pressure-sensitive behavior ([4–6], etc.). Several extensions of the Gurson model taking into account void-shape
effects have been also proposed in order to solve various practical cases such as penny-shaped crack-like voids (see, among
others, [7–12]). Up to our knowledge, similar theoretical studies with pressure-sensitive matrices and non-spherical voids do
not exist in the literature. There is still need for an appropriate research effort in order to extend available efficient models
(for instance the one proposed by [5]) to the case of spheroidal voids.

On the other hand, using finite-element discretizations, both static and kinematic methods of LA have been elaborated
for Gurson problems with cylindrical cavities [13–15]. In the subsequent work [16], the Gurson criterion (then with a
von Mises matrix) is shown to be relevant for materials with spherical voids by using the same tools and an original
three-dimensional numerical model. Using also the hollow sphere model, a recent paper [1] was devoted to porous materials
with pressure-sensitive matrices obeying the Drucker–Prager, Mises–Schleicher and Green criteria. Also, in the case of a
von Mises matrix, these numerical studies have been extended to take into account void shape effects by considering
central spheroid voids in matrices with a confocal boundary [2]. They concluded on the relevance of the criteria proposed
by the above-mentioned studies of Gologanu and Leblond, at least for the investigated porosity cases.

* Corresponding author.
E-mail addresses: franck.pastor@skynet.be (F. Pastor), djimedo.kondo@upmc.fr (D. Kondo).
1631-0721/$ – see front matter © 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
http://dx.doi.org/10.1016/j.crme.2013.12.002

http://dx.doi.org/10.1016/j.crme.2013.12.002
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:franck.pastor@skynet.be
mailto:djimedo.kondo@upmc.fr
http://dx.doi.org/10.1016/j.crme.2013.12.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crme.2013.12.002&domain=pdf


F. Pastor, D. Kondo / C. R. Mecanique 342 (2014) 96–105 97
Fig. 1. The hollow spheroid model (a1/b1 = 0.5, f = 0.1).

The main advantage of these LA numerical approaches is that they provide rigorous, a posteriori controllable bounds to
the macroscopic criterion. Therefore, the purpose of the present paper is to provide lower and upper bound results to be
used as reference values for forthcoming attempts to determine approximate criteria for porous Drucker–Prager materials
with oblate cavities in the framework of LA applied to the hollow spheroid model.

The paper is organized as follows. First, we briefly present the considered hollow spheroid problem and its formulation
in terms of LA. Then, we recall the basis of the static and mixed methods of LA, and we recall the corresponding expressions
for the Drucker–Prager material needed to obtain the bounds and to assess them by post-analysis of the optimal fields. The
next step is devoted to detail the proposed original formulation of the mixed (but rigorously kinematic) method focused on
the axisymmetric case. Let us note also that it is the first time that the LA mixed approach is applied to an axisymmetric
finite element problem, even in its usual form where the lower/upper bound status of the solution is generally not guar-
anteed. Finally, we give the results of the 3D and axisymmetric tests for three usual values of the friction angle defined by
identifying Drucker–Prager and Coulomb criteria in plane strain as detailed in [17]. The resulting graphs also allow us point
out the evolution of the macroscopic criterion with the friction angle, for two usual values of the aspect factor of the cavity.

2. The hollow spheroid model

The hollow spheroid model is made up of a single spheroidal cavity embedded in a confocal spheroidal cell. The solid
matrix is an isotropic, homogeneous, and rigid-plastic Drucker–Prager material. Fig. 1 presents the geometric model, where
the given aspect ratio a1/b1 and porosity f allow us determine the parameters a2 and b2 of the confocal spheroidal bound-
ary. Let us consider first the three-dimensional point of view, and note Σ and D the macroscopic stress and strain rate
tensors. These quantities are related to the microscopic fields by the averages over the model of volume V :

Σi j = 1

V

∫
V

σi j dV , Dij = 1

2V

∫
∂V

(uin j + u jni)dS (1)

where u denotes the velocity vector and n the normal vector to the boundary ∂V of the model.
Under the uniform strain boundary conditions, i.e. ui = Dij x j (in which x represents the position vector), on the external

boundary, the overall virtual dissipated power P tot = Σi j Di j can be written as follows:

