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1. Introduction

One of the most remarkable achievements in recent nonequilibrium statistical mechanics is to demonstrate the existence
of some nonequilibrium identities such as the generalized Green–Kubo relation [1,2], various fluctuation theorems [3–7] and
the Jarzynski equality [8] as well as the mutual relationship [9]. These identities are exact and reproduce the conventional
Green–Kubo formula, the second law of thermodynamics and Onsager’s reciprocal relation in specific limits. Therefore, these
identities are regarded as fundamental relations in nonequilibrium statistical mechanics.

Although it has been believed that these identities are supported by the local time-reversal symmetry or the detailed
balance condition, some experiments suggest the existence of fluctuation theorem or related equations even in granular
systems which do not have any time-reversal symmetry [10–15], though there exists a counter argument [16]. It is remark-
able that Puglisi and his coworkers [17–20] clarified that granular fluids do not hold the conventional fluctuation theorem
but have only the second type fluctuation theorem by Evans and Searles [21]. As long as the author’s knowledge, how-
ever, there is only a paper by Chong et al. which has proven the existence of both the generalized Green–Kubo relation
and the integral fluctuation theorem [7] for a granular system under a steady plane shear [11]. They also developed the
representation of a nonequilibrium steady-state distribution function [22] and the liquid theory for sheared dense granular
systems [23]. Recently, Hayakawa and Otsuki [24] extended their previous formulation to discuss nonequilibrium identities
around a nonequilibrium steady state, and also demonstrate their validity from the direct comparison between the obtained
identities and the numerical simulations.

Unfortunately, some parts of our previous theoretical studies such as the generalized Green–Kubo formula [11,24] are
only valid for stationary external forces and are numerically verified for a plane shear, but the most of experiments adopt vi-
brating granular gases [10,12,13,15]. In this paper, thus, we re-derive the fluctuation relations for soft core granular gases un-
der vibrations around a nonequilibrium steady state. We also derive the generalized Green–Kubo formula for vibrating beds.

The organization of this paper is as follows. In Section 2, we summarize the general framework of Liouville equation and
some identities which are used in this paper. Section 3 which is the main part of this paper consists of two parts. In the
first part (Section 3.1) we discuss the derivation of the integral fluctuation theorem (IFT). In the second part and the third
part, we also derive a standard fluctuation theorem (Section 3.2) and the generalized Green–Kubo formula (Section 3.3),
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respectively. In Section 4 we discuss our results and we give conclusion in Section 5. In Appendix A, we briefly summarize
some operators’ identities.

2. Liouville equation

Let us consider a system of N identical soft spherical and smooth dissipative particles. We assume that particles are
monodispersed, which are characterized by their diameter d and the mass m. The particles are influenced by the gravity
with the acceleration constant g in the z-direction. If we use a box fixed frame, each particle feels the acceleration −g +
Aω2 cosωt in the z-direction with the amplitude A and the angular acceleration ω. Moreover, we should introduce a
confined potential which prevents particles from penetrating the bottom plate.

The basic equation for the statistical mechanics of frictionless granular particles under such a vibration is the Liouville
equation [1,24–27]. The argument in this section is parallel to those in Refs. [1,24]. Let iL(t) be the total Liouvillian which
operates an arbitrary function A(Γ (t)) starting from t = 0 as:

dA(Γ (t))

dt
= U→(0, t)iL(t)A(Γ ), A

(
Γ (t)

) = U→(0, t)A(Γ ) (1)

where

U→(0, t) ≡ T→ei
∫ t

0 dsL(s)

=
∞∑

n=0

t∫
0

ds1

s1∫
0

ds2 · · ·
sn−1∫
0

dsn iL(sn) · · · iL(s2)iL(s1) (2)

and Γ (t) = {ri(t), pi(t)}N
i=1 with the abbreviation Γ ≡ Γ (0), the position of i-th particle ri(t) and the momentum of i-th

particle pi(t). We note that there are some trivial relations for U→(t0, t) such as:

U→(t0, t) = U→(t0, s)U→(s, t); U→(t0, t) f̃
(
Γ (t0)

) = f̃
(
Γ (t)

)
(3)

for an arbitrary function f̃ (Γ (t)).
The total Liouvillian consists of three parts, the elastic part, the viscous part and the part from an external vibration. We

write iL(t) as:

iL(t) = iL(el)(Γ ) + iL(vis)(Γ ) + iL(ext)(Γ , t) (4)

where iL(el)(Γ ) is the elastic collision part,

iL(el)(Γ ) =
N∑

i=1

pi

m
· ∂

∂ri
+ F (el)

i · ∂

∂ pi
(5)

