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A new fractional relaxation operator is derived using the methodology of fractional calcu-
lus. The governing coupled fractional differential equations in the frame of the thermo-
viscoelasticity with fractional order heat transfer are applied to the one-dimensional
problem with heat sources. Laplace transform and state space techniques are used to get
the solution. According to the numerical results and its graphs, conclusion about the new
theory of thermo-viscoelasticity has been constructed. The theories of coupled thermo-
viscoelasticity and of generalized thermo-viscoelasticity with one relaxation time follow as
limit cases.
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1. Introduction

Linear viscoelasticity remains an important area of research not only due the advent and use of polymers, but also
because most solids, when subjected to dynamic loading, exhibit viscous effects [1]. The stress–strain law for many ma-
terials such as polycrystalline metals and high polymers can be approximated by the linear viscoelasticity theory [2].
The mechanical-model representation of linear viscoelastic behavior results was investigated by Gross [3], Staverman and
Schwarzl [4], Alfrey and Gurnee [5] and Ferry [6]. One can refer to Ilioushin and Pobedria [7] for the formulation of a math-
ematical theory of thermal viscoelasticity and for the solutions of some boundary value problems as well as to Pobedria [8]
for the coupled problems in continuum mechanics. A description of the linear theory of viscoelastic behavior of materials
and theoretical formulation derived from continuum mechanics viewpoint can be found in Christensen’s work [9].

The modification of the heat-conduction equation from diffusive to a wave type may be affected either by a microscopic
consideration of the phenomenon of heat transport or, in a phenomenological way, by modifying the classical Fourier law of
heat conduction. The first is due to Cattaneo [10], who obtained a wave-type heat equation by postulating a new law of heat
conduction to replace the classical Fourier law. Lord and Shulman [11] introduced the theory of generalized thermoelasticity
with one relaxation time for the special case of an isotropic body. This theory was extended by Dhaliwal and Sherief [12]
to include the anisotropic case. In this theory, a modified law of heat conduction including both the heat flux and its
time derivative replaces the conventional Fourier’s law. The heat equation associated with this theory is hyperbolic and
hence eliminates the paradox of infinite speeds of propagation inherent in both the uncoupled and the coupled theories of
thermoelasticity.
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Nomenclature

λ,μ Lame’ constants
C E specific heat at constant strains
K = λ + (2/3)μ bulk modulus
C2

0 = K
ρ longitudinal wave speed

εi j components of strain tensor
ei j components of strain deviator tensor
σi j components of stress tensor
Sij components of stress deviator tensor
e = εii dilatation
k,kij thermal conductivity
R(t, β) relaxation functions
T absolute temperature
ui components of displacement vector
αT coefficient of linear thermal expansion
γ = 3KαT

δi j Kronecker’s delta
T0 reference temperature

ε = γ 2 T0

kη0ρC2
0

thermal coupling parameter

Θ = T − T0 such that |Θ/T0| � 1
ρ mass density
τ the ratio of the shear viscosity to Young’s

modulus
τ0 relaxation time
α,β orders of the fractional derivatives
c Dα

t Caputo fractional derivative
t times
E Young’s moduli
Eα(x) Mittag-Leffler function
Γ (.) Gamma function
S entropy

Several generalizations to the coupled theory are introduced. One can refer to Ignaczak [13] and to Chandrasekharaiah
[14] for a review, presentation of generalized theories. Hetnarski and Ignaczak in their survey article [15] examined five
generalizations to the coupled theory and obtained a number of important analytical results. The mathematical aspects of
Lord and Shulman [11] and convolution variational principles are explained and illustrated in detail in the work of Ignaczak
and Ostoja-Starzewski [16].

The generalized thermo-viscoelasticity models ignoring the relaxation effects of the volume, with one relaxation time and
with two relaxation times, are established by El-Karamany and Ezzat [17] and Ezzat et al. [18]. Among the theoretical con-
tributions to the subject are the proofs of uniqueness theorems under different conditions by Ezzat and El Karamany [19],
whereas the propagation of discontinuities of solutions in the generalized theory was investigated by El-Karamany and Ez-
zat [20]. The boundary-element formulation and reciprocal and uniqueness theorems in linear micropolar electro-magnetic
thermoelasticity with two relaxation times were presented by El-Karamany and Ezzat [21,22]. Ezzat [23] investigated the
relaxation effects on the volume properties of an electrically conducting viscoelastic material.

