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The vibration analysis of a micro-pump diaphragm is presented. A piezoelectric micro-
pump is studied. For this purpose, a dynamic model of the micro-pump is derived. The 
micro-pump diaphragm is modeled as circular double membranes, a piezoelectric one as 
actuator and a silicon one for representing the membrane for pumping action. The damping 
effect of the fluid is introduced into the equations. Vibration analysis is established 
by explicitly solving the dynamic model. The natural frequencies and mode shapes are 
calculated. The orthogonality conditions of the system are discussed. To verify the results, 
the finite-element micro-pump model is developed in ANSYS software package. The results 
show that the two methods are well comparable.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The emergence of micro-fabrication in the last decade has introduced new ways to miniaturize many devices. One of the 
important uses of this technology is in drug-delivery systems. Some diseases respond differently according to the drug dose 
that is introduced into the human body. Therefore, the needs for analysing and controlling these systems are inevitable. 
Micro-pumps are an essential part in drug delivery systems for this purpose. Designing a micro-pump is a challenging 
task due to its important role. Nan-Chyuan Tsai [1] offers a fine review of different types of micro-pumps and of their 
mechanisms.

Typically, a piezoelectric micro-pump consists of a silicon membrane (S-membrane) which is actuated with a piezo-
electric membrane (P-membrane) connected to it. By actuating the piezoelectric membrane in the resonant frequency, the 
highest efficiency can be achieved. Fig. 1 shows the schematic for a piezoelectric micro-pump.

Researchers have paid more attention to piezoelectric micro-pumps among all other types due to their controllability and 
reliability. Bart [2] worked on electrohydrodynamic (EHD) micro-pumps. This type of pumping uses the interaction of electric 
field and charges in the fluid to create the force for moving the fluid. Smits [3] modeled a piezoelectric micro-pump that 
was working peristaltically and had three valves. A fixed-valve micro-pump was designed and fabricated by Forster et al. [4]. 
Gerlach [5] designed and implemented a dynamic micro-pump with nozzle and diffuser as the inlet and outlet of the pump. 
He studied the dynamics of a fluid in the pump, and a static model for the membrane was derived. Olsson [6] fabricated 
a valveless micro-pump with double chamber. Das et al. [7] designed a control mechanism for controlling the flow of the 
micro-pump by modulating the electrostatic force. Johari [8] has designed a valveless piezoelectric micro-pump. However, 
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Fig. 1. Schematic view of a piezoelectric micro-pump [16].

Fig. 2. Schematic view of the membrane in micro-pump.

the operation of this micro-pump has not yet been investigated theoretically in full detail. A software simulation with no 
theory has been reported in [9]. In lieu of all the works done on micro-pumps, it still remains to see the comprehensive 
model of the micro-pump for detailed analysis design purposes.

Ayela [10] modeled two membranes with a surrounding fluid. However, the two membranes were assumed as one 
with averaged mass. Energy methods and assumed mode shape were used to solve the problem. Cho et al. [11] modeled a 
two-layer membrane, one with piezoelectric material. Coupling has also been investigated, while a lumped parameter model 
is used to find the effect of the electromechanical coupling coefficient. Yih [12] used the pressure change in the micro-pump 
to derive the equations. Pan [13] modeled a micro-pump as only one membrane and added the effect of the piezoelectric 
membrane by importing an excitation force into the equation, and using thin plate theory to solve the problem. Oniszczuk 
[14] solved the problem of free and forced vibrations of a rectangular compound membrane. Noga [15] found the solution 
for the free transverse of a circular compound membrane. In both articles, the damping effect had been neglected.

Here, the piezoelectric micro-pump has been modeled as a two-membrane one, the membranes being elastically con-
nected to each other. The damping effect of the fluid is added to the formulation as a viscose effect, related to the velocity 
of the membrane. An analytical solution has been attained for this model. Natural frequencies and mode shapes were 
calculated. Then orthogonality conditions have been discussed.

2. Dynamic model of the system

Fig. 2 shows the schematics of a circular double-membrane system. The membranes are assumed to be homogenous and 
are connected through a linear, massless elastic layer. The fluid has been assumed as a damping foundation beneath the 
silicon layer (not shown in this figure).