Here, we assume that the elastic force can be represented by the summation of the pairwise force F (el)
i = ∑

j �=i F (el)
i j with:

F (el)
i j = −∂u(ri j)

∂ri j
= Θ(d − ri j) f (d − ri j)r̂i j (6)

where we have introduced the pairwise potential u(ri j), ri j ≡ ri − r j , ri j ≡ |ri j|, r̂i j = ri j/ri j , and the Heaviside function Θ(x)
which satisfies Θ(x) = 1 for x > 0 and Θ(x) = 0 for otherwise. The elastic repulsive force f (x) is proportional to x for the
linear spring model, or to x3/2 for the Hertzian contact model.

Similarly, the viscous Liouvillian iL(vis) is the contribution of inelastic collisions:

iL(vis)(Γ ) =
N∑

i=1

F (vis)
i · ∂

∂ pi
(7)

where F (vis)
i is the viscous force acting on the i-th particle represented by F (vis)

i = ∑
j �=i F (vis)

i j with:

F (vis)
i j = −r̂i jΘ(d − ri j)ζ(d − ri j)(v i j · r̂i j)

= −r̂i jF(ri j)(v i j · r̂i j) (8)

Here we have introduced v i j ≡ ṙi j = dri j/dt , and:

F(r) ≡ Θ(d − r)ζ(d − r) (9)
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with the viscous function ζ(x), which is a constant or ζ(x) ∝ x1/2 corresponding to the linear spring model or the Hertzian
contact model for the elastic contact force. The Liouville operator representing the vibration iL(ext)(t) is given by:

iL(ext)(Γ , t) =
N∑

i=1

F (ext)
i (t) · ∂

∂ pi
(10)

where the vibrating force is given by:

F (ext)
i (t) = ẑ

{
m

(−g + Aω2 cosωt
) − ∂V ext(zi)

∂zi

}
= ẑF (ext)

i (t) (11)

in a box fixed frame, where ẑ is the unit vector in the z-direction, and V ext(z) represents a confined potential in a box such
as:

V ext(z) = V 0 exp[−z/ξ ] (12)

to prevent grains from penetrating the bottom plate of the container.
It should be noted that the Liouvillian is not self-adjoint, because of the violation of time-reversal symmetry for each

collision. The adjoint Liouvillian is defined through the equation of the phase function or the N-body distribution function
ρ(Γ , t):

ρ(Γ , t) = Ũ←(t,0)ρ(Γ ,0),
∂ρ(Γ , t)

∂t
= −iL†(t)ρ(Γ , t) (13)

where

Ũ←(t,0) = T←e−i
∫ t

0 dsL†(s)

≡
0∑

n=0

(−)n

t∫
0

ds1

s1∫
0

ds2 · · ·
sn−1∫
0

dsn iL†(s1)iL†(s2) · · · iL†(sn) (14)

The adjoint Liouvillian satisfies:

iL†(Γ , t) = iL(Γ , t) + Λ(Γ ) (15)

where

Λ(Γ ) ≡ ∂

∂Γ
· Γ̇ (Γ ) (16)

is the phase volume contraction. We note that Λ(Γ ) in our system does not depend on t explicitly, which can be written
as:

Λ(Γ ) =
∑

i

∂

∂ pi
· F (vis)

i = − 1

m

∑
i

∑
j �=i

F(ri j) (17)

for t � 0. The phase volume contraction Λ(Γ ) is directly related to the change of the Jacobian:∣∣∣∣∂Γ (t)

∂Γ

∣∣∣∣ = exp

[ t∫
0

dτΛ
(
Γ (τ )

)]
(18)

where Λ(Γ (t)) = U→(0, t)Λ(Γ )U←(t,0). Note that the time evolution of an arbitrary physical function A(Γ (t)) is given by
A(Γ (t)) = U→(0, t)A(Γ )U←(t,0), where we have introduced U←(t,0) ≡ T← exp[−i

∫ t
0 dsL(s)] = U−1→ (0, t).

