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The goal of this Note is to derive the second order model correcting the standard Reynolds
equation for fluid film lubrication. Starting from microscopic model described by the Stokes
system, we compute an asymptotic expansion for the solution. Instead of computing only
the first term, as in the standard Reynolds approximation, we keep first two terms leading
to the corrected model. We obtain equations similar to the Brinkman model for porous
medium flow.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Fluid film bearings are machine elements usually studied in the broader context of tribology — the science and technol-
ogy of friction, lubrication and wear. Simply speaking, they consist of two surfaces in relative motion, separated by a thin
fluid film, that lubricates the device and minimizes the friction and, consequently, the wear of the device. In our case, the
fluid is an incompressible liquid and the two surfaces are rigid. Such elements are very important in mechanical engineering
since they provide the reliability of the system and are crucial factor in limiting the dissipation of energy i.e. increasing the
efficiency. If a fluid film bearing is well designed, the wear is not an issue, since two surfaces are completely separated by
lubricant. It is therefore important to understand the behavior of the fluid film in the bearing.

The mathematical models for describing the motion of the lubricant usually result from simplifications of the basic
equations of fluid motion. In our case the Newtonian fluid will be considered, but other models are also used in the
literature. Simplification is based on the geometry of the lubricant film, i.e. its thickness. Using the thickness as a small
parameter, a simple asymptotic approximation is easily derived and it gives a well-known Reynolds equation for the pressure
of the fluid. Its derivation goes back to 19th century and the pioneering work of Reynolds [1]. The rigorous mathematical
justification, i.e. the proof that it can be obtained as the limit of the Navier–Stokes (rather Stokes) system, as the thickness
goes to zero, is due to Bayada and Chambat [2]. Error estimates and justifications in different norms and spaces have been
given by different authors, see e.g. [3,5,13,14].

There is an analogy between flow through a porous medium and flow of a lubricant film. In both cases we have low
permeable domain, and we use the domain permeability as the small parameter in the analysis. There are different models
for description of the porous medium flow, and the analogous law for the Reynolds equation would be the Darcy law [6].
It gives the proportionality between the velocity and the pressure drop providing an elliptic PDE for the pressure. One of
the problems with the Darcy law is that it cannot satisfy the no-slip boundary condition, natural for viscous fluids. It is due
to the fact that the velocity enters the system only with first derivatives. In 1947 Brinkman [7] added a correction to the
Darcy system, including the second derivatives of the velocity. That changes the nature of the system and allows to impose
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E-mail addresses: emarusic@math.hr (E. Marušić-Paloka), pazanin@math.hr (I. Pažanin), marusics@fpz.hr (S. Marušić).
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Fig. 1. The domain considered.

the Dirichlet boundary condition on the velocity. He assumed large permeability to compare his law with experimental
data. Several papers can be found on that subject, both experimental as well as theoretical. We mention only theoretical
papers that inspired our work. Sanchez-Palencia [4] and Levy [8] derived Brinkman law from Stokes system using formal
homogenization and asymptotic analysis for flow through an array of small particles. Allaire [9] rigorously proved their
result for periodic porous medium with large permeability. Auriault et al. [10] formally computed correctors for the Darcy
law and derived the Brinkman’s correction as a lower order term in an asymptotic expansion attributed to the flow. In case
of flow through a thin fissure driven by the body force, the problem was recently investigated in [11] by the authors of this
paper.

In the present Note we derive and justify the Brinkman-type model for description of the thin fluid flow in lubrication
theory. As far as we know, the same idea cannot be found in the existing literature in context of tribology. We start from the
linearized Stokes equations describing the microscopic flow in a thin three-dimensional domain and employ the technique
of two-scale asymptotic expansion in Section 3. Zero-order term in the expansion corresponds to the solution of Reynolds
lubrication equation. We compute the successive terms in the asymptotic expansion of the solution leading to a higher-order
correction of the standard Reynolds approximation. We do it in a way that those successive terms have zero mean value.
That requirement forces us to correct the macroscopic equation. As a result, Brinkman-type system is obtained governing the
two-dimensional macroscopic flow and that represents our main contribution. Rigorous justification of the formally derived
asymptotic model is discussed in the concluding section.

2. The problem

Let O ⊂ R2 be a bounded domain and h :O → 〈0,+∞〉 a smooth positive function. For a small parameter ε > 0, we
define our three-dimensional domain occupied by the fluid as

Ωε = {
(x1, x2, x3) ∈ R3: x′ = (x1, x2) ∈ O, 0 < x3 < Hε(x1, x2)

}
, Hε(x1, x2) = εh(x1, x2) (1)

As we can see (Fig. 1), the lower surface is supposed to be plane, while the roughness of the upper surface is described
by the given function h. We assume the flow to be governed by the stationary Stokes system

−μ�uε + ∇pε = 0 in Ωε (2)

div uε = 0 in Ωε (3)

