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Piezoelectric actuators are widely used for precise micro-positioning. The ability of fine
positioning is strictly under the effect of hysteresis nonlinear behavior. Simultaneous
micro-positioning in multi-dimensions has also attracted much attention in recent years.
In addition to hysteresis behavior, a nonlinear dynamic coupling exists between the
different degrees of freedom in multi-axis piezoelectric actuators. The nonlinear coupling
phenomenon is called the Axes Coupling Effect (ACE). A modified Prandtl–Ishlinskii (PI)
operator and its inverse are utilized for both the identification and real time compensation
of the hysteresis effect in this article. Considering the PI estimation error and probable
un-modeled dynamics, a variable structure controller coupled with the neural network
is proposed for position tracking. Due to the model-based structure of the proposed
controller, the dynamic model of actuator should be identified. Coupling between nonlinear
hysteresis behavior and the linear dynamic model causes a complicated identification. The
ACE has also an unknown trend. Eliminating the necessity of dynamic parameters and ACE
identification, a Radial Basis Function (RBF) neural network approach would estimate the
unknown dynamics of the designed controller. Stability of the controller in the presence
of estimated unknown dynamics is demonstrated analytically. Experimental results depict
that the proposed approach can achieve precise tracking of multi-frequency trajectories and
appropriate estimation of unknown dynamics.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Piezoelectric actuators are widely used for fine positioning and vibration control. This is due to properties such as high
resolution, natural frequency and frequency response [1]. However, precise control of smart actuators, such as piezoelectric
ones, is a challenging problem, caused by nonlinear hysteresis behavior.

Micro-positioning in multi-dimensions has also become attractive in recent years. Therefore general piezoelectric actua-
tors with multi-Degrees Of Freedom (DOF) have been designed and manufactured by various producers.

In addition to nonlinear hysteresis effect, a nonlinear dynamic coupling also exists between different degrees of freedom
in multi-axes piezoelectric actuators. This means actuating the stage in one direction can cause undesired position drift in
other directions. This nonlinear coupling phenomenon is called Axes Coupling Effect (ACE).

The major part of research work reported has been concentrated on hysteresis nonlinearity effect. Models of Preisach,
Krasnoselskii–Pokrovskii, Prandtl–Ishlinskii, Duhem and Bouc–Wen have been proposed for the identification of the
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Fig. 1. Second-order nonlinear dynamic model of a 1 DOF piezoelectric actuator.

hysteresis effect [2–6]. By applying the inverse hysteresis models as a compensator, hysteresis behavior could be eliminated
and feedforward position control of such actuators can be carried out.

This open loop approach is limited to only quasi-static trajectories. Several methods have also been suggested for closed
loop micro-positioning control.

Impedance control [7], sliding mode control [8] and robust control coupled with adaptive approaches [8–10] have been
used in such a case. An observer-based robust control has also been proposed with restricted access to all states of the
actuator [11].

The main drawback of above mentioned control structures is the model dependency. In other words, system dynamic
parameters should be identified before implementing control approaches. The identification of piezoelectric actuators is a
tedious problem due to coupling between the hysteresis nonlinearity effect and linear dynamic model. Unknown nonlinear
structure of ACE would also have to be considered. As a result, control approaches with non-parameter dependency would
be an alternative for these mechanical systems. Neural networks are an appropriate solution. In fact, a neural network
structure could estimate the unknown dynamic part of the controller. A common approach is the overall inverse model
identification by neural networks. In such a case, Zhang et al. [12] have introduced a neural based control approach, but
experimental results did not depict an appropriate trajectory tracking. In addition, solo neural network based controls are
not robust to the inevitable sensor noises problem. Therefore, Yu et al. represented a robust neural network control [13].

The rate dependent hysteresis effect was compensated by a neural network based inverse dynamic identification. There is
not any analytical proof for the represented approach. Liaw et al. proposed a robust control coupled with a neural network
[14]. All actuator hysteresis effects have been modeled as a perturbation. The designed controller should be robust to these
perturbations. Therefore it would increase the controller chattering effect. Eliminating this problem, the hysteresis behavior
has been assumed as a function of desired position and velocity [15]. In a hysteretic system such as a piezoelectric actuator,
the current position depends on the current input voltage and the last step time position. It means that the output is related
with the input and the history of the output. Although in a closed loop system the input is a function of the desired output,
the assumption mentioned in [15] would not be appropriate alone. It means that the hysteresis would also be a function of
actual output.

