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The geometric complexity of some heterogeneous materials (for example, fibers distributed 
randomly or deterministically with high conductivity [5,2]) can make it difficult to model 
their macroscopic behavior. In some cases, it is convenient to simplify the geometry by 
cutting it into “simple” elements, so that the first study is performed only on these items. 
The difficulties arise from the reconstruction of the material. In such study, we describe a 
method for reconstructing a material cut into thin plates having undergone a size reduction 
(see [6] and [5], for example). The method used is of variational summation limit.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

La complexité géométrique de certains matériaux hétèrogènes (inclusions distribuées 
aléatoirement dans différentes directions (voir, par exemple, [5,2])) rend difficile la 
modélisation du comportement à l’échelle macroscopique. Dans certains cas, il est 
commode de simplifier la géométrie par des éléments plus « simples », afin de ne travailler 
uniquement que sur ces éléments. La difficulté est alors déplacée vers la reconstruction 
du modèle 3D. Dans cette étude, nous décrivons une méthode de reconstruction 3D d’un 
matériau coupé en fines tranches ayant subi une réduction de dimension (voir [6] et [5], 
par exemple). Cette méthode constitue un passage à la limite par sommation variationnelle.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Geometric complexities of some heterogeneous materials, especially in the case of random inclusions, can make it diffi-
cult to model its macroscopic behavior. In some cases, it is convenient to simplify the geometry by cutting it into n simpler 
elements, and when n goes to infinity our estimate should be close to the physical reality. These elements will be considered 
“almost” independent. Although the issue of the connection between the elements becomes important, it is not discussed 
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Fig. 1. (Color online.) Illustration of our strategy: step (1), we consider only one slice of material; step (2) we obtain by Γ -convergence a 2D equivalent 
model; step (3) we superpose all 2D models; step (4) presents the passage to the limit of the number plate by Γ -convergence (variational limit summation).

Fig. 2. (Color online.) Illustration of our strategy: step (a) gives a continuous training by part, step (b) is the passage to the limit of the number of plates.

in this study. Our work only addresses the question of reconstruction of the overall problem after studying each element 
in a simplified setting (Fig. 1). The difficulty arises when reconstructing the material, i.e. we expect that the final result is 
close to the original model. In this work, we describe a method for reconstructing a material cut into thin plates having 
undergone a reduction of dimension. The method used is a variational limit summation.

For example, Texsol strategy modeling consists in cutting along x3 our thin structure dependent on a small parameter ε. 
For sufficiently small ε, we agree to consider the vertical fibers in each plate in such a sense that we take a leadership in 
guiding the wire network. Our initial problem is decomposed into n-type plate models to which we previously wanted to 
give a two-dimensional formulation. A modification made to this approach allows us to model the macroscopic behavior of 
porous media.

For the moment, this model deals with various steady-state situations, such as, for example, heat diffusion and electro-
static states. This work aims to present an original strategy for modeling complex materials. It must be complemented by 
future work. For illustration purposes, one can consider the material displayed in Fig. 1.

For more details on step (2), the reader is referred to [2,5]. Our work is only concerned with the question of the 
reconstruction of the overall problem, after studying each simplified element. In the initial material, the fibers must be 
moderately gilded, and the plate direction must be privileged. But the challenge here is to reconstruct the material with 
adequate modeling error.

We present a variational method for the reconstruction of a volumetric model from a surface model obtained, for exam-
ple, via size reduction. Note that the original material geometry is defined as the cube O := Ô × (0, 1). We consider five 
plates from a material whose dimension has been reduced (Fig. 2). This cutting can be justified for some cases of material 
with complex geometry (see [1] for example).

To reconstruct a volumic model by “gluing” n two-dimensional problems obtained by size reduction, we consider the 
discrete energy:
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where ψ0(
k
n , .) is an energy density of plate k

n depending on ∇u; this energy depends on x3 because it is obtained by 
reduction of dimension. And the set Step3,n(O) represents the following set of functions defined by several parts:
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u ∈ Step3,n(O) ⇔ u(x) =
n−1∑
k=0

u
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x̂,

k
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)
1[ k

n , k+1
n [(x3) with (x̂, x3) ∈ Ô × (0,1)

Remark 1. In order to keep a general framework in our study, we consider a volume loading between each pair of plates, 
assuming that in most cases the load is constant.