Fractional calculus has been used successfully to modify many existing models of physical processes. One can state
that the whole theory of fractional derivatives and integrals was established in the second half of the 19th century. The first
application of fractional derivatives was given by Abel, who applied fractional calculus in the solution of an integral equation
that arises in the formulation of the tautochrone problem. The generalization of the concept of derivative and integral to a
non-integer order has been subjected to several approaches and some various alternative definitions of fractional derivatives
appeared in [24–27]. In the last few years, fractional calculus was applied successfully in various areas to modify many
existing models of physical processes, e.g., chemistry, biology, modeling and identification, electronics, wave propagation
and viscoelasticity [13,28–31]. Fractional order models often work well, particularly for dielectrics and viscoelastic materials
over extended ranges of time and frequency [32,33]. In heat transfer and electrochemistry, for example, the half-order
fractional integral is the natural integral operator connecting the applied gradients (thermal or material) with the diffusion
of ions of heat [34,35]. One can refer to Padlubny [36] for a survey of applications of fractional calculus.

A quasi-static uncoupled theory of thermoelasticity based on the fractional heat-conduction equation was put forward
by Povstenko [37]. The theory of thermal stresses based on the heat-conduction equation with the Caputo time-fractional
derivative is used by Povstenko [38] to investigate thermal stresses in an infinite body with a circular cylindrical hole.
Sherief et al. [39] introduced a new model of thermoelasticity using fractional calculus, proved a uniqueness theorem, and
derived a reciprocity relation and a variational principle. Youssef [40] introduced another new model of fractional heat-
conduction equation, proved a uniqueness theorem and presented a one-dimensional application. Ezzat [41,42] established
a new model of fractional heat-conduction equation by using the new Taylor series expansion of time-fractional order which
had been developed by Jumarie [43]. El-Karamany and Ezzat [44] introduced two models where the fractional derivatives
and integrals are used to modify the Cattaneo heat-conduction law and, in the context of the two-temperature thermo-
elasticity theory, uniqueness and reciprocal theorems are proved, the convolutional variational principle is given and used to
prove a uniqueness theorem with no restrictions imposed on the elasticity or thermal conductivity tensors, except symmetry
conditions. The fractional order theory of a perfect conducting thermoelastic medium was investigated by Ezzat and El-
Karamany [45,46].

The current work is an attempt to derive a solution for the fractional relaxation differential equation. Also, the mathe-
matically rigorous constitutive equation for a generalized viscoelastic model for an isotropic medium is obtained with the
fractional relaxation operator R̂β , which was obtained by using the methodology of fractional calculus. A new model of
thermo-viscoelasticity by using the latter methodology has been applied to the one-dimensional problem with heat sources.
The solution is obtained using the state–space approach. The first writers who introduce the state–space formulation in
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thermoelastic problems were Bahar and Hetnarski [47]. A review of this method is presented in [48]. The inversion of the
Laplace transform will be computed numerically using a method based on a Fourier expansion technique [34]. The limit
cases of the dynamic coupled and Lord–Shulman thermoelasticity theories are presented in the numerical results section.
According to the numerical results and its graphs, we studied the effect for the coupled system of fractional derivative
parameters α,β about the new theory on all the studied fields.

2. Derivation solution of the fractional relaxation equation

We consider the fractional ordinary differential equation which governs the relaxation function R(t, β) as [35,49]:

τβ dβ R(t, β)

dβt
+ R(t, β) = 0, 0 < β < 1 (1)

where τ is a positive constant for the ratio of the shear viscosity to Young’s modulus, β is the fractional power, and the
field variable R(t, β) is assumed to be a causal relaxation function of time.

In the former case, Eq. (1) must be equipped with a single initial condition, say R(0, β) = R0, and in the latter with two
initial conditions, say R(0+, β) = R0 land Ṙ(0+, β) = ζ0. We assume ζ0 = 0, in order to ensure the continuous dependence
of the solution of Eq. (1) on the parameter β also in the transition from β = −1 to β = 1.

Applying the Laplace transform technique, since ζ0 = 0, the image solution turns out to be:

R̄(s, β) = R0
sβ−1

sβ + τ−β
(2)

To invert (2), we can use the series expansion theorem or the Bromwich formula [50]; we obtain:

R(t, β) = R0 Eβ

[
(t/τ )β

]
(3)

where Eβ denotes the Mittag-Leffler function [36,51]. In the complex plane, this function is defined by the following series
and integral representations:

Eβ(x) =
∞∑

n=0

xn

Γ (nβ + 1)
, β > 0, z ∈ C (4)

Eβ(x) = 1

2π i

∫
Ha

ξβ−1eξ

ξβ − z
dξ, β > 0, z ∈C (5)

In Eq. (5) Ha denotes the Hankel path, a loop which starts from −∞ along the lower side of the negative real axis, encircles
the circular disc|ξ | � |z|1/β in the positive sense and ends at −∞ along the upper side of the negative real axis.