The average of a physical quantity is defined as:〈
A
(
Γ (t)

)〉 ≡ ∫
dΓ ρ(Γ ,0)A

(
Γ (t)

) =
∫

dΓ A(Γ )ρ(Γ , t) (19)

From Eqs. (1), (13) and (19), we obtain the relations:∫
dΓ ρ(Γ )U→(0, t)A(Γ ) =

∫
dΓ A(Γ )Ũ←(t,0)ρ(Γ ,0) (20)

and ∫
dΓ ρ(Γ )iL(t)A(Γ ) = −

∫
dΓ A(Γ )iL†(t)ρ(Γ ,0) (21)
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Let us introduce a stationary distribution to characterize the quasi-periodic motion of granular particles under the peri-
odic vibration. In the stationary process, the initial distribution function ρ(Γ , 0) may have the form:

ρ(Γ ,0) = ρini(Γ ) ≡ e−I0(Γ )

Z
(22)

where I0(Γ ) ≡ I(Γ , t = 2nπ/ω) with an arbitrary integer n and an effective potential I(Γ , t), and Z ≡ ∫
dΓ e−I0(Γ ) . Note

that I0(Γ ) is an arbitrary function of Γ , and thus, this choice is quite general for the argument. In the stationary process,
we assume that an average of an arbitrary function A(Γ (t)) satisfies the periodic condition:〈

A

(
Γ

(
t + 2nπ

ω

))〉
= 〈

A
(
Γ (t)

)〉
(23)

for any nonzero integer n. This assumption is reasonable because of the periodicity of the Liouvillian:

iL
(

t + 2nπ

ω

)
= iL(t) (24)

for an arbitrary integer n. We should note that U←(0,−t) = U−1→ (−t,0) and Ũ→(−t,0) = Ũ−1← (0,−t) are, respectively,

not equal to U←(t,0) = U−1→ (0, t) and Ũ→(0, t) = Ũ−1← (t,0) in general, where U←(t,0) ≡ T←e−i
∫ t

0 dτL(τ ) and Ũ→(0, t) ≡
T→ exp[i ∫ t

0 dsL†(s)]. However, we can use:

U←(t,0) = U←(0,−t) and Ũ→(−t,0) = Ũ→(0, t) (25)

for stationary state for t = 2nπ/ω with an integer n. Indeed, with the aid of Eq. (24), we can rewrite U←(t,0) =
T←e−i

∫ t−2nπ/ω
−2nπ/ω dτ ′L(τ ′) . Furthermore, if we restrict the time for the measurement to t = 2nπ/ω, we can rewrite U←(t,0) =

T←e−i
∫ 0
−t dτL(τ ) = U←(0,−t).

In the last part of this subsection, we introduce a useful formula between Ũ→(0, t) and U→(0, t). Any two Liouville
operators even for iL(t) and iL†(t) satisfy Dyson’s equation [1]:

Ũ→(0, τ ) = U→(0, τ ) +
τ∫

0

ds Ũ→(0, s)Λ(Γ )U→(s, τ ) (26)

where we have used Eq. (15). It is straightforward to rewrite Eq. (26) as [1]:

Ũ→(0, t) = exp

[ t∫
0

dτΛ
(
Γ (τ )

)]
U→(0, t) (27)

where Λ(Γ (t)) = U→(0, t)Λ(Γ )U←(t,0).

3. Fluctuation theorem and Green–Kubo formula

Now, let us derive some important identities such as fluctuation relations and the generalized Green–Kubo formula for
vibrating granular materials. For the demonstration of the existence of the above mentioned identities, we explain the
derivations as follows. The first part is dedicated to the derivation of the integral fluctuation theorem (IFT). We also derive
both the standard fluctuation theorem in the second part and the generalized Green–Kubo formula in the third part.

3.1. Integral fluctuation theorem

The integral fluctuation theorem (IFT) is one of representations of the fluctuation theorem, which is directly related
to Jarzynski’s equality [8]. The relation between Jarzynski’s equality and the fluctuation theorem has been investigated
extensively [7,9]. Although IFT is an important identity for the stationary sheared granular systems [11], and this equality
plays a fundamental role even in granular systems under a vibration.

To demonstrate the existence of the IFT, we consider a system characterized by the following time-dependent Hamilto-
nian:

H0
(
Γ (t)

) =
∑

i

pi(t)
2

2m
+ 1

2

∑
i, j �=i

u
(
ri j(t)

)
(28)

We also assume that the initial condition satisfies the canonical distribution:
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ρeq(Γ ) = e−βH0(Γ )

Z(β)
(29)

where β is the inverse temperature and Z(β) ≡ ∫
dΓ e−βH0(Γ ) .