P tot = V Q · q (2)

where the loading vector Q and the generalized velocity q here are defined as:

Q 1 = Σm = 1

3
(Σx + Σy + Σz), Q 2 = Σx + Σy

2
− Σz, Q 3 =

√
3

2
(Σx − Σy)

Q 4 = Σyz, Q 5 = Σzx, Q 6 = Σxy

q1 = (Dx + D y + Dz), q2 = 2

3

(
Dx + D y

2
− Dz

)
, q3 = 1√

3
(Dx − D y)

q4 = 2D yz, q5 = 2Dzx, q6 = 2Dxy

From the matrix isotropy and the spheroidal geometry of the model, the resulting material is transversally isotropic
around the axis z. Here is investigated the macroscopic criterion g(Σ) in the (O xyz) anisotropy frame. As in [2], we
search for the projection of g(Σ) in the (Q 1, Q 2) plane by optimizing Q 2 for fixed Q 1 = Σm , other stress components
defined in (2) being free. Then, ∂ g

∂Σi j
= 0 = 2Dij for i �= j, and ∂ g

∂ Q 3
= 0 = q3, since the macroscopic material complies to the

normality rule. Finally, loadings can be restricted to the principal macroscopic strain rates D , as well as Σ since (O xyz) is
a transverse isotropy frame, with Dx = D y .
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Fig. 2. General view of an 896-tetrahedron mesh (a1/b1 = 0.5, f = 0.1) (left), and the corresponding axisymmetric mesh by substituting ρ to x (right).

Moreover, all the axes in the horizontal plane of Fig. 1 are equivalent; therefore, in the projection problem, we have also
Σx = Σy . From these results, the problem can be analyzed also as axisymmetric by using the (ρ, z) frame. Finally, the overall
external power P tot depends only on the two non-zero loading parameters Q 1 and Q 2. Therefore, adapting the technique
defined in [16] for spherical cavities, the eighth of the hollow spheroid is meshed into tetrahedral elements as shown in
Fig. 2 left in the 3D case. Note that the macroscopic equivalent stress Σeq is, in the present case where Σx = Σy = Σρ ,
linked to Q 2 by:

Σeq =
√

3

2
Σ ′ : Σ ′ = |Q 2| = |Σx − Σz| (3)

where Σ ′ is the deviatoric part of Σ . From this analysis, the mechanical problem can be considered as axisymmetric in the
cylindrical (ρ, θ, z) frame of Fig. 2 right by substituting ρ to x in the horizontal axis. In this case, we can substitute in the
above relations Σρ to Σx and to Σy (Σz unchanged), and Dρ to Dx and D y . The loading conditions ui = Dij x j here become
uρ = Dρρ , uz = Dz z.

From the results of the comparative study of [1] for spherical cavities, we have first extended the 3D static and mixed
finite element codes by implementing the geometric meshing of [2]; such procedure is not detailed here. To overcome
the drawback of the excessive amount of CPU times required to sufficiently improve these 3D results, we have elaborated
an original axisymmetric version of the mixed kinematic approach based on specific quadratic velocities in the triangular
elements. This mixed formulation avoids the possible singularities of the axisymmetric formulation together with using
convexity properties in order to preserve the character of rigorous upper bound of the final results. Hereafter, we fully
detail the axisymmetric mixed method and its application to the present problem. The final – 3D and axisymmetric –
resulting graphs are presented for three usual values of the friction angle.

3. LA methods and Drucker–Prager criterion

The main goal of limit analysis is the determination of the limit load locus that corresponds to the macroscopic plasticity
criterion in the present micro–macro problem. Classically, the limit loads can be determined by using a static (or lower
bound) and a kinematic (or upper bound) methods.