The vector field uε denotes the fluid velocity whereas the pressure is given by the scalar field pε . The positive real number
μ > 0 corresponds to the viscosity of the fluid. The choice of boundary conditions highly depends on the devices to be
considered. Here we want to study the lubrication process where two rigid surfaces are in relative motion and are separated
by a thin layer of fluid. Thus, we impose the following boundary conditions:

uε = 0 for x3 = εh, uε = w0 for x3 = 0 (4)

uε × n = 0 for x′ ∈ ∂O, pε = qε for x′ ∈ ∂O (5)

for given outer pressure qε = ε−2q and constant velocity w0 of relative motion of two surfaces. Depending on q the bearing
can be self-acting or externally pressurized. Obviously, w0 · k = 0 implying uε

3|x3=0 = 0. Here and in the sequel (i, j,k)

denotes the standard Cartesian basis. The boundary condition imposed along the lateral boundary (for x′ ∈ ∂O) involves
pressure, so the existence and uniqueness result for the problem under consideration can be found in the referenced paper
by Conca et al. [12]. The goal of this Note is to find an effective law of high order of accuracy describing the asymptotic
behavior of the flow in Ωε .

3. Asymptotic expansion

We introduce the fast variable y = x3
ε and look for an asymptotic expansion of the unknowns uε and pε in the form1

1 Note that p0 = p0(x′) since the lowest order approximation of the pressure requires ∂ p0

∂ y = 0.
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uε = u0(x′, y
) + εu1(x′, y

) + ε2u2(x′, y
) + · · · (6)

pε = 1

ε2
p0(x′) + 1

ε
p1(x′, y

) + p2(x′, y
) + · · · (7)

In the sequel we employ the following notation:

∇x′φ = ∂φ

∂x1
i + ∂φ

∂x2
j, �x′ f = ∂2f

∂x2
1

+ ∂2f

∂x2
2

, divx′ f = ∂ f1

∂x1
+ ∂ f2

∂x2
(8)

for a scalar function φ and a vector function f = f1i + f2j + f3k. Plugging the above expansions into Eq. (2) and collecting
the terms with equal powers of ε yields

ε−2
[
−μ

∂2u0

∂ y2
+ ∇x′ p0 + ∂ p1

∂ y
k
]

+ ε−1
[
−μ

∂2u1

∂ y2
+ ∇x′ p1 + ∂ p2

∂ y
k
]

+
[
−μ

∂2u2

∂ y2
− μ�x′u0 + ∇x′ p2 + ∂ p3

∂ y
k
]

+ · · · = 0 (9)

If we keep only the main order term for the moment, we obtain

−μ
∂2u0

∂ y2
+ ∇x′ p0 + ∂ p1

∂ y
k = 0, u0 = 0 for y = h, u0 = w0 for y = 0 (10)

leading to p1 = p1(x′) and

u0(x′, y
) = 1

2μ
y
(
h
(
x′) − y

)
v
(
x′) +

(
1 − y

h(x′)

)
w0, v = v1i + v2j (11)

Observe that

v + ∇x′ p0 = 0 (12)

From the divergence equation (3) we deduce

divx′ u0 + ∂u1
3

∂ y
+ ε

(
divx′ u1 + ∂u2

3

∂ y

)
+ · · · = 0 (13)

Integrating from 0 to h(x′) with respect to y we get from the main order term

divx′

( h∫
0

u0 dy

)
= divx′

(
h3

12μ
v + h

2
w0

)
= 0 (14)

In view of (11)–(12), we obtain the classical Reynolds equation

divx′
(
h3∇x′ p0) = 6μ∇x′h · w0 in O (15)

Together with a boundary condition p0 = q on ∂O it forms a Dirichlet boundary value problem for linear elliptic equation
of second order for the pressure. The velocity is then determined straightforward from a simple equation (12). From Eq. (15)
we can compute an approximation for the mean pressure, i.e. it does not take into account pressure variations across the
thin fluid film since they are small. Thus, in the Reynolds system, the pressure appears with second order derivatives and
the velocity with no derivative. On the other hand, in the original Stokes system we had a velocity with second order
derivatives, and a pressure with first order derivatives. Therefore, on the first glance, those two systems are of completely
different types. Following the idea from Marušić-Paloka et al. [11], we continue the computation and keep the lower order

terms. To be more precise, we compute the correctors in a way that they have zero mean value
∫ h(x′)

0 ·dy. That way the
correctors do not contribute to the net flow rate. Such requirement will force us to change the leading order term u0 which
now has to carry the whole flow rate. However those changes will be of the lower order. As a consequence, we are going to
obtain the effective law very similar to the 2D Navier–Stokes system but with small viscosity term whose (effective) viscosity
does not correspond to the physical viscosity of the liquid.