In this case, it is easy to verify the conservation of the normalization factor, i.e. Z(β) = ∫
dΓ e−βH0(Γ ) = ∫

dΓ (t)e−βH0(Γ (t)) .
Because the time derivative of H0(Γ (t)) is given by:

Ḣ0
(
Γ (t)

) =
∑

i

vi,z(t)F (ext)
i (t) − 2R

(
Γ (t)

)
(30)

with Ḣ0 ≡ dH0/dt , v i(t) ≡ dri(t)/dt ,

R(Γ ) ≡ −1

4

∑
i, j

v i j · F (vis)
i j = 1

4

∑
i, j

F(ri j)(v i j · r̂i j)
2 (31)

and v i j ≡ v i − v j , the conservation of the probability leads to:

1 =
∫

dΓ (t)
e−βH0(Γ (t))

Z(β)

=
∫

dΓ

∣∣∣∣∂Γ (t)

∂Γ

∣∣∣∣e−βH0(Γ )

Z(β)
exp

[
β

t∫
0

dτ

{∑
i

vi,z(τ )F (ext)
i (τ ) − 2R

(
Γ (τ )

)}]

=
∫

dΓ
e−βH0(Γ )

Z(β)
exp

[
−

t∫
0

dτΩeq
(
Γ (τ )

)]

=
〈

exp

[
−

t∫
0

dτΩeq
(
Γ (τ )

)]〉
eq

(32)

where we have used Eq. (18) for the third equality, and introduced:

Ωeq
(
Γ (t)

) ≡ β
∑

i

vi,z(t)F (ext)
i (t) − 2βR

(
Γ (t)

) − Λ
(
Γ (t)

)
(33)

and the average 〈·〉eq ≡ 1
Z(β)

∫
dΓ e−βH0(Γ )·. Note that this derivation differs from those presented in Ref. [24].

Eq. (32) associated with Eq. (33) is the IFT for granular fluids under the vibration. It is a characteristic feature for
dissipative systems that the phase volume contraction Λ(Γ ) is involved in Ωeq(Γ (t)). Thus, the right-hand side of the IFT
(32) for dissipative cases cannot be represented by the work done by the external force.

The IFT (32) is directly reduced to an inequality:

t∫
0

dτ
〈
Ωeq

(
Γ (τ )

)〉
� 0 (34)

with the aid of Jenssen’s inequality. This inequality ensures the existence of an entropy-like quantity even for granular
systems under the vibration.

Now, let us extend the IFT to the case of starting from an arbitrary distribution ρini(Γ ). In this case, the IFT can be
rewritten as:

1 =
∫

dΓ (t)
e−I0(Γ (t))

Z

=
∫

dΓ

∣∣∣∣∂Γ (t)

∂Γ

∣∣∣∣e−I0(Γ )

Z
exp

[
−

t∫
0

dτ İ0
(
Γ (τ )

)]

=
∫

dΓ
e−I0(Γ )

Z
exp

[
−

t∫
0

dτΩ
(
Γ (τ )

)]

=
〈

exp

[
−

t∫
dτΩ

(
Γ (τ )

)]〉
(35)
0
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where Ω(Γ (t)) = İ0(Γ (t)) − Λ(Γ (t)), and Z ≡ ∫
dΓ e−I0(Γ ) = ∫

dΓ (t)e−I0(Γ (t)) and 〈·〉 = ∫
dΓ e−I0(Γ )

Z ·. Eq. (35) is also re-
duced to the entropy-like relation:

t∫
0

dτ
〈
Ω

(
Γ (τ )

)〉
� 0 (36)

3.2. The standard fluctuation theorem

The direct consequences of Eq. (35) are two important relations, the conventional fluctuation theorem and the general-
ized Green–Kubo formula, from Eq. (35). Here, let us illustrate how to derive these relations.

It is straightforward to derive the conventional fluctuation theorem (FT) from IFT (32) or (35), where FT is the relation
of the probability of the entropy production between the forward path and the inverse path [1]. Because the derivation
of FT starting from a canonical distribution has already been discussed in Ref. [24], we, here, present the derivation of FT
from Eq. (22) under the assumption that ρini(Γ ) is invariant by the time-reversal operation. Of course, the outline of the
derivation is unchanged.