A generalized Prandtl–Ishlinskii model and its inverse are utilized for the identification and online feedforward compen-
sation of hysteresis in this article. This leads to the elimination of the actuator hysteresis behavior. The ACE is also considered
as a nonlinear dynamic model. Considering the PI estimation error and probably un-modeled dynamics, a variable structure
controller is proposed for trajectory tracking. A neural network structure estimates unknown parameter dependent dynam-
ics and unknown ACE all together. The stability of the controller in the presence of neural network output is demonstrated
analytically. Experimental results demonstrate that the PI model is achieved in hysteresis identification and compensation.
The proposed controller also tracks desired multi-frequency trajectories precisely. The results also validate the neural net-
work essential role in the precise trajectory tracking. Finally, the controller performance is compared with alternative control
schemes.

2. Full dynamic model of a 2-DOF piezoelectric actuators

A second-order dynamics has been utilized for piezoelectric actuators. The model was divided into two parts. The first
part is a second-order linear dynamics that refers to the mass–spring–damper system. The second part describes the non-
linear portion of the dynamics, i.e. hysteresis nonlinearity effect.

Fig. 1 shows the linear second-order dynamics of a 1-DOF piezoelectric actuator that would be added by hysteresis
nonlinearity effect in the input.
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Governing equation in free motion is represented as follows:

mẍ(t) + cẋ(t) + kx(t) = H F
(

v(t)
)

(1)

where x(t) and v(t) represent the actuator displacement and input voltage, respectively. m, c and k denote mass, damping
and stiffness gains, respectively. H F (v(t)) expresses the hysteretic relation between the input voltage and the excitation
force.

Having high stiffness, piezoelectric actuators possess high natural frequency. Due to high natural frequency, in the low
frequency operation the inertia and damping effects could be neglected. Hence (1) can be transformed to (2) in a free
motion:

x(t) = 1

k
H F

(
v(t)

) = Hx
(

v(t)
) {

mẍ(t) � cẋ(t) � kx(t)
}

(2)

This equation relates the input voltage and actuator displacement to each other. By this facilitation, the constraint of iden-
tification of voltage–force nonlinear hysteretic relation is not necessary. As a result, the nonlinear relation of input voltage
and displacement would be identified. This means that the necessity of an accurate force sensor can be converted to the
usual actuator position sensor.

By the identification of the hysteresis mapping between the input voltage and the actuator displacement (Hx(v(t))), can
be scaled up with a factor to obtain H F (v(t)).

Considering uncertainties, hysteresis estimation error and probably un-modeled dynamics, a perturbation term P (t)
would be added to the dynamic model. Finally, the dynamic model of the system is as follows:

mẍ(t) + cẋ(t) + kx(t) = kHx
(

v(t)
) + P (t) (3)

An extra nonlinear effect known as the Axes Coupling Effect (ACE) should be considered in multi-degrees of freedom
micro-stages. Due to structural coupling of different axes, moving in a certain direction would cause a drift in others. As
shown in Fig. 2, actuating the micro-stage in the direction of X would cause displacement in the other direction.

In closed loop applications this effect would be more considerable. To illustrate this fact, a closed loop control is utilized
for the X trajectory tracking. The X tracking error with and without existence of Y actuation is shown in Fig. 3. The effect
of ACE on the tracking error is clearly depicted.

The ACE relation is nonlinear and should be accounted in dynamic modeling. A 2-DOF micro-stage as shown in Fig. 4 is
utilized as an experimental positioning setup in this article.

As a result, the piezoelectric dynamic model in any degree of freedom should be modified as follows:

miẍi(t) + ci ẋi(t) + ki xi(t) = ki Hxi

(
vi(t)

) + Pi(t) + Ci
(
x j(t)

)
, i, j = 1,2 (4)

where Ci(x j(t)) hints the ACE in a certain direction. Finally the dynamic model of 2-DOF piezoelectric actuator is represented
as follows:

m1ẍ1(t) + c1ẋ1(t) + k1x1(t) = H F1

(
v1(t)

) + P1(t) + C1
(
x2(t)

)
m2ẍ2(t) + c2ẋ2(t) + k2x2(t) = H F2

(
v2(t)

) + P2(t) + C2
(
x1(t)

)
(5)

2.1. Generalized Prandtl–Ishlinskii (PI) hysteresis model

A generalized Prandtl–Ishlinskii model is used for both hysteresis identification and compensation [6]. The most impor-
tant advantage of this model is its simplicity, and that its inverse could be calculated analytically. In addition, this approach
could be utilized in open-loop systems where the feedback of signals is not accessible. A rate independent backlash operator,
as shown in Fig. 5, is the primary operator in the PI hysteresis model.