3.1. The static method

The first one is the static method which is in terms of stresses and leads to a lower bound of the limit loads. A stress
field is said admissible if it is statically admissible (SA), and plastically admissible (PA), i.e. verifying the (convex) plasticity
criterion f (σ ); a loading vector Q (σ ) is admissible if the corresponding σ is admissible. Let us denote by K the set of the
admissible loading vectors. The final problem reads:

Q lim = (
Q d

1 , . . . , λ0 Q d
i , . . . , Q d

n

)
(4i)

λ0 = max
{
λ, Q (σ ) = (

Q d
1 , . . . , λQ d

i , . . . , Q d
n

)}
(4ii)

where the stress tensors σ are admissible, and Q d is a fixed admissible loading vector. In fact, relation (4) holds when all
admissible fields σ can be taken into account, which is not the case in general. Then, by varying the direction of Q d , a set
of admissible Q , located near or on ∂ K , is obtained: the smallest convex envelope of the corresponding points in K is an
inner approach of the boundary ∂ K , i.e. a lower bound to the exact macroscopic criterion investigated here.

3.2. The mixed kinematic method

On the other hand, a so-called mixed kinematic formulation was pioneered by Anderheggen and Knopfel [18] for finite-
element continuous velocity and a linearized von Mises criterion. An extension to the discontinuous velocity case, based on
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the assumption that linear programming duality properties remain valid in non-linear programming, was proposed in [19].
A general extension to discontinuous velocities and convex optimization was successfully experienced in [20] and [21] for
homogeneous von Mises and Gurson materials in plane strain. This mixed formulation is here modified as:

max
Q ,σ ,T ′ F = V qd · Q (5i)

s.t.
∫
V

d : σ dV +
∫
Sd

[u] · T ′ dS = V q(u) · Q ∀KA u, (5ii)

f (σ ) � 0, fnt
(
T ′)� 0 (5iii)

where d is the strain rate tensor, σ the stress tensor, Sd the union of the velocity discontinuity surfaces, T ′ the stress
vector on these surfaces and fnt(T ′) the projection of f (σ ′) on the Mohr plane associated with the discontinuity surface
of normal n. In (5), the velocity field u must be kinematically admissible (KA), i.e. locally continuous with bounded dis-
continuities [u], and verifying the boundary conditions together with the loading condition q(u) = qd . It can be seen in the
above-mentioned papers that the optimal velocity field will also be PA (plastically admissible), i.e. there exists everywhere
a tensor σ or a vector T ′ associated with the strain rate tensor or to the velocity jump by the normality law corresponding
to f (σ ) = 0 and fnt(T ′) = 0 respectively.

The previous formulation gives the exact solution if all velocity and stress fields could be taken into account. In general,
this is not the case when we consider a discretization of the mechanical system in finite elements. However, the following
axisymmetric formulation is formulated for preserving the rigorous kinematic (or upper bound) character of the final result
by using convexity properties concerning the set of PA strain rate (and velocity jump) fields and the unit dissipated powers.

3.3. The Drucker–Prager material

The Drucker–Prager criterion reads (with μ� 0):

f (σ ) = σeq + μσm − σ0 � 0; σeq =
√

3

2
σ ′ : σ ′ (6)

where σ ′ is the deviatoric stress tensor, σeq the von Mises equivalent stress, σm the mean stress tr(σ )/3, σ0 the flow stress
under pure shear (σm = 0) and μ the pressure sensitivity factor.1

From the projection of the criterion (6) on the Mohr plane, we obtain the corresponding criterion:

fnt(T ) = √
3a |σnt | + μσn − σ0 � 0; a = 1 − 4μ2/9 (8)

which gives the usual Coulomb criterion in the Mohr plane by using the formulas (7). The kinematic PA condition and the
unit dissipated power π(d) for the strain rate field read:

tr(d) �μdeq, deq =
√

2

3
d′ : d′; πvol(d) = σ0

μ
tr(d) (9)

where d′ is the deviatoric part of the strain rate tensor d. From (9), the domain of the PA strain rates is a convex cone
whose apex corresponds to the null tensor.

The corresponding PA conditions on the discontinuities read:

[un]� μ√
3a

∣∣[ut]
∣∣; πdisc

([u]) = σ0

μ
[un] (10)

which gives the usual formulas in terms of c, φ constants with tanφ = μ/
√

3a and c = σ0/
√

3a. The expressions (9) and (10)
here are only used in the post-analysis of the optimal solution of the mixed method.