For the present purposes, our interest in this function is limited to the negative real axis, i.e. Eβ(−x) with x = (t/τ )β � 0
for 0 < β � 1; the main properties are as follows:
(1) for 0 < β � 1, Eβ(−x) turns out to be positive and completely monotonic, i.e.:

(−1)n dn

dxn
Eβ(−x) � 0, 0 < β � 1 (6)

(2) the following asymptotic expansion is valid:

Eβ(−x) � −
∞∑

n=0

(−x)−n

Γ (1 − nβ)
, x → ∞, 0 < β � 1 (7)

The property (6) of complete monotonic is better understood by the following equivalent representations for our solution

Eβ

[−(t/τ )β
] =

∞∫
0

e−t/vξ(v, β)dv =
∞∫

0

e−qtη(q, β)dq, 0 < β � 1 (8)

where ξ(v, β) and η(q, β) are non-negative locally integrable functions in R
+ , referred to as spectrum of relaxation times

and spectrum of relaxation frequencies, respectively. The explicit expressions of the spectra can be derived using the integral
representation equation (5) and turn out to be related to:

S(y, β) = 1

π y

(
sinπβ

yβ + yβ + 2 cosπβ

)
=

{
ξ(v, β)τ , y = v/τ

η(q, β)/τ , y = qτ
(9)

Plots of the function S(y, β) that we may refer to as the normalized spectrum of relaxation are shown in Fig. 1 for some
values of β .



556 M.A. Ezzat et al. / C. R. Mecanique 341 (2013) 553–566
Fig. 1. The normalized spectrum of relaxation S(y, β) for various values of β .

In order to show plots of the solution of Eq. (1), we list some explicit formulas useful for numerical computation. The
series representation obtained from Eq. (4) is:

R(t, β) = R0 Eβ

[
(t/τ )β

] =
∞∑

n=0

(−1)n

Γ (nβ + 1)

[
(t/τ )−nβ

]
(10)

but is suitable only for short times, since it exhibits a very slow numerical convergence. For sufficiently large times, one can
seek the matching with the asymptotic expansion obtained from Eq. (7), which reads:

R(t, β) = R0 Eβ

[
(t/τ )β

] =
∞∑

n=0

(−1)n

Γ (nβ + 1)

[
(t/τ )−nβ

]
, t → ∞+ (11)

We note that the above expansion can be formed and obtained by expanding the Laplace transforms (see Appendix B)
in positive powers of s and then inverting term-by-term. In this respect, we have to consider the analytical continuation of
the Laplace transform to the half-plane Re(λ) � 0.

We attribute particular attention to the cases where the index of derivation is effectively a rational number, i.e. β = p/q
with p,q ∈ N. Here, on the basis of Ref. [30], our solutions turn out to be expressed in terms of exponentials and incomplete
Gamma functions, according to the formulas listed hereafter in our notation:

R(t, β) = R0 Eβ

[
(t/τ )β

] = R0

p

p−1∑
h=0

E1/q
[∈h,p (t/τ )p/q], ∈h,p = e

( i(2h+1)π
p

)
(12)

and

R(t, β) = R0 E1/q
[−c(t/τ )1/q] = R0

[
1 +

q−1∑
h=0

ck

(cq)k/q

γ (k/qcqt)

Γ (k/q)

]
, c ∈C (13)

where γ denotes the incomplete Gamma function. It should be noted that in Eq. (13), ck = (cq)k/q unless cq is a positive
real number.

In order to gain some insight into the effect of the order of derivation, plots of the function R(t) are shown in Fig. 2, for
some (rational) values of β (0 < β � 1). The fractional solutions exhibit very different behaviors. In particular, we note the
leading asymptotic behaviors for t → 0+ and t → ∞+ derived from Eqs. (10) and (11) – see Eq. (1.35), p. 301 in [52]:

R(t, β) = R0

⎧⎨
⎩

1 − (t/τ )β

Γ (1+β)
as t → 0+

(t/τ )−β

Γ (1−β)
as t → ∞+

(14)

The solution R(t, β) of the fractional relaxation equation 0 < β < 1 exhibits for small times a much faster decay (the
derivative tends to −∞ in comparison with −1), and for large times a much slower decay (algebraic decay in comparison
with exponential decay). In view of its slow decay, the phenomenon of fractional relaxation is usually referred to as a
super-slow process [49,52].
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Fig. 2. The relaxation moduli function vs. time t .