In this figure, r1 is the radius of the membranes; S1 and S2 are the uniform constant tensions per unit length applied 
on the first and the second membrane, respectively, and w is the transverse of the membranes.

The system of equations for the system shown in Fig. 2 can be written as follows:{
m1 ẅ1 − S1�w1 + k(w1 − w2) = f1

m2 ẅ2 − S2�w2 + k(w2 − w1) + cẇ2 = f2
(1)

where w is a function of r, ϕ and t in polar coordinates. k is the stiffness coefficient of the elastic layer (elastic foundation of 
Winkler type between P- and S-membranes), and c is the damping coefficient of the fluid surrounding the second (silicon) 
membrane.
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Also:

mi = ρihi (2)

∇wi = ∂2 wi

∂r2
+ 1

r

∂ wi

∂r
+ 1

r2

∂2 wi

∂ϕ2
(3)

where ρ is the membrane density and h is the thickness of the membranes. It is assumed that each membrane is thin, 
homogeneous and perfectly elastic, and has constant thickness.

The membranes are fixed at their edges and the boundary, initial, and periodicity conditions are:

wi(r1,ϕ, t) = 0 (4)

wi(0,ϕ, t) < ∞ (5)

wi(r,ϕ, t) = wi(r,ϕ + 2π, t) (6)

wi(r,ϕ,0) = wi0 (7)

∂ wi

∂t

∣∣∣∣
(r,ϕ,0)

= vi0 (8)

3. Solving the equations of motion

To find the natural frequency of the system, the homogenous part of the dynamic model of Eq. (1) is solved.
Using separation methods, the general solution of Eq. (1) will be as follows:

wi(r,ϕ, t) = W i(r,ϕ)T (t) (9)

Based on the physical properties of the system, T (t) can be written as:

T (t) = Aejωt (10)

where ω is the natural frequency of the system. Substituting (9) and (10) into (1) and simplifying the result, one can achieve 
the equations below:{

−m1(ω
2W1(r,ϕ)T (t)) − S1(T (t)�W1) + k(T (t)(W1 − W2)) = 0

−m2(ω
2W2(r,ϕ)T (t)) − S2(T (t)�W2) + k(T (t)(W2 − W1)) + jcωW2T (t) = 0

(11)

Omitting T (t) in Eq. (11) leads to:{
S1�W1 + (−k + m1ω

2)W1 + kW2 = 0

S2�W2 + (−k + m2ω
2 − jcω)W2 + kW1 = 0

(12)

By eliminating W2 from Eq. (11), Eq. (12) will be attained:(∇ + k2
1

)(∇ + k2
2

)
W1 = 0 (13)

where

k2
1,2 = 1

2S1 S2

[−(m2 S1 + m1 S2)ω
2 + (S2 + S1)k + jcωS1

± {−c2ω2 S2
1 + 2S2 S1k2 + S2

2m2
1ω

4 + S2
1m2

2ω
4 + S2

2k2 + S2
1k2

− 2m2ω
2 S2

1k − 2jm2ω
3 S2

1c + 2S2
2m1ω

2k + 2jkS2
1cω − 2m2m1 S1 S2ω

4

+ 2m2 S1 S2kω2 + 2m1 S1 S2kω2 + 2jS1 S2m1cω3 − 2jS1 S2kcω
}1/2]

(14)

Again by using the technique of separation of variables, the solution of Eq. (13) is assumed:

W1(r,ϕ) = R1(r)Φ(ϕ) (15)

Substituting (14) into an equation of type (13):(∇ + k2
i

)
W1 = 0 (16)

The following results will be achieved:
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r2 R ′′
1 + rR ′

1 − (
m2 − (kir)

2)R1 = 0 (17)

Φ ′′ + m2Φ = 0 (18)

where m = 0, 1, 2, . . . and i = 1, 2.
The solution of Eqs. (17) and (18) is as follows:

R1im(r) = Pim Jm(kir) + Q imYm(kir) (19)

Φm(ϕ) = Pm sin(mϕ) + Q m cos(mϕ) (20)

where J (.) and Y (.) are the Bessel functions of the first and second kind, respectively.
Thus the mode shape function W1 can be written as follows:

W1m(r,ϕ) = R1m(r)Φm(ϕ) = Φm(ϕ)

2∑
i=1

R1im(r)