4. Numerical implementation of the axisymmetric mixed method

Fig. 2 left illustrates the case of the 3D-mesh with four layers of triangle-based prisms, each layer constituted by
4×4 prisms of 3×4 tetrahedrons and two extremal tetrahedrons each, i.e., 896 tetrahedrons for the whole mesh. The corre-
sponding axisymmetric mesh in the frame (ρ, z) is given on the right with four sectors (ns = 4) and four layers (nρ = 4). For
each aspect ratio a1/b1 of the cavity and for a given porosity, the matrix boundaries of the spheroid mesh are adapted to
obtain their confocal forms. Since these boundaries are not homothetic, the porosity of the resulting mesh is not exactly the
input one. Therefore, in a first step for each case of porosity and aspect ratio, the distribution of the angle α is optimized
to retrieve the desired porosity by progressively concentrating this distribution towards the more curved zone.

1 The usual geotechnical constants (cohesion c, and friction angle φ), as defined in [17], can be obtained by the following relationships:

β = μ/
√

27; sin φ = 3β/

√(
1 − 3β2

); c = σ0

√
3
(
3 + sin2 φ

)
/(

√
27 cosφ) (7)
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4.1. The virtual velocity field

In each triangle, the fem discontinuous displacement velocity field is expressed as follows:⎧⎨
⎩

uρ = ρ(A + Bρ + C z)

uθ = 0

u Z = D + Eρ + F z + Hρz + Iρ2 + J z2

(11)

dρ = ∂uρ

∂ρ
; dθ = uρ

ρ
; dz = ∂uz

∂z
; dρz = 1

2

(
∂uρ

∂z
+ ∂uz

∂ρ

)
⇒ {d} = [B]{X} (12)

Thus, each triangle generates nine constants (Xi = A, B, . . . , J ), which are the final virtual variables of the discretized
model. The resulting strain rate field inside the triangle can be easily cast into the form {d(ρ, z)} = [B(ρ, z)]{X} where the
components of X are the (virtual) variables of the triangle. From this choice, the resulting strain rate tensor d cannot become
singular and it is linearly varying in the element: this feature will be used later to (strictly) upper bound the (convex) unit
dissipated power on the triangle.

Along an inter-element side, the velocity jump [u] is quadratic. To upper bound as above the corresponding dissipated
power, the jump is linearized by enforcing the jump at the side middle to be equal to half the sum of its values at the
ends of the discontinuity. Note that an interesting methodology for maintaining the PA character of a quadratic [u] along
the discontinuity is given in [22], but it is not easily applicable when using the present mixed method. It is worth also noting
that, in the LA numerical literature for axisymmetric problems, the drawback of the singularity at the origin is avoided by enforcing the
PA conditions only at the centroid of the element, giving by the way only an estimate of the real solution.

4.2. Formulation of the virtual power principle (5ii)

4.2.1. Contribution of the element velocity fields
The first part of the integral in (5ii) here becomes, for a triangle of volume V :

P V =
∫
V

d : σ dV = 2π

∫
V

{d}t{σ }ρ dρ dz (13)

As detailed in [1,20], from the Karush–Kuhn–Tucker optimality conditions, the product {d}t{σ } becomes the convex unit
dissipated power πV (d) in the optimal solution. Then, to this product we substitute its linear interpolation L({d}t{σ })
between its values at each vertex of the triangular element. Since the product ρL is quadratic, the integral

∫
ρLdρ dz is

classically calculated from its values at the medium of the sides of the triangle. Since each term of the product is linear,
the final result depends only on the product values at the element vertices. Hence, a stress tensor {σ } = (σρ,σz, σθ ,σρz)

T

is assigned at each vertex of the triangle, without any variation assumption.
We finally obtain for the triangle with vertices i = 1 to 3 and area A:

P V � π A

6

∑
i=1,3

Ci{d}t
i {σ }i (14)

where Ci = 2ρi + ρi+1 + ρi+2, with ρ4 = ρ1 and ρ5 = ρ2.
It is important to note that the strain rate d of the optimal solution will result in PA at the vertices of the triangle; from

the convexity of the set of PA strain rates associated with the present (convex) criterion, and from the linear variation of d
in (12), it can be deduced that the strain rate will be PA all over the element, a sine qua non condition for preserving the
upper bound character of the result.