3. The governing equations

The constitutive relations for an anisotropic viscoelastic solid are given by [9]:

σi j =
t∫

0

Gijkl(t − τ )
∂εkl

∂τ
dτ −

t∫
0

γi j(t − τ )
∂θ

∂τ
dτ = (Gijkl ∗ ε̇kl) − (γi j ∗ θ̇ )

S =
t∫

0

β(t − τ )
∂θ

∂τ
dτ +

t∫
0

γi j(t − τ )
∂εi j

∂τ
dτ = (β ∗ θ̇ ) + (γi j ∗ ε̇i j)

where Gijkl(x, t), γi j(x, t), and β(x, t) are fourth-order, second-order and zero-order relaxation tensors. In addition, it is
assumed that the following symmetry relations hold:

Gijkl = Gkli j = G jikl = Gijlk, γi j = γ ji, on V × [0,∞)

Substituting Gijkl(t) = 1
3 (G2(t)−G1(t))δi jδkl + 1

2 G1(t)(δikδ jl +δilδ jk), γi j(t) = γ (t)δi j and considering G1(t) = R(t), G2 = 3K
and γ = 3KαT , we get the following system of governing equations of generalized linear thermo-viscoelastic interactions in
a homogeneous isotropic medium with one relaxation time.
(1) The constitutive equation is given by [7,18,21]:

Sij(x̄, t) =
t∫

0

R(t − ξ)
∂eij(x̄, ξ)

∂ξ
dξ = R̂β(eij) (15)

where R(t) is the relaxation function such that R(∞) > 0.

Sij = σi j − σδi j, e = εkk, x̄ = (x1, x2, x3) (16)

(2) The kinematic relations write:

εi j = 1

2
(ui, j + u j,i), eij = εi j − e

3
δi j, i, j = 1,2,3 (17)

with the assumption

∂σi j(x̄, t)

∂t
= 0,

∂εi j(x̄, t)

∂t
= 0, −∞ � t < 0 (18)

For large times refers a much slower decay, R(t) is the positive decreasing fractional relaxation function of time defined
as follows:

R(t;β) = R0
(t/τ )−β

Γ (1 − β)
, 0 < β � 1, t → ∞+ (19)

and by combining Eqs. (15) and (19), one arrives at:
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Sij(x̄, t) = R0τ
β

Γ (1 − β)

t∫
0

(t − ξ)−β ∂eij(x̄, ξ)

∂ξ
dξ = R̂β(eij), 0 < β � 1, t → ∞+ (20)

The right-hand side of Eq. (20) represents the fractional integral (FI). To see this, we start from the expression of an (FI)
[25,53] given by:

c D−α
t f (x̄, t) = Jα f (x̄, t) = 1

Γ (α)

t∫
c

f (x̄, ξ)

(t − ξ)1−α
dξ (21)

where α > 0. Eq. (21) includes two special (FI) forms. For c = 0, one recovers the Riemann–Liouville fractional inte-
gral formulated as the Laplace convolution. For α is a positive integer, Eq. (21) presents a multiple (Cauchy) integral of
order −α.

Now, the Caputo fractional derivative [54] of order α > 0, is obtained by:

c Dα
t f (x̄, t) = Jn−α Dn

t f (x̄, t) = 1

Γ (n − α)

t∫
0

(t − ξ)n−1−α ∂n

∂ξn
f (x̄, ξ)dξ

where n − 1 < γ � n and n ∈N. We take n = 1 and c = 0, to obtain:

Dα
t f (x̄, t) = 1

Γ (1 − α)

t∫
0

(t − ξ)−α ∂ f (x̄, ξ)

∂ξ
dξ, γ ∈ (0,1] (22a)

Using the shorthand notation:

∂β f (x̄, t)

∂tβ
≡ Dβ

t f (x̄, t) = 1

Γ (1 − β)

t∫
0

(t − ξ)−β ∂ f (x̄, ξ)

∂ξ
dξ (22b)

where [44]:

lim
β→1

∂β f (x̄, t)

∂tβ
= ∂ f (x̄, t)

∂t
(22c)

we can rewrite Eq. (20) as:

Sij(x̄, t) = R0τ
β ∂β

∂tβ
(eij) = R̂β(eij), 0 < β < 1 (23)

According to the concept of the eigenvalue, the convolutional operator R̂β(g(x̄, t)) is defined, for any function of class C1,
as:

R̂β(g) = R0τ
β ∂β g(x̄, t)

∂tβ
= R0τ

β

Γ (1 − β)

t∫
0

(t − ξ)−β ∂ g(x̄, ξ)

∂ξ
dξ, 0 < β � 1 (24)

(3) The stress–strain temperature relation:

σ = K
[
e − 3αT (T − T0)

]
(25)

where:

σ = σkk

3
, σi j = σ ji, Sij = σi j − σδi j

substituting Eq. (25) into Eq. (15), we obtain:

σi j = R̂β

(
εi j − e

3
δi j

)
+ K eδi j − γ Θδi j (26)

(4) The equation of motion:

ρüi = σi j, j, i, j = 1,2,3 (27)
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From Eq. (25) and Eq. (27), one obtains:

ρüi = R̂β

(
1

2
∇2ui + 1

6
e,i

)
+ K e,i − γ Θ,i (28)

(6) The fractional heat-conduction law.
We have the linearized equation of energy:

q j, j = −ρT0 Ṡ + Q (29)

where the entropy S may be written in terms of temperature and strain tensor in an isotropic medium as follows:

ρT0 S = ρC EΘ + γ εi j (30)

We apply the new Taylor series expansion of time-fractional order α which was developed by [43] starting from the
classical Fourier law of heat conduction q j(xi, t + τ0) = −kΘ, j ; one obtains [42]:(

1 + τα
0

α!
∂α

∂tα

)
qi = −kijΘ, j (31)

where τ0 � 1 is the thermal relaxation time.
By taking the divergence of both sides of Eq. (31) and using Eq. (29) and its time derivative, we arrive at the equation of

modified fractional heat conduction for an isotropic medium, in our case, namely,(
1 + τα

0

α!
∂α

∂tα

)
(ρC EΘ̇ + γ T0ėi j − Q ) = kΘ,ii, 0 < α � 1 (32)

Throughout this paper, a rectangular coordinates system (x1, x2, x3) is employed. Here x̄ = (x1, x2, x3) is the position
vector and t is the time. All the function is considered to be a function of (x̄, t). A superposed dot denotes differentiation
with respect to time, a comma followed by index i denotes the derivative with respect to xi . The summation notation is
used and microrotations are ignored.

Limiting cases

(i) In the theory of thermoelasticity
(1) Eqs. (24), (26) and (32) in the limiting case when β = 0, τ0 = 0, R0 = 2μ transforms to the works of Biot [55] and

Povstenko [37].
(ii) In the theory of generalized thermoelasticity

(2) Eqs. (24), (26) and (32) in the limiting case when β = 0,α = 1, τ0 > 0, R0 = 2μ transforms to the work of Lord and
Shulman [11].

(iii) In the theory of fractional generalized thermoelasticity
(3) Eqs. (24), (26) and (32) in the limiting case when β = 0,0 < α � 1, τ0 > 0, R0 = 2μ transform to the works of

Sherief et al. [39], Ezzat [42] and Ezzat and El-Karamany [45].
(iv) In the theory of thermo-viscoelasticity

(4) Eqs. (24), (26) and (32) in the limiting case when β = 1, τ0 = 0 transform to the work of Pobedria [8].
(v) In the theory of generalized thermo-viscoelasticity

(2) Eqs. (24), (26) and (32) in the limiting case β = 0,α = 1, τ0 > 0 transform to the work of Ezzat et al. [56].

4. Application

4.1. Analysis and state–space approach

We shall consider a thermo-viscoelastic solid occupying the region x �0; for the one-dimensional problems, all the
considered functions will depend only on the space variable x and the time t . The governing equations for generalized
thermo-viscoelasticity are given below.
(1) The components of the displacement vector are, in the one-dimensional medium:

ux = u(x, t), u y = uz = 0 (33)

(2) The strain component takes the form:

e = εxx = ∂u

∂x
(34)

(3) The fractional heat-conduction law writes:(
1 + τα

0 ∂α

α

)
(ρC EΘ̇ + γ T0ė − Q ) = k

∂2Θ

2
, 0 < α � 1 (35a)
α! ∂t ∂x
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(4) The equation of motion is:

ρ
∂2u

∂t2
=

(
2

3
R̂β + K

)
∂2u

∂x2
− γ

∂Θ

∂x
, 0 < β � 1 (36a)

(5) The constitutive equation in linear form yields:

σxx =
(

2

3
R̂β + K

)
∂u

∂x
− γ Θ (37a)

(6) The fractional heat flux equation writes:(
1 + τα

0

α!
∂α

∂tα

)
qx = −k

∂Θ

∂x
(38a)

Let us introduce the following non-dimensional variables:

x∗ = C0η0x, u∗ = C0η0u, t∗ = C2
0η0t, τ ∗

0 = C2
0η0τ0, η0 = ρC E

k
, σ ∗

i j = 1

K
σi j

C2
0 = K

ρ
, Θ∗ = γ Θ

ρC2
0

, Q ∗ = Q γ

kρC4
0η

2
0

, q∗
i = qiγ

kρC3
0η0

, R∗
0 = 2

3K
R0

Using the homogeneity and scale change properties of fractional derivatives [27], Eqs. (35a)–(38a) take the following form
(after dropping the asterisks for the sake of convenience):

∂2Θ

∂x2
=

(
∂

∂t
+ τα

0

α!
∂α+1

∂tα+1

)
(Θ + εe) −

(
1 + τα

0

α!
∂α

∂tα

)
Q (35b)

∂2u

∂t2
= ∂2u

∂x2
− ∂Θ

∂x
+ R0τ

β

Γ (1 − β)

t∫
0

(t − ξ)−β ∂

∂ξ

(
∂2u(x, ξ)

∂x2

)
dξ (36b)

σxx = ∂u

∂x
− Θ + R0τ

β

Γ (1 − β)

t∫
0

(t − ξ)−β ∂

∂ξ

(
∂u(x, ξ)