y(t) = wh Hr[x, y0](t)
Hr = max

[
x(t) − r,min

{
x(t) + r, y(t − T )

}]
y(0) = max

[
x(0) − r,min

{
x(0) + r, y0

}]
(6)

The Prandtl–Ishlinskii method expresses that the hysteresis loop could be identified as the summation of a number of
backlash operators with different thresholds (r) and weights (wh).

y(t) =
n∑

i=0

wT i

h Hi
r[x, y0](t) (7)

The key idea of an inverse feedforward compensation of hysteresis is to cascade the inverse hysteresis operator H−1
x with

the actual hysteresis. As a result, an identity mapping between the desired actuator output xd(t) and the actuator response
x(t) would be obtained. The structure of inverse feedforward hysteresis compensation is shown in Fig. 6.
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Fig. 2. ACE due to actuating in the X axis direction.
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Fig. 3. The effect of axis coupling on the tracking error.

Fig. 4. 2-DOF piezoelectric actuator as an experimental setup.
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Fig. 5. Backlash operator.

Fig. 6. Inverse feedforward compensation of hysteresis effect.

As shown in Fig. 6, the inverse PI operator H−1
x , uses xd(t) as an input and transforms it into a control input v = H−1(xd)

which produces x(t) in the hysteretic system that closely tracks xd(t) [16].
As a result, the feedforward positioning of the actuator for low frequency trajectories is achieved as follows:

x(t) = Hx
[

H−1
x

[
xd(t)

]]
(8)

3. Unknown dynamic estimation based robust control

Utilizing the inverse PI hysteresis model and choosing the input voltage as:

vi = H−1
Fi

(
ui(t)

)
(9)

apparently, the dynamic of actuator would be linearized as follows:

miẍi(t) + ci ẋi(t) + ki xi(t) = ui + Pi(t) + Ci
(
x j(t)

)
, i, j = 1,2 (10)

where u would be the control input.
Eq. (10) implies the linear structure of the actuator due to using the inverse PI model. The total perturbation P (t),

would contain model uncertainties such as the hysteresis estimation error and un-modeled dynamics. Sliding mode control,
because of its natural robustness, would be appropriate. Such a controller is absolutely dynamic parameter dependent.
Relaxing this dependency, a neural network structure would be designed for estimation of unknown parameter dependent
functions.

3.1. Sliding mode robust control design

Sliding mode control designs asymptotically stable hyperplanes such that all system trajectories converge to these hyper-
planes and slide along their path until approach the desired destination [8].

The objective is accurate trajectory tracking of the actuator position. Designing the control system, it is assumed that the
dynamic parameters are unknown and all disturbances are bounded. Tracking errors and sliding surfaces are defined as:

ei = xi(t) − xdi (t)

ėi = ẋi(t) − ẋdi (t)

Si = ėi + λiei (11)

where λi is a positive constant. The robust controller for trajectory tracking is proposed as:

vi(t) = H−1
xi

[
1 (

mi(ẍdi − λi ėi) + ci ẋi + ki xi + Ci
(
x j(t)

) − η1i Si − η2i Sgn(Si)
)]

(12)

ki
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η1i and η2i are positive coefficients and Sgn(·) is the signum function. Substituting the control input (12) in the dynamic
model (1), the closed loop dynamic would be obtained.

mi Ṡi + η1i Si + η2i Sgn(Si) = Pi(t) (13)

Satisfying the overall stability and sliding condition, η2 should be more than all disturbances as η2i > |Pi(t)|.
The designed controller is contained the unknown dynamic parameters. Therefore, unknown parts could be assumed as

a function Gi .

vi(t) = H−1
xi

[
1

ki

(
Gi − η1i Si − η2i Sgn(Si)

)]

Gi = mi(ẍdi − λi ėi) + ci ẋi + ki xi + Ci
(
x j(t)

)
(14)

In such a case, a neural network approach would estimate the unknown function Gi . The function Gi is assumed as follows:

Gi ≡ Gi(zi) (15)

zi is the neural network input vector.
Therefore the control input would be as follows:

vi(t) = H−1
xi

[
1

ki

(
Ĝ i(z) − η1i Si − η2i Sgn(Si)

)]
(16)

Ĝ i(z) is the neural network estimation.

3.2. Unknown dynamic estimation approach

Estimating an unknown vector function f (z), an RBF neural network is utilized [15]. RBF networks are special kind of 2
layer Multi-Layer Perceptron (MLP) networks with the fixed layer weights. In this approach, the activation function should
be radial basis.