4.2.2. Contribution of the velocity discontinuities
The second part of the integral in (5ii) is the sum of the power contribution of each discontinuity surface L1−2 (of ends

noted 1 and 2):

Pd =
∫

L1−2

[u] · T ′ dS = 2π

∫
L1−2

{[u]}t{
T ′}ρ dρ dz (15)

According to [17], the product [u] · T ′ becomes the dissipated power πd([u]) when the stress vector T ′ and the velocity
jump vector [u] are associated (by the normality law) relatively to the fnt(T ′) criterion. Here also, we can use the convexity
of πd([u]) since [u] is constrained to vary linearly along the discontinuity side: to the product {[u]}t{T ′} we substitute
its linear interpolation L({[u]}t{T ′}) between its values at each end of the discontinuity side of normal n. Then we can
upper bound Pd by calculating the quadratic expression with Simpson formula and using the linearity of each term of the
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product ρL. By allocating an auxiliary stress vector T ′ = (σnn, σnt) (expressed in the orthonormal (n, t) frame of the side)
at each of the two apices of the discontinuity side L1−2, we finally obtain:

Pd �
2π l

6

∑
i=1,2

Ci
({[u]i

}t{
T ′

i

})
(16)

where l is the length of L1−2, Ci = 2ρi + ρi+1 with ρ3 = ρ1. It can be noted that the optimal jump [u] will be PA all
along L1−2 from the convexity of the PA jump set associated with the criterion fnt .

4.2.3. Expression of the external power
To the global vector of the virtual u-velocities are added the generalized velocities q1, q2, q3 in order to form the final

virtual vector {u}. Thus, from (2), the external power can be written as:

Pext = V (q · Q ) = V {q}T{Q } = {u}T V [β]{Q } (17)

where {q} = [β]T{u}.

4.2.4. The PA stress conditions
In the global (x, y, z) reference frame, the Drucker–Prager yield condition (6) is now written as:

√(
σρρ + σzz

2
− σθθ

)2

+ 3

4
(σρρ − σzz)2 + 3σ 2

ρz � σ0 − μσm (18)

Criterion (18) can be easily written in the Lorentz form required by the conic optimizer mosek [23]:√
x2

1 + x2
2 + x2

3 � x4, x4 = σ0 − μσm (19)

for each vertex of the triangle elements.
The criterion (8) for the stress vector T ′ gives rise to the following inequalities, using (7):

σ ′
nt + σ ′

nn tanφ � c, −σ ′
nt + σ ′

nn tanφ � c (20)

which results in two linear constraints in terms of the real variables σ ′
nn and σ ′

nt for each end of the discontinuity sides.

4.2.5. The final mixed problem and the KA conditions
Finally, the numerical form of the variational mechanical problem (5) is as following:

Max V {qd}T{Q }
s.t. − [α]{σ } − [

α′]{T ′} + V [β]{Q } = 0

f (σ ) � 0 ∀σ ; fnt
(
T ′)� 0 ∀T ′

+ KA velocity conditions (21)

Indeed, a systematic change of d and u in terms of the final {X} virtual variables is performed through specific subroutines
of the axisymmetric Fortran code, which generates the final problem in the MPS format required by mosek.

As shown in the detailed analysis of [1] and [20], we can identify the dual variables of the solution of this optimization
problem with the {X} components. This analysis also details how the resulting velocity field is plastically admissible and
how, by adding auxiliary columns, the kinematically admissible character of the optimal velocity field can be ensured, as in
the following.