Now let us consider the process from time 0 to time t by the time evolution operator U→(0, t) and the trajectory
of the phase variable Γ (τ ) = U→(0, t)Γ for 0 � τ � t . The inverse process, thus, is characterized by the time evolution
operator U←(t,0) and the inverse phase variable Γ ∗(τ ) ≡ {ri(t − τ ),−pi(t − τ )}N

i=1 = {Γ (t − τ )}T for 0 � τ � t , where the
operation {Γ (t)}T represents the change of the sign of the momenta {Γ (t)}T ≡ {ri(t),−pi(t)}N

i=1. Because the probability of
the inverse trajectories ρini(Γ

∗) is still normalized as
∫

dΓ ∗ρini(Γ
∗) = 1 with the abbreviation Γ ∗ ≡ Γ ∗(0), Eq. (35) can be

rewritten as:∫
dΓ ρini(Γ )e−tΩt =

∫
dΓ ∗ρini

(
Γ ∗) (37)

where we have introduced Ωt ≡ 1
t

∫ t
0 dτΩ(Γ (τ )) with Ω(Γ (t)) = İ0(Γ (t)) − Λ(Γ (t)). From the definition of Λ(Γ (t)) and

the assumption I0(Γ
∗(τ )) = I0(Γ (t − τ )), there are some trivial relations: Λ(Γ ∗(τ )) = −Λ(Γ (t − τ )), and Ω(Γ ∗(τ )) =

−Ω(Γ (t − τ )) for 0 � τ � t . Therefore, we can write the probability of Ω̃t = −A for Ω̃t ≡ 1
t

∫ t
0 dτΩ(Γ ∗(τ )) =

1
t

∫ t
0 dτΩ({Γ (τ )}T ):

Prob(Ω̃t = −A) =
∫

dΓ ∗ρini
(
Γ ∗)δ(Ω̃t + A)

=
∫

dΓ (t)ρini
(
Γ (t)

)
δ(Ωt − A)

=
∫

dΓ ρini(Γ )e−tΩt δ(Ωt − A)

= e−At
∫

dΓ ρini(Γ )δ(Ωt − A)

= e−AtProb(Ωt = A) (38)

for the conventional fluctuation theorem, where we have used |∂Γ ∗(τ )/∂Γ (t − τ )| = 1, ρini(Γ (t)) = ρini(Γ )e−β
∫ t

0 dτ Ḣ(τ ) and

dΓ (t) = dΓ e
∫ t

0 dτΛ(Γ (τ )) . Note that the argument is still valid for the general starting point Eq. (22) if we have the symmetry
I(Γ ∗(τ )) = I(Γ (t − τ )).

3.3. Generalized Green–Kubo formula

Next, let us derive the generalized Green–Kubo formula from Eq. (35) following the argument in Refs. [11,24]. It should
be noted that the generalized Green–Kubo formula is only valid for t = 2nπ/ω with an arbitrary integer n, i.e. at time with
an identical phase of oscillation. Nevertheless, the argument in this subsection can be used for time-dependent processes
which has not be proven in Ref. [24].

Now, let us rewrite Eq. (13) as:

ρini(Γ ) = Ũ→(0, t)ρ(Γ , t) = e
∫ t

0 dτΛ(Γ (τ ))ρ
(
Γ (t), t

)
(39)

where we have used the identity (27). Let us operate U←(t,0) on the both sides of Eq. (39) with the aid of Eq. (25) at
t = 2nπ/ω with an integer n, we can write:
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U←(t,0)ρini(Γ ) = U←(0,−t)ρini(Γ ) = ρini
(
Γ (−t)

)
= e−I0(Γ (−t))

Z
= e

∫ t
0 dτ İ0(Γ (−τ ))ρini(Γ )

= U←(t,0)
[
e
∫ t

0 dτΛ(Γ (t−τ ))ρ
(
Γ (t), t

)] = e
∫ t

0 dτΛ(Γ (−τ ))ρ(Γ , t) (40)

From Eq. (40) we immediately obtain:

ρ(Γ , t) = e
∫ t

0 dτΩ(Γ (−τ ))ρini(Γ ) (41)

From the time differentiation of Eq. (19) with the help of Eq. (41), we obtain:

d

dt

〈
A
(
Γ (t)

)〉 = ∫
dΓ A(Γ )Ω

(
Γ (−t)

)
ρ(Γ , t) =

∫
dΓ U←(t,0)

{
A
(
Γ (t)

)
Ω(Γ )

}
ρ(Γ , t)

=
∫

dΓ A
(
Γ (t)

)
Ω(Γ )Ũ→(0, t)ρ(Γ , t) =

∫
dΓ A

(
Γ (t)

)
Ω(Γ )e

∫ t
0 dτΛ(Γ (τ ))ρ

(
Γ (t), t

)
=

∫
dΓ A

(
Γ (t)

)
Ω(Γ )

e−I0(Γ )

Z
= 〈

A
(
Γ (t)

)
Ω(Γ )

〉
(42)

This equation can be integrated over t as:

〈
A
(
Γ (t)

)〉 = 〈
A(Γ )

〉 + t∫
0

ds
〈
A
(
Γ (s)

)
Ω(Γ )

〉
(43)

This result depends on ρini(Γ ). Therefore, the formal response theory can be written as:

〈
δA(Γ )

〉 = ∞∫
0

dt
〈
A
(
Γ (t)

)
Ω(Γ )

〉
(44)

where δA(Γ ) ≡ limt→∞ A(Γ (t)) − A(Γ ).