= [
Pm sin(mϕ) + Q m cos(mϕ)

] 2∑
i=1

[
Pim Jm(kir) + Q imYm(kir)

]
(21)

By doing the same for W2, and using Eq. (11):

W2m(r,ϕ) = R2m(r)Φm(ϕ) = Φm(ϕ)

2∑
i=1

R2im(r)

= [
Pm sin(mϕ) + Q m cos(mϕ)

] 2∑
i=1

di
[

Pim Jm(kir) + Q imYm(kir)
]

(22)

where di is:

di = 1

k

(
m1ω

2 − S1� + k
)

(23)

or

di = 1

k

(
m1ω

2 + S1k2
i + k

)
(24)

Now, the boundary conditions can be applied to the solutions:

Ri(r) = 0 (25a)

Ri(r) < ∞ (25b)

Φ(ϕ) = Φ(ϕ + 2π) (25c)

By applying (25b), it can be shown that:

Q im = 0, i = 1,2 (26)

Hence, the following equations can be derived:{
P1m Jm(k1r1) + P2m Jm(k2r1) = 0

d1 P1m Jm(k1r1) + d2 P2m Jm(k2r1) = 0
(27)

or in matrix form:[
Jm(k1r1) Jm(k2r1)

d1 Jm(k1r1) d2 Jm(k2r1)

]
×

[
P1m

P2m

]
=

[
0
0

]
(28)

In order to have a non-zero solution for coefficients P1m and P2m in Eq. (28), the following condition should be satisfied:

(d1 − d2) Jm(k1r1) Jm(k2r1) = 0 (29)

It can be seen that k1 = k2 = kmn . So, the characteristic equation is as follows:

Jm(kmnr1) = 0 (30)
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where n denotes the n-th root of the Bessel function and n = 1, 2, . . . .
Solving Eq. (30) for kmn and using Eq. (14) the frequency equation can be achieved. We use MAPLE software for this 

purpose.
The mode shapes of the first membrane can be expressed by the following equations:

W10n(r,ϕ) = P10n J0(kmnr) (31)

W1mnc(r,ϕ) = P1mnc Jm(kmnr) cos(nϕ) (32)

W1mns(r,ϕ) = P1mns Jm(kmnr) sin(nϕ) (33)

And the mode shapes of the second membrane will be:

W20n(r,ϕ) = di P10n J0(kmnr) (34)

W2mnc(r,ϕ) = di P1mnc Jm(kmnr) cos(nϕ) (35)

W2mns(r,ϕ) = di P1mns Jm(kmnr) sin(nϕ) (36)

for m, n = 1, 2, . . . .
The orthogonality conditions write:

r1∫
0

2π∫
0

ρW1mn(r,ϕ)W1sl(r,ϕ)rdrdϕ =
r1∫

0

2π∫
0

ρW2mn(r,ϕ)W2sl(r,ϕ)rdrdϕ

= ρ

2π∫
0

sin(mϕ) sin(sϕ)dϕ ×
r1∫

0

Jm(kmnr) J s(kslr)rdr

= ρ

2π∫
0

cos(mϕ) cos(sϕ)dϕ ×
r1∫

0

Jm(kmnr) J s(kslr)rdr

=
{

0, m �= s or n �= l
P 2

mnc or mns, m = s and n = l
(37)

where P 2
mn is derived from normalization of the mode shapes, that is:

2π∫
0

r1∫
0

ρW1mnc or 1mns(r,ϕ)drdϕ (38)

Hence:

P 2
mnc = P 2

mns = P 2
mn = 2

πρr2
1 J 2

m+1(kmnr1)
(39)

and

P 2
10n = 1

πρr2
1 J 2

1(k0nr1)
(40)

4. Finite-element modeling

The discrete models of the system under investigation are formulated using the finite element technique (ANSYS code). 
To find the first natural frequency and natural mode shape, the block Lanczos method is employed. The essential problem 
of this section is to build the FE model of the elastic and damping foundations.

The elastic foundation is modeled by a finite number of parallel massless springs. The stiffness modulus ks of each spring 
can be obtained from Eq. (41) [15]:

ks = kρo

b
(41)

where ρo is the area of the membrane and b is the number of springs.
The spring-damper (ANSYS element combin) element, which is defined by two nodes, is used to realize the elastic layer. 