• We previously defined two supplementary rows (constraints) whose associated virtual variables are q1, q2 and two new
columns for the corresponding macroscopic stresses Q 1, Q 2. At each apex and at the middle of the boundary triangle
sides, we impose the loading conditions uρ = Dρρ , uz = Dzz z. This is done by adding one additional column (i.e., an
additional variable) for each one of these conditions. Let us note the chosen kinematic parameters as {q} = [AD ]{D}
with {D}T = (Dρ, Dz); then, for example, the terms of a condition uρ −ρDρ = 0 ⇒ uρ −ρ[AD ]−1{q} = 0 are dispatched
on the (X,q) components (corresponding to uρ and q) of the additional column.

• A similar technique is used to impose the null symmetry value to the uz components on the ρ axis, and to enforce the
jump [u] of the middle of the discontinuity side to be equal to half the sum of its end values.
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Table 1
Comparison of Σm exact values to those obtained by the numerical methods – Drucker–Prager matrix – spherical void – porosity f = 0.1 – cohesion c = 1.

Friction angle φ 10◦ 20◦ 30◦

Compression 3D-MEF static −4.3493 −8.8961 −27.6125
Exact value −4.3961 −9.0408 −28.764
Axi-mixed kinematic −4.4052 −9.0688 −28.9607
3D-mixed kinematic −4.4076 −9.0938 −29.287

Tension 3D-MEF static 1.7944 1.2986 0.9676
Exact value 1.8045 1.3031 0.9704
Axi-mixed kinematic 1.8060 1.3039 0.9709
3D-mixed kinematic 1.8065 1.3045 0.9714

5. Numerical tests and evaluation of existing macroscopic criteria

5.1. Comparison with exact results for spherical voids

Table 1 gives the values obtained with the 3D and axisymmetric codes for isotropic loadings (i.e. Q 2 = 0) in tension
and compression, together with the exact values given in [24] for spherical cavities. All these runs were performed using
two processors. The axisymmetric code was run on an Apple Mac Book Pro with a 2.8 GHz Core 2 Duo and 8 gigabytes of
RAM. The final mesh of 10,404 triangles gives a conic problem with a constraint matrix involving 280,503 rows, 374,393
columns, and 93,432 Lorentz cones; the problem is solved in less than one minute by the 32 bits 5th release of mosek. The
3D static and kinematic tests were made on a recent Apple Mac Pro with 32 Gbytes of RAM, each run needing about 2000
to 4500 s.

It can be noted first that the 3D bounds are in general close to the exact values, but in a lesser extent for φ = 30◦ and
compressive loadings. The axisymmetric code appears more efficient than the 3D kinematic one; this performance is mainly
due to the quadratic variation of the velocity field and the very smaller size of the final problem for a given polygonal
approximation of the matrix boundary. It can be also noted that the linearization of the velocity discontinuities, in order to
preserve the kinematic character of the method, has not significatively decreased the performance in terms of upper bound
results.

5.2. Application to the Drucker–Prager material with oblate voids

In all the tests, the porosity is taken as 0.1. We consider first the case of the 0.2 aspect factor a1/b1 where both 3D
and axisymmetric kinematic models are used, together with the 3D static codes for the lower bound approach. From the
comments about these results, the case of the aspect factor 0.5 is afterwards investigated by using the axisymmetric and
the static code.

5.2.1. Case a1/b1 = 0.2 and discussion
In Figs. 3–5 are shown the results for a spheroidal cavity having an aspect ratio a/b = 0.2. A porosity f = 0.1 and

friction angles φ = 10, 20 and 30 degrees are considered for the Drucker–Prager matrix. Recalling that this problem has
not been studied in the literature up to now, we present the axisymmetric results to be compared to the 3D static and
kinematic ones. It should be useful to remember that the present axisymmetric mixed bounds are also strict upper bounds
when considering the general 3D problem. First of all, it can be seen that the kinematic and static bounds always remain
correctly ordered; note that it was already the case even when the bounds were very close, as in Table 1 corresponding to
spherical cavities. For the small values of the friction angle, the macroscopic plasticity criterion appears accurately defined.
For friction angle values greater than 20◦ , the axisymmetric results noticeably reduce the gap between the 3D bounds for
high compressive loadings. From the features of the axisymmetric code that allowed also a very refined mesh, it seems that
the next step should be devoted to use more refined static meshes, however without changing the linear variation of the
element stresses which are necessary to obtain rigorous lower bounds.