Remark 2. The connection between the plates can be taken into account for example by boundary condition (see [6]), which 
in some cases does not add any difficulty to the method.

Here, we just constructed a discrete macroscopic energy but, to obtain a variational limit model, we must first make a 
regularization of our energy. In Fig. 2, step (a), we obtain a multiphase material, and this material will be homogenized using 
a variational approach. To obtain a continuous formulation, it is convenient to construct a “continuous by part” expression 
of the energy En like a Riemann sum, illustrated by (a) in Fig. 1. Indeed,

ψ̃n
0 (x3, s) := ψ0
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and L̃n(x) := L
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[
so the energy En becomes:

En(u) =
∫
O

ψ̃n
0 (x3,∇u)dx −

∫
O

L̃n(x).u(x)dx if u ∈ Step3,n(O)

We assume that s �→ ψ0(., s) is a convex function and satisfies the Lipschitz property∣∣ψ0(x3, s) − ψ0
(
x3, s′)∣∣ ≤ �

∣∣s − s′∣∣(1 + |s|p−1 + ∣∣s′∣∣p−1)
(1)

for all (s, s′) ∈ R
3 × R

3 where � is a positive constant independent of x3. It is easy to verify that ψ̃n
0 satisfies the standard 

growth condition of order p > 1 uniformly in x3, i.e that there exist two positives constants α and β independent of n, such 
that for all s of R3

α|s|p ≤ ψ̃n
0 (x3, s) ≤ β

(
1 + |s|p)

(2)

for all x3 fixed in (0, 1).

2. Convergence of the discrete problem

To find a limit formulation of this problem, we need to make a second regularization for the potential energy in each 
plate. For any bounded function h : R →R, we introduce its lower and upper λ-Lipschitz approximations.

Lemma 2.1. Assume that h :R →R is bounded, upper semi-continuous and λ > 0. The regularization hλ is

hλ(x) = sup
t∈R

{
h(t) − λ|x − t|}

and verifies:

i) |hλ(x) − hλ(x′)| ≤ λ|x − x′| for all x and all x′ in R;
ii) h ≤ hλ and (hλ)λ>0 decreasing;

iii) limλ→+∞ hλ = h.

Let h :R →R be a bounded function and lower semi-continuous, then Baire’s regularization hλ defined by

hλ(x) = inf
t∈R

{
h(t) + λ|x − t|}

verifies the following properties:

i′) |hλ(x) − hλ(x′)| ≤ λ|x − x′| for all x and all x′ in R;
ii′) h ≥ hλ and (hλ)λ>0 increasing;

iii′) limλ→+∞ hλ = h.

The proofs of i), ii), iii) are done in [1]: Theorem 9.2.1 (as well as i′), ii′), iii′) with h̃ = −h).
Thereafter, we apply this lemma with function h = ψ0(., s). The following result allows us to avoid any trouble with the 

continuity of the strain tensor according to x3. Indeed we have the following Lusin’s results, compensating for the lack of 
continuity of x3 �→ ψ0(., x3). For all s ∈R

3 fixed, the function ψ0(., s) : (0, 1) → R is assumed to be upper semi-continuous.
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Lemma 2.2. For any γ > 0, there exists a compact subset Kγ ⊂ [0, 1] verifying |[0, 1]\Kγ | < γ , such that for all s ∈ R
3 , restriction 

ψ0(., s) on Kγ is continuous.

This result gives us the possibility to have an estimate of the energy limit in cases where the energies are continuous in 
almost all the plates. We will first check the compactness of the sequences of finite energy, then study the variational limit 
of this energy.