∂x

)
dξ (37b)

(
1 + τα

0

α!
∂α

∂tα

)
qx = −∂Θ

∂x
(38b)

The calculations will be carried out for the case:

R(t, β) = R0

Γ (1 − β)
(t/τ )−β, 0 < β � 1 (39)

Applying the Laplace transform with parameter s (denoted by a bar) of both sides for the non-dimensional equations (35b)–
(37b), we arrive at the following set of equations:(

∂2

∂x2
− ws2

)
ū(x, s) = w

∂Θ̄

∂x
(40)

(
∂2

∂x2
− s − τα

0

α! sα+1
)

Θ̄ = εs

(
1 + τα

0

α! sα
)

∂ ū

∂x
−

(
1 + τα

0

α! sα
)

Q̄ (41)

σ̄xx = 1

w

∂ ū

∂x
− Θ̄ (42)

Since L{t−β} = Γ (1 − β)/s1−β , the Laplace transform of the relaxation modulus can be written under the form:

L
{

R(t, β)
} = R0(sτ )β

(
1

s

)
, 0 < β � 1 (43)

where all the initial state functions are equal to zero.
We shall choose as state variables the temperature increment θ , the displacement component in the x-direction and

their gradients; then Eqs. (40)–(42) can be written in matrix form as:

dv̄(x, s) = A(s)v̄(x, s) + B(x, s) (44)

dx
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where

A(s) =
⎛
⎜⎝

0 0 1 0
0 0 0 1
gs 0 0 sεg
0 ws2 w 0

⎞
⎟⎠ , v̄(x, s) =

⎛
⎜⎝

θ̄ (x, s)
ū(x, s)
θ̄ ′(x, s)
ū′(x, s)

⎞
⎟⎠ (45)

and

B(x, s) = −g Q

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠ (46)

where g = (1 + τα
0
α! sα) and w = 1

(Mβ sβ+1)
, Mβ = R0τ

β .

The formal solution of system (44) can be written in the form:

v̄(x, s) = exp
(

A(s)x
)[

v̄(0, s) +
x∫

0

exp
(−A(s)x

)
B(z, s)dz

]
(47)

In the special case, when there is no source acting inside the medium, Eq. (47) simplifies to

v̄(x, s) = exp
(

A(s)x
)

v̄(0, s) (48)

We shall use the well-known Cayley–Hamilton theorem to find the form of the matrix exp(A(s)x); then the characteristic
equation of the matrix A(s) can be written as:

k4 − [
ws2 + sg(1 + wε)

]
k2 + wgs3 = 0 (49)

The roots of this equation, namely, k2
1 and k2

2 satisfy the relations:

k2
1 + k2

2 = ws2 + sg(1 + wε) (50)

k2
1k2

2 = wgs3 (51)

The Taylor series expansion of the matrix exponential has the form:

exp
(

A(s)x
) =

∞∑
n=0

(A(s)x)n

n! (52)

Using Cayley–Hamilton theorem again, we can express higher orders of the matrix A in terms of I, A, A2 and A3, where
I is the unit matrix of fourth order, thus, the infinite series in Eq. (52) can be reduced to:

exp
(

A(s)x
) = L(x, s) = a0 I + a1 A1 + a2 A2

1 + a3 A3
1 (53)

where (a0 − a3) are some coefficients depending on x and s.
By the Cayley–Hamilton theorem, the characteristic roots ±k1 and ± k2 of the matrix A must satisfy Eq. (53); thus,

exp(±k1x) = a0 ± a1k1 + a2k2
1 ± a3k3

1 (54a)

exp(±k2x) = a0 ± a1k2 + a2k2
2 ± a3k3

2 (54b)

Substituting expressions Eq. (72) [Appendix A] into Eq. (54) and computing A2 and A3, we obtain:

exp
(

A(s)x
) = l(x, s) = [

li j(x, s)
]
, i, j = 1,2,3,4 (55)

It is worth mentioning here that Eqs. (50) and (51) have been used repeatedly in order to write the above entries in
the simplest possible form. We shall stress here that the above expression for the matrix exponential is a formal one.
In the actual physical problem, the space is divided into two regions accordingly as x � 0 or x � 0. Inside the region
0 � x < ∞, the positive exponential terms, not bounded at infinity, must be suppressed. Thus, for x � 0, we should replace

each sinh(ki x) by − e−ki x

2 and each cosh(ki x) by e−ki x

2 . In the region x � 0, the negative exponentials are suppressed instead.
It is possible to solve a broad class of one-dimensional problem of generalized thermo-viscoelasticity with one relaxation

time.
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5. Plane distribution of heat sources

We also assume that there is of continuous heat sources located at the plane surface x = 0. The intensity of the heat
sources is thus given by:

Q (x, t) = Q 0 H(t)δ(x) (56)

where Q 0 is a constant and δ(x) is Dirac’s delta function.
Taking Laplace transform, we obtain:

Q̄ (x, s) = Q 0
δ(x)

s
(57)

We now proceed to find the solution of the problem in the right half-space x � 0, using Eq. (44). The solution in the
other half-space is obtained using the symmetric of the problem. Substituting B for Q̄ in the expression, interesting the
result in the right-hand side of Eq. (44), and applying the integral properties of the Dirac delta function, we get:

v̄(x, s) = L(x, s)
[

v̄(0, s) + H(s)
]

(58)

H(s) = − Q 0 g

4s

⎛
⎜⎜⎝

k1k2+ws2

k1k2(k1+k2)

0
1
w

(k1+k2)

⎞
⎟⎟⎠ (59)

Eq. (58) expresses the solution of the problem in the Laplace transform domain in terms of the vector H(s), the applied
heat source and the vector v̄(0, s), representing the conditions at the plane source of heat. In order to evaluate the compo-
nents of this vector, we note first that, due to the symmetry of the problem, the displacement component vanishes at the
plane source of heat, thus:

u(0, t) = 0, ū(0, s) = 0 (60)

Gauss’ divergence theorem will now be used to obtain the thermal condition at the plane source. We consider a short
cylinder of unit base whose axis is perpendicular to the plane source of heat and whose bases lie on opposite sides of it.
Taking limits as the height of the cylinder tends to zero and noting that there is no heat flux through the lateral surface,
upon using the symmetry of the temperature field, we get:

q(0, s) = 1

2
H(t)Q 0 or q̄(0, s) = Q 0

2s
(61)

We shall use the generalized fractional modification Fourier’s law of heat conduction in the non-dimensional form,
namely,(

1 + τα
0

α!
∂α

∂tα

)
q j = −Θ, j (62)

Taking the Laplace transform of both sides of Eq. (62),

q̄ = − Θ̄ ′

(1 + (τα
0 /α!)sα)

(63)

and using Eq. (63), we obtain the condition:

∂Θ̄

∂x

∣∣∣∣
x=0

= − Q 0 g

2s
(64)

Eqs. (60) and (61) give two components of the vector B(x, s). In order to obtain the remaining two components, we
substitute 0 for x on both sides of Eq. (58), obtaining a system of linear equations whose solution gives:

Θ̄(0, s) = g Q 0(k1k2 + ws2)

2sk1k2(k1 + k2)
(65)

ū′(0, s) = g w Q 0

2s(k1 + k2)
(66)

Inserting the values from Eqs. (65), and (66) into the right-hand side of Eq. (58) and performing the necessary matrix
operations, we obtain:

Θ̄(x, s) = Q 0
(
1 + τα

0
α! sα

)
2s(k2 − k2)

[
(k2

1 − ws2)

k
e±k1x − (k2

2 − ws2)

k
e±k2x

]
(67)
1 2 1 2
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Fig. 3. Effect of fractional parameters α and β on the temperature distribution for the different theories.

ū(x, s) = ±Q 0 w
(
1 + τα

0
α! sα

)
2s(k2

1 − k2
2)

[
e±k1x − e±k2x] (68)

σ̄ (x, s) = Q 0 ws
(
1 + τα

0
α! sα

)
2(k2

1 − k2
2)

[
e±k1x

k1
− e±k2x

k2

]
(69)

In the above equations, the upper (plus) sign indicates the solution in the region where x < 0, while the lower (minus) sign
indicates the region where x � 0.

6. Inversion of Laplace transforms

In order to invert the Laplace transform in the above equations, we adopt a numerical inversion method based on a
Fourier series expansion [34]. In this method, the inverse g(t) of the Laplace transform ḡ(s) is approximated by the relation:

g(t) = ect

t1

[
1

2
ḡ(c) + Re

(
N∑

k=1

eikπt/t1 ḡ(c + ikπ/t1)

)]
, 0 � t � 2t1 (70)

where N is a sufficiently large integer representing the number of terms in the truncated infinite Fourier series. N must be
chosen such that:

ect Re
[
eiNπt/t1 ḡ(c + iNπ/t1)

]
� ε1 (71)

where ε1 is a persecuted small positive number that corresponds to the degree of accuracy to be achieved. The parameter c
is a positive free parameter that must be greater than the real parts of all singularities of ḡ(s). The optimal choice of c was
obtained according to the criteria described in [34].