Considering the Universal Approximation Theorem, the vector function f (z) with m outputs could be assumed as

f (z) = W T σ(z) + ε(z)

W T =
⎡
⎣

w10 · · · w1L
...

. . .
...

wm0 · · · wmL

⎤
⎦

σ(z) = [
1 σ1(z) σ2(z) · · · σL(z)

]T
(17)

where wij, σ (z) and ε(z) are the weights and biases, activation function and network estimation error respectively. The
estimation error would be bounded as follows:

∥∥ε(z)
∥∥ � δε ∀z (18)

Activation functions would be Gaussian as follows:

σi(z) = exp

[
− 1

2η2
i

‖z − μi‖2
]

(19)

μi and ηi are the center of function and its width, respectively.
Estimating the function Gi(zi), the input vector is introduced as:

zi = [
xi ẋi (ẍdi − λi ėi) x j

]T
(20)

Neural network would estimate the function

Ĝ i(zi) = Ŵ T σ(z) (21)

Ŵ i are the estimated weights. As a result, the control input would be as follows:

vi(t) = H−1
xi

[
1

ki

(
Ŵ T

i σi(zi) − η1i Si − η2i Sgn(Si)
)]

(22)

Fig. 7 depicts the overall block diagram of the proposed approach.
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Fig. 7. Block diagram of the proposed control approach.

3.3. Stability analysis and updating rule

Substituting the control input in the dynamic model, the closed loop dynamic would be achieved.

mi Ṡi + η1i Si + η2i Sgn(Si) = G̃ i(zi) + Pi(t) (23)

G̃ i(zi) = Ĝ i(zi) − Gi(zi) is the function estimation error.

G̃ i(zi) = W̃ T
i σi(zi) − εi(zi) (24)

W̃ i is the weight estimation error and is defined as W̃ i = Ŵ i − W i . As a result, the closed loop dynamic system would be
as follows:

mi Ṡi + η1i Si + η2i Sgn(Si) = W̃ T
i σi(zi) − εi(zi) + Pi(t) (25)

The positive definite Lyapunov candidate function (26) is considered.

V i = 1

2
mi S2

i + 1

2
W̃ T

i Γ −1
i W̃ i (26)

Differentiating V i and substituting the closed loop dynamic (23), V̇ i would be derived.

V̇ i = −η1i S2
i − η2i |Si | +

(
W̃ T

i σi(zi) − εi(zi) − Pi(t)
)

Si + W̃ T
i Γ −1

i
˙̃W i (27)

Considering fixed desired weights ˙̃W i = ˙̂W i , the weight updating rule is proposed as follows:

˙̂W i = −Γiσi(zi)Si (28)

Γi is the symmetric, positive definite diagonal gain matrix. Therefore V̇ i would be negative semidefinite by a lower bounded
gain η2i .

V̇ i < −η1i S2
i − η2i |Si | −

(
εi(zi) + Pi(t)

)
Si

< −η1i S2
i − η2i |Si | +

∣∣εi(zi)
∣∣|Si| +

∣∣Pi(t)
∣∣|Si|

< −η1i S2
i − η2i |Si | (29)

if

η2i >
∣∣Pi(t)

∣∣ + ∣∣εi(zi)
∣∣

>
∣∣Pi(t)

∣∣ + δεi

Utilizing the Barbalat lemma, asymptotic tracking of the desired trajectory could apparently be achieved.
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Fig. 8. The experimental setup.

Fig. 9. The triangular quasi-static input voltage for hysteretic estimation.

4. Experimental results

The proposed controller was implemented experimentally. The experimental setup is shown in Fig. 8. The setup contains
a P-615 Nano Cube piezoelectric actuator with 420 μm maximum displacement in X and Y directions. A DS1104 dSPACE
data acquisition and controller board are used for data capturing. Matlab/Simulink software is utilized for implementation
of the control approach. Two capacitive sensors would feed back the position of the actuator.

The modified PI model could estimate the actuator hysteresis behavior. Eliminating the dynamic hysteresis effect, a low
frequency quasi-static input is utilized for hysteresis identification as shown in Fig. 9.
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Fig. 10. The modified PI hysteresis identification.

Table 1
Controller parameters and network gains.

Parameter Value Parameter Value

K1x 100 λ 300
K2x 500 η1 200
K3x 2000 η2 20
K4x 500

The domain and frequency of the input voltage are 100 V and 0.125 Hz respectively. As a result, Fig. 10 shows the precise
hysteresis identification.

The proposed controller was tested on the actuator. Initial network weights were set at zero. Increasing the network
convergence, Gi(zi) is divided to four subfunctions. Each one would be identified by a network including 30 activation
functions.