2.1. Compactness lemma

Lemma 2.3. Let (un)n∈N be a sequence of set Step3,n(O) such that supn∈N En < +∞. Then, there exists a subsequence un, and 
u ∈ Lp(O) such that: un ⇀ u in Lp(O).

The classical proof tends to show ‖∇u‖Lp(O) < ∞. For more details, see the similar case in [4], and the complete proof 
using Korn inequality.

2.2. The volumic limit problem

In order to obtain a volumic limit of our total energy, we want to use the Γ -convergence theory, see [3] and [4], for 
example.

Theorem 2.4. This sequence of energy functionals (En)n∈N , Γ -converges in the weak sense to E0 in Lp(O) defined by

E0(u) :=
∫
O

ψ0(x3,∇u)dx −
∫
O

L(x)·u(x)dx

2.2.1. Sketch of the proof
By definition of Γ -convergence, we must establish two assertions for any displacement field u ∈ L p(O):

i) for any sequence (un)n∈N in Step3,n(O) verifying un ⇀ u, we have lim infn→∞ En(un) ≥ E0(u);
ii) there exists a sequence (un)n∈N in Step3,n(O) such that un ⇀ u and lim supn→∞ En(un) ≤ E0(u).

Proof of i). For any λ > 0 and s ∈R
3 fixed, we introduce the lower Baire’s regularization

f0,λ(x3, s) := inf
t∈R

[
ψ0(t, s) + λ|x3 − t|]

Let the compact set Kγ be included in [0, 1] and obtained by Lemma 2.2. So, for all s fixed, the function x3 �→ ψ0(x3, s)
is continuous in Kγ , and verifies all the hypotheses of Lemma 2.1.

Recall that ψ0,λ is λ-Lipchitz i.e., for all x3 and x′
3 of Kγ ,∣∣ f0,λ(x3, s) − f0,λ

(
x′

3, s
)∣∣ ≤ λ

∣∣x3 − x′
3

∣∣
and that for all x3 ∈ Kγ ,the function ψ0(., s) is lower semi-continuous; this is why we have

lim
λ→+∞ψ0,λ(x3, s) = f0(x3, s) (3)

More precisely, (ψ0,λ)λ is a strictly increasing sequence converging to ψ when λ → +∞ for all x3 ∈ Kγ , where ψ0 is lower 
semi-continuous.

Furthermore, it is easy to see:

lim inf
n→+∞ En(un) ≥ lim inf

n→+∞ Eλ,n(un) (4)

and limn→+∞
∫
O un(x)·̃Ln(x) dx = ∫

O u(x)·̃L(x) dx.
Now, we can estimate the limit:

lim inf
n→+∞ Eλ,n(un) = lim inf
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∫
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O
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By the Lipchitz property of ψn
0,λ , we have:

∫
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∣∣ dx =
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(6)

Consequently (6), (4) and the lower semi-continuity of u �→ ∫
O ψ0,λ(x3, ∇un) dx (note that s �→ ψ0(x3, s) is convex) give:

lim inf
n→+∞ En(un) ≥ lim inf

n→+∞ Eλ,n(un) ≥ lim inf
n→+∞

∫
O

ψ0,λ(x3,∇un)dx dx −
∫
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u(x).̃L(x)dx

≥
∫
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ψ0,λ(x3,∇u)dx dx −
∫
O

u(x)·̃L(x)dx

When λ goes to +∞, by (3) and the monotone convergence theorem, we get:

lim inf
n→+∞ En(un) ≥

∫
Ô×Kγ

ψ0
(
x3,∇(u)

)
dx dx −

∫
Ô

u(x)·̃L(x)dx
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∫
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ψ0(x3,∇u)dx dx −
∫
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ψ0(x3,∇u)dx dx −

∫
Ô
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The theorem is proven when γ → 0. �
Proof of ii). This part of the proof is the most difficult, as it builds a proper method to underestimate the energy limit.

For all λ > 0 and s ∈R
3 fixed, we define the upper regularization ψλ

0 (., s)

ψλ
0 (x3, s) := sup

t∈R
[
ψ0(t, s) − λ|x3 − t|].