Comments. A question arises from the previous kinematic results: is it possible to obtain the mixed axisymmetric results
by sufficiently increasing the mesh refinement of the 3D mixed approach?

In Table 2, a comparison between the two kinematic codes has been conducted until the size limit enhanced by mosek,
on the case φ = 30 and Q 2 = 0 where the bounds are less close. It can be seen that increasing – regardless of the compu-
tation time – the size of the 3D-mesh does not induce a convergence to the axisymmetric value.

However, the 3D approach does not lose all its interest since it allows non-axisymmetric loading. Indeed, the axisym-
metric hypothesis removes a part of the performance added by the 3D transverse discontinuities, but not enough to obtain
better results with the 3D model, even by disproportionately refining the FEM mesh.
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Fig. 3. (Color online.) Present results – Drucker–Prager matrix – f = 0.1; a1/b1 = 0.2 – φ = 10◦; σ0 = 1.

Fig. 4. (Color online.) Present results – Drucker–Prager matrix – f = 0.1; a1/b1 = 0.2 – φ = 20◦; σ0 = 1.

Fig. 5. (Color online.) Present results – Drucker–Prager matrix – f = 0.1; a1/b1 = 0.2 – φ = 30◦; σ0 = 1.
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Table 2
Comparison of axisymmetric and 3D methods – 8 core used – Drucker–Prager matrix – oblate void – f = 0.1; a1/b1 = 0.2; φ = 30◦ – Q 2 = 0; σ0 = 1.

ns–nρ 17–17 21–21 24–24 26–26 51–51

3D code tetrahedrons 68,782 129,654 193,536 246,064 1,857,114
Min Q 1 −9.8626 −9.6971 −9.6153 −9.5645 –
CPU time 2500 s 9207 s 12,202 s 18,766 s –

Axi. code triangles 1156 1764 2304 2704 10,404
Min Q 1 −9.9995 −9.7584 −9.6426 −9.5870 −9.3022
CPU time <2 s 2 s 5 s 6 s 18 s

Fig. 6. (Color online.) Present results – Drucker–Prager matrix – f = 0.1; a1/b1 = 0.5 – φ = 10◦; σ0 = 1.

Fig. 7. (Color online.) Present results – Drucker–Prager matrix – f = 0.1; a1/b1 = 0.5 – φ = 20◦; σ0 = 1.

5.2.2. Case a1/b1 = 0.5
From the above-mentioned comments, we give here the same tests for the aspect factor 0.5 and the three previous

values of the friction angle, using only the axisymmetric and the 3D static codes. (See Figs. 6–8.) In this case, as expected
but not in this extent, the bounds appear noticeably closer than in the previous aspect factor study. In all the tests, even
when the bounds are almost coincident, they are here also in the good order, all results being controlled by a systematic
post-analysis of the optimal solution.

6. Conclusion

The main purpose of the present paper was to provide numerical, but rigorous bounds to the macroscopic criterion of
a “porous Drucker–Prager material” with oblate voids, a problem not studied in the literature up to now, at least to our
knowledge. These bounds, not only allow us to understand and characterize the macroscopic plastic properties of the above
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Fig. 8. (Color online.) Present results – Drucker–Prager matrix – f = 0.1; a1/b1 = 0.5 – φ = 30◦; σ0 = 1.

class of materials, but are also expected to serve as reference results for forthcoming theoretical investigations. To improve
the results obtained with a first series of tests with 3D-codes specifically adapted, an original mixed axisymmetric approach
has been elaborated. The resulting code has allowed a noticeable improvement of the kinematic bounds by using specific
quadratic velocity fields together with FEM refinements of the problem unreachable with the 3D version. After a validation
in the spherical case where the exact solution is known, the graphs relative to the macroscopic plasticity criterion are given
for three usual values of the friction angle and two values of the cavity aspect factor; they highlight, among others, the
evolution of the plasticity criterion depending on the friction angle. Based on the present numerical results, it appears that
the next step should be a decomposition of the static approach in order to improve now the lower bound approach.
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