7. Numerical results and discussion

A copper-like material was chosen for purposes of numerical evaluations, and the constants of the problem were taken
from [57]

ε = 1.618, ρ = 8954 kg/m3, T0 = 293 K, C E = 383.1 m2/s2 K, τ0 = 0.02

η0 = 8886.73 s/m2, αt = 1.78 × 10−5 K−1, C0 = 3397.1 m/s

λ = 7.76 × 1010 N/m2, μ = 3.86 × 1010 N/m2

The investigation of the effect of the fractional derivative parameters α and β has been carried out in the preceding
sections. The computations were performed for a value of time, namely, t = 1. This enables us to represent the typical
numerical results in Figs. 3–5, for the temperature Θ , displacement u and stress σ for various values of the parameters α
and β . The graphs show curves predicted by the different theories of thermoelasticity. In these figures, dotted lines rep-
resent the solution corresponding to fractional generalized thermoelasticity (FGTE Theory) and continued lines represent
the solution corresponding to generalized thermo-viscoelasticity (GTVE Theory), while broken lines represent the solution
corresponding to new situation (FGTVE Theory).
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Fig. 4. Effect of fractional parameters α and β on the displacement distribution for the different theories.

Fig. 5. Effect of fractional parameters α and β on stress distribution for the different theories.

Hence we conclude with the following points:

(i) in all figures, it is noticed that the fractional orders α and β have significant effects on all fields, but β has not effects
on temperature distribution;

(ii) it is noticed that all the waves reach the steady state depending on the value of the fractional orders α and β;
(iii) in Fig. 1, we notice that the temperature increment in the fractional order theories is a continuous function, which

means that the particles transport the heat to the other particles easily and this makes the decreasing rate of the
temperature greater than in the other theory, which predicted through the generalized one. In the fractional order
theories, we notice that the thermal wave cut the x-axis more rapidly than in the other ones. We learn from this figure
that the temperature distribution decreases with increasing α;

(iv) in Fig. 2, exhibiting the space variation of the displacement for different theories, we notice that, in the fractional order
theory, the displacement cut the x-axis more rapidly than in the other curves obtained through the generalized one
when β increases.

8. Conclusion

The main goal of this work was to introduce a new fractional mathematical thermo-viscoelastic model for an isotropic
medium, which could describe the behavior of viscoelastic materials using a few parameters. Some theorems of thermo-
viscoelasticity follow as limit cases. Some comparisons have been shown in the figures to estimate the effects of the
fractional-order parameters on all the studied fields. According to this new theory, we have to construct a new classifi-
cation for materials according to their fractional parameter α, where this parameter becomes a new indicator of its ability
to conduct heat in a viscoelastic medium, and fractional parameter β becomes a new indicator of its ability to restrict
displacement and stress in the same medium.
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Appendix A

The solution of the system (44) is given by:

a0 = k2
1 cosh(K2x) − k2

2 cosh(K1x)

k2
1 − k2

2

(72a)

a1 = k3
1 sinh(k1x) − k3

2 sinh(k2x)

k1k2(k2
1 − k2

2)
(72b)

a2 = cosh(k2x) − cosh(k1x)

k2
1 − k2

2

(72c)

a3 = k2 sinh(k1x) − k1 sinh(k2x)

k1k2(k2
1 − k2

2)
(72d)

where the components [li j(x, s)] are defined as:

l11 = 1

k2
1 − k2

2

[(
gs − k2

2

)
cosh(k1x) − (

gs − k2
1

)
cosh(k2x)

]

l12 = gεws3

k2
1 − k2

2

[
sinh(k1x)

k1
− sinh(k2x)

k2

]

l13 = 1

k2
1 − k2

2

[
(k2

1 − ws2) sinh(k1x)

k1
− (k2

2 − ws2) sinh(k2x)

k2

]

l14 = sεg

k2
1 − k2

2

[
cosh(k1x) − cosh(k2x)

]

l21 = g ws

k2
1 − k2

2

[
sinh(k1x)

k1
− sinh(k2x)

k2

]

l23 = w

k2
1 − k2

2

[
cosh(k1x) − cosh(k2x)

]

l24 = 1

k2
1 − k2

2

[
(k2

1 − gs) sinh(k1x)

k1
− (k2

2 − gs) sinh(k2x)

k2

]

l31 = sgl13, l32 = εgs2l23

l33 = 1

k2
1 − k2

2

[(
k2

1 − ws2) cosh(k1x) − (
k2

2 − ws2) cosh(k2x)
]

l34 = sεg

k2
1 − k2

2

[
k1 sinh(k1x) − k2 sinh(k2x)

]
l41 = w

ε
l14, l42 = ws2l24, l43 = w

sεg
l34

l44 = 1

k2
1 − k2

2

[(
k2

1 − gs
)

cosh(k1x) − (
k2

2 − gs
)

cosh(k2x)
]

(73)

Appendix B

The Caputo-derivative Laplace transform is defined as:

L
{

Dα
C g(t)

} = {
sα ḡ(s)

} −
n−1∑
K=0

f k(0+)
sα−1−k, n − 1 < α < n

Note that as we use the Caputo fractional derivative omitting the index C , it should be noted that this relation is valid if
initial conditions are properly taken into account [49,52].
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