We have the following inequality:

lim sup
n→+∞

Eλ
n(un) ≥ lim sup

n→+∞
En(un)

For any displacement field u ∈ Lp(O), there exists a sequence (un)n∈N of Step3,n(O) with un ⇀ u and

lim sup
n→∞

Eλ
n(un) ≤ Eλ

0(u)
λ→+∞−→ E0(u)

by Lebesgue’s dominated convergence theorem. The proof is divided in twosteps.

Step 1. Let a field u ∈ Cc(O), we construct (un)n∈N that converges weakly to u in Lp(O) and limn→∞ Eλ
n(un) = Eλ

0(u).
Indeed, we define the step function

ũn(x̂, x3) := 1[ k
n , k+1

n [u
(

x̂,
k

n

)
clearly ̃un ∈ Step3,n(O) and ̃un → u in Lp(O) when n goes to +∞.

By continuity of ψλ
0 and of the strain tensor, (6), (1) and with same decomposition strategy as in (5)

lim
n→∞ Eλ

n (̃un) = lim
n→∞

[∫
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ψ̃
n,λ
0

(
x3,∇ũn(x)

)
dx −

∫
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ũn(x).̃Ln(x)dx

]

= lim
n→∞

∫
O
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0

(
x3,∇ũn(x)

)
dx − lim

n→∞

∫
Ô

ũn(x).̃Ln(x)dx = Eλ
0(u)

Step 2. (End of proof.) Let u ∈ Lp(O) be fixed. Then there exists (uδ)δ∈N of Cc(O) that converges strongly to u in Lp(O)

i.e.
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lim
δ→∞

∫
O

ψ̃
n,λ
0

(
x3,∇uδ(x)

)
dx =

∫
O

ψλ
0

(
x3,∇u(x)

)
dx

By Step 1 and the previous equality, we construct a subsequence un,δ ∈ Step3,n(O) that converges strongly to uδ if 
n → +∞ and limn→+∞ Eλ

n(un,δ) = Eλ
0(uδ). So limδ→∞ limn→∞ Eλ

n(un,δ) = Eλ
0(u).

A standard diagonalization argument gives the function n �→ δ(n) such that

un := un,δ(n) → u in Lp(O) and lim
n→∞ Eλ

n(un) = Eλ
0(u)

We conclude this step and proof with

lim sup
n→∞

En(un) ≤ lim sup
n→∞

Eλ
n(un) = Eλ

0(u)
λ→+∞−→ E0(u) �

3. Conclusion

Thanks to the variational properties of Γ -convergence [3], we deduce the following corollary, corresponding to our limit 
problem.

Corollary 3.1. Let ūn verify Ēn(un) = min{En(u) : u ∈ Step3,n(O)} and s �→ ψ0(x3, s) be a function strictly convex for almost every 
x3 ∈ (0, 1). Then, there exists a subsequence (ūn)n∈N converging weakly to ū in Lp(O), the minimizer of E0, so ū is a solution of

(P) ∇ū(x) = ∂ψ∗
0

(
x3, L(x)

)
, for almost every x ∈ O

where ∂ψ∗
0 is the sub-differential of the Fenchel transform.

Remark 3. If s �→ ψ0(x3, s) is not convex, the solution is not unique; therefore the equality in problem (P) becomes ‘∈’.

We have presented a technique for reconstructing a three-dimensional model obtained as a variational summation from 
a two-dimensional problem. From the mechanical point of view, this variational summation limit enables us to keep a 
property gradient along a privileged direction. But the main limitation is that the inclination of the fibers should be limited 
and that this work was done in the scalar case. However, the preferred orientation can be different from one plate to 
another. We developed this reconstruction in the hyperelastic case with some modification. Moreover, the loading is very 
limited in such sense that only the volumic loading can be used. Of course, this is because of the cut materials. This strategy 
can certainly be adapted to other types of reconstruction. A future study will be aimed at considering a field obtained by 
tomography and defining a three-dimensional behavior.
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