4. Discussion

In this paper, we obtain exact nonequilibrium relations. To verify the validity, we may need numerical simulations as in
Ref. [24]. In simulations, we need to restrict our interest to the statistics for a small number of particles with a large number
of sample averages. For example, Ref. [24] uses 18 grains with 800,000 samples. It should be noted that the verification of
the generalized Green–Kubo formula is not difficult by the direct simulation, but the confirmation of the integral fluctuation
theorem by simulations is not easy because of the limitation of numerical accuracy. We should stress that these identities
can be used even for dense granular systems above the jamming transition.

Although the results obtained in this paper are exact without the limitation of applicability range, the actual confirmation
for large systems is almost impossible, because the theory requires all cumulants and information for N-body distribution
function, which are not correctly measured in experiments. Similarly, to prepare the general initial distribution function (22)
except for the equilibrium condition (29) experimentally is almost impossible. In Ref. [24], we use the inverse trajectory in
which the time flows from the future to the past, which cannot be used in experiments. These difficulties come from the
fact that the derived equation is exact without using any coarsening procedure.

Thus, it is not easy to calculate the correlation function (Eq. (43) or Eq. (44)). One of the possible methods is to use
the mode-coupling theory (MCT). It is helpful to apply MCT for granular liquids to characterize theology near the jamming
transition [25,28–31]. It is notable that Ref. [27] develops a linear response theory for a sheared thermostat system around
a nonequilibrium steady state. The application of this method will be discussed elsewhere.

5. Summary

We have developed some exact relations for frictionless granular fluids under vibrations. We derived the integral fluc-
tuation theorem and the standard fluctuation theorem around a nonequilibrium steady state. We finally obtained the
generalized Green–Kubo formula around a nonequilibrium steady state.

In this paper, we focus on the detailed analytic calculation on the granular fluids under the vibration. The systematic
check in terms of the simulations will be reported elsewhere.



24 H. Hayakawa / C. R. Mecanique 342 (2014) 17–24
Acknowledgements

The author thanks S.-H. Chong, M. Otsuki, K. Suzuki and K. Saitoh for fruitful discussions. This work was supported by the
Grant-in-Aid of MEXT (Grant No. 25287098) and in part by the Yukawa International Program for Quark–Hadron Sciences
(YIPQS).

Appendix A. Some operators’ identities

Let us consider the time evolution of Γ (t; t0) defined by:

Γ (t; t0) = U→(t0, t)Γ (t0) (45)

where we have explicitly written the initial time t0.
By using U→(t0, t) and U←(t, t0) it is notable that there is an important relation for U→(t0, t):

A
(
Γ (t)

) ≡ U→(t0, t)A
(
Γ (t0)

)
U←(t, t0) = U→(t0, t)A

(
Γ (t0)

)
(46)

The proof of (46) is straightforward. The right-hand side of Eq. (46) can be rewritten as:

U→(t0, t)A
(
Γ (t0)

) = U→(t0, t)A
(
Γ (t0)

)
U←(t, t0)U→(t, t0)1 = U→(t0, t)A

(
Γ (t0)

)
U←(t, t0)1

= U→(t0, t)A
(
Γ (t0)

)
U←(t, t0) (47)

where we have used U→(t0, t)1 = 1 for a constant 1. When we use Eq. (46), we readily obtain:

U→(t0, t)A
(
Γ (t0)

)
B
(
Γ (t0)

) = A
(
Γ (t; t0)

) · B
(
Γ (t; t0)

)
(48)

Indeed, the left-hand side of this equation can be rewritten as:

U→(t0, t)A
(
Γ (t0)

)
B
(
Γ (t0)

) = U→(t0, t)A
(
Γ (t0)

)
U←(t, t0)U→(t0, t)B

(
Γ (t0)

)
U←(t, t0)

= A
(
Γ (t; t0)

) · B
(
Γ (t; t0)

)
(49)

which is the end of the proof of Eq. (48).
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