Gi(zi) = mi(ẍdi − λi ėi) + ci ẋi + ki xi + Ci
(
x j(t)

)
= Gmi + Gci + Gki + GCOi (30)

Updating gain matrices is proposed as follows:

Γmi = K1 Diag{1/K1,1,1, . . . ,1}
Γci = K2 Diag{1/K2,1,1, . . . ,1}
Γki = K3 Diag{1/K3,1,1, . . . ,1}
ΓCOi = K4 Diag{1/K4,1,1, . . . ,1} (31)

4.1. One axis control simultaneous with the other’s actuation

For the first trial, the Y axis is actuated by a harmonic voltage as V y = 50 + 30 sin(10t). Simultaneously, the desired
trajectory in the X direction would be xd = 40 + 30 sin(t). Table 1 shows controller gains and network parameters.

Fig. 11 depicts clearly that the actuator has a precise tracking.
Validating the effect of neural network estimation, it has been eliminated in the control input structure. The tracking

result is seen in Fig. 12. The actuator response does not absolutely converge to the desired trajectory by the robust control
alone.

Validating the controller performance, a multi-frequency desired trajectory xd = 70 + 10.5[sin(5t) + sin(7t) + sin(10t)] is
considered. The tracking is achieved as shown in Fig. 13. The control input would also be bounded as seen in Fig. 14.
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Fig. 11. Tracking and tracking error.

Fig. 12. The trajectory tracking without the neural network estimation.

4.2. Controller performance analysis

A comparative investigation has been done for evaluating the controller performance. Due to the non-model based struc-
ture of the proposed controller, the performance is compared with common non-model based control schemes. Therefore
usual Proportional–Differential (PD) and Proportional–Integral (PI) controllers in the presence of hysteresis feedforward com-
pensation are utilized. The overall block diagram of experiments is depicted in Fig. 15. The tracking result for the tuned PD
controller with hysteresis compensation is shown in Fig. 16.

The performance is obviously poor and the tracking error is too large. The large tracking error is exactly caused by the
high stiffness of the piezoelectric actuators. This specification leads to a large difference between the desired trajectory and
the real output. Reducing the tracking error, a tuned PI controller with hysteresis compensation is utilized. The result is
presented in Fig. 17.

The tracking error is considerably reduced. But the perfect tracking has not been achieved as yet. The main reason is the
low controller robustness to the actuator output noises and ACE as shown in the focused part.

Finally, the tracking result for the proposed controller with the same trajectory is investigated as shown in Fig. 18.
The performance is absolutely improved due to the robust controller structure design.
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Fig. 13. Tracking and tracking error for a multi-frequency desired position.

Fig. 14. The bounded control input.

Fig. 15. The block diagram of the performance investigation by other controllers.
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Fig. 16. Tracking result by the PD controller with feedforward hysteresis compensation.

Fig. 17. Tracking result by the PI controller with feedforward hysteresis compensation.

Fig. 18. Tracking result by the proposed controller.

4.3. Simultaneous two axes control

For the second trial, both axes would be controlled simultaneously. In such a case, each axis actuation affects the other’s
positioning. The desired trajectories are xd = 40 + 30 sin(t) and yd = 40 + 30 cos(t) for the X and Y axes, respectively.
Networks gains are set as mentioned in Table 2.

Implementing designed controllers, the appropriate planar trajectory tracking as shown in Fig. 19 is achieved. Finally
tracking errors are as shown in Fig. 20.
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Table 2
Network gains for two axes control.

Parameter Value Parameter Value

K1x 50 K1y 50
K2x 100 K2y 100
K3x 2500 K3y 2000
K4x 500 K4y 500

Fig. 19. Planar trajectory tracking.

Fig. 20. Axes tracking error.
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5. Conclusion

The modified PI model has been used for both hysteresis identification and feedforward compensation. Therefore, the
nonlinear dynamic of hysteretic behavior is transformed to the linear model. As a result, inappropriate effects of hysteresis
behavior are relaxed. ACE (Axes Coupling Effect) is accounted in the dynamic model as a nonlinear relation of different
axes motion. Due to model uncertainties, a robust controller is proposed for precise position tracking. Eliminating dynamic
parameter and AFC identification, a neural network structure estimates unknown dynamic part of the controller. The stability
of the closed loop system was analytically proved. Experimental results validate the controller performance by precise multi-
frequency trajectory tracking in the presence of axes coupling. The comparative investigation with other control schemes
confirms the precise performance of the proposed controller. Simultaneous trajectory tracking for both axes is appropriately
achieved.
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