In this case, the damping capability of the elements is neglected.
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Fig. 3. Micro-pump model in ANSYS.

Fig. 4. Detailed view of the model. From top to bottom: piezoelectric layer, elastic layer, silicon layer and damping foundation as the fluid.

In order to model the damping effect of the fluid on silicon membrane in ANSYS, the damping foundation is modeled by 
a finite number of parallel massless dampers. The viscous damping coefficient csingle of each damper can be obtained from 
the relation:

csingle = cρo

b
(42)

where ρo is the area of the membrane and b is the number of the dampers.
Again a spring-damper (combined) element is used to model the damping foundation. But in this case, the spring ca-

pability of element i is neglected. The four-node quadrilateral (shell63 & solid65) element is used to model the membrane. 
The boundary conditions are embedded as follows. All nodes lying on the edges of the membranes are simply supported 
with a possibility to slide freely in the radial direction.

The application of the constant tension is realized as each node lying on the outer edge is imposed by a concentrated 
tensile force in the radial direction.

The prepared model is consist of 2400 combined elements for the case of elastic foundation and 2400 combined elements 
for the one of damping foundation.

Figs. 3 and 4 show the micro-pump model in the ANSYS environment.
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Table 1
Material properties of the micro-pump [16].

Silicon nitride (Si3N4)
Mass density 2329 kg/mm3

Modulus of elasticity 1.7 × 1011 N/mm2

Poisson’s ratio 0.3

Lead zirconate titanate (PZT)
Mass density 7500 kg/mm3

Shear modulus 9.5 × 109 N/mm2

Poisson’s ratio 0.31

Table 2
Parameters of the model.

S1 [ N
m ] S2 [ N

m ] k [ N
m3 ] c [ kg

s ]
12.66 12.66 1 × 105 550

Fig. 5. First mode shape of membrane W201.

5. Results

Some results are obtained using the simulation of a micro-pump with a radius of 2.5 mm and the thickness of 70 μm. 
The properties of the piezoelectric material and silicon are shown in Table 1.

Table 2 shows the values of tension forces on the edge of the membrane, the stiffness coefficient of the elastic layer and 
the damping coefficient of the fluid.

Since for a micro-pump only the first shape mode W201 and the natural frequency ω01 are needed, the parameters are 
achieved just for these values.

Using Eqs. (30) and (14), ω01 will have four possible values. Among these, two are too small and one is too large. So the 
only acceptable value is 3209.235 Hz.

Fig. 5 shows the first mode shape of membrane W201.
For finite-element analysis the parameters are the same as the theoretical ones.
The result is shown in Fig. 6.
The functionality of the micro-pump is based on the first mode of the system. So it would be enough to compare just 

the first natural frequencies. The first natural frequency is ω01 = 3053.39 Hz.
The absolute error will be obtained from the following equation:

ε01 = ωf
01 − ωc

01

ωc
01

× 100 (43)

where ωf
01 and ωc

01 are the first natural frequency inferred from FE analysis and the theoretical solution, respectively. In 
this article, the absolute error will be:

ε01 = 3053.39 − 3209.235

3209.235
× 100 = −4.85 (44)

Therefore, the absolute error is about 4%, which is acceptable.
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Fig. 6. ANSYS result for the micro-pump.

Comparing the results from ANSYS software and the explicit solution of the governing equations justifies our model of 
the micro-pump’s diaphragm.

6. Conclusion

In this paper, a piezoelectric micro-pump diaphragm is modeled and analyzed. For this purpose, the micro-pump di-
aphragm is assumed to be a double-membrane one, consisting of piezoelectric and silicon materials that are connected by a 
massless, elastic, and linear layer. The damping effect of the fluid surrounding the silicon membrane is introduced into the 
equations. The systems of equations are solved analytically and the results applied in the case of a typical micro-pump. Nat-
ural frequency and mode shapes are derived and orthogonality conditions are discussed. To verify the model, finite-element 
analysis is developed. Since, for the functioning of the micro-pump, the first mode is required; only the first natural fre-
quency is calculated and used for discussion and comparison. Although that, higher mode shapes are also attained. The 
results show a good compliance between the solution issued from theory and that from FE. The overall results show a good 
correspondence with the model developed by finite-element analysis.
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