E. Marušić-Paloka et al. / C. R. Mecanique 340 (2012) 596–601 599
We return to (9) and (13). We deduce

u1
3 = −

y∫
0

divx′ u0(x′, ξ
)

dξ =
(

y3

6μ
− y2h

4μ

)
divx′ v − y2

4μ
∇x′h · v + y2

2
w0 · ∇x′

(
1

h

)
(16)

u1
β = 0, β = 1,2, p1 = 0 (17)

p2 = μ
∂u1

3

∂ y
+ Q 2(x′) = − y

2
divx′(hv) + y2

2
divx′ v + μyw0 · ∇x′

(
1

h

)
+ Q 2(x′) (18)

In order to get optimal error estimate for the pressure, we keep the mean value of p2 equal to zero as well. In view of that,
from (18) we obtain Q 2 = 0. Now we construct the corrector u2. In view of (9), it is given by

−μ
∂2u2

∂ y2
= μ�x′u0 − ∇x′ p2 − ∂ p3

∂ y
k, u2 = 0 for y = 0,h (19)

To keep the divergence equation (13) satisfied as well, we put p3 = 0 implying u2
3 = 0. For given u0, p2, p3 and unknown u2,

(19) is a boundary value problem for an ordinary differential equation, with respect to y. It has a unique solution, with non-
zero mean value. That does not suit our purpose as we do not want the corrector u2 to contribute to the net flow rate.
To correct that, we add an additional term to Eq. (19), denoted by A(x′). Thus, we consider the following modified problem
for u2:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−μ
∂2u2

∂ y2
= μ�x′ u0 − ∇x′ p2 + A

(
x′)

u2 = 0, for y = 0,h
h∫

0

u2 dy = 0

(20)

Note that A(x′) is an unknown in the system and it is to be determined in order to satisfy
∫ h

0 u2 dy = 0. As the consequence
the zero order term in (9) will not lead to the macroscopic equation of the Reynolds type (12) and (15). Instead, an
additional term caused by A(x′) will appear bringing in a second order (viscous) term in the effective law. However, such
term will be of the lower order ε2. Now we compute u2. Employing the decomposition

�x′(hv) = (�x′h)v + 2∇x′h · (∇x′ v)τ + h�x′v (21)

from (11) we deduce

μ�x′u0 = y

2
(�x′h)v + y∇x′h · (∇x′ v)τ + 1

2

(
hy − y2)�x′v − μy�x′

(
1

h

)
w0 (22)

In view of (15) we can obtain

∇x′ p2 =
(

y − 3y2

2h

)
∇x′(∇x′h · v) − 3y2

2
∇x′

(
1

h

)
(∇x′h · v)

− 2μy∇x′
(

∇x′
(

1

h

)
· w0

)
− 3μy2∇x′

(
1

h3
∇x′h · w0

)
(23)

Taking into account (22) and (23), we solve (20) by putting

u2 = 1

24μ

(
y4 − 2hy3)�x′ v − y3

12μ
(�x′h)v − y3

6μ
∇x′h · (∇x′ v)τ − y4

8μ
∇x′

(
1

h

)
(∇x′h · v)

+ 1

μ

(
y3

6
− y4

8h

)
∇x′(∇x′h · v) + y3

6
�x′

(
1

h

)
w0 − y3

3
∇x′

(
∇x′

(
1

h

)
· w0

)

− y4

4
∇x′

(
1

h3
∇x′h · w0

)
− y2

2μ
A
(
x′) − y

μ
B
(
x′) (24)

where
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A
(
x′) = −h

4
(�x′h)v − h

2
∇x′h · (∇x′ v)τ − h2

10
�x′v + h

20
∇x′(∇x′h · v) − 9h2

20
∇x′

(
1

h

)
(∇x′h · v)

+ μh

2
�x′

(
1

h

)
w0 − μh∇x′

(
∇x′

(
1

h

)
· w0

)
− 9μh2

10
∇x′

(
1

h3
∇x′h · w0

)
(25)

B
(
x′) = h2

24
(�x′h)v + h2

12
∇x′h · (∇x′ v)τ + h3

120
�x′v + h2

60
∇x′(∇x′h · v) + h3

10
∇x′

(
1

h

)
(∇x′h · v)

− μh2

12
�x′

(
1

h

)
w0 + μh2

6
∇x′

(
∇x′

(
1

h

)
· w0

)
+ μh3

5
∇x′

(
1

h3
∇x′h · w0

)
(26)

Now we integrate (9) with respect to y from 0 to h(x′) leading to

v + ∇x′ p0 − ε2
[

h2

10
�x′v + h

2
∇x′h · (∇x′ v)τ − h

20
∇x′(∇x′h · v) + h

4
(�x′h)v + 9h2

20
∇x′

(
1

h

)
(∇x′h · v)

]

= μhε2
[
∇x′

(
∇x′

(
1

h

)
· w0

)
+ 9h

10
∇x′

(
1

h3
∇x′h · w0

)
− 1

2
�x′

(
1

h

)
w0

]
in O

divx′
(
h3v

) = −6μ∇x′h · w0 in O

v × n = 0 and p0 = q on ∂O (27)

This is the new, Brinkman-type, effective law satisfied by (v, p0) and describing the macroscopic flow. Unlike Reynolds

system (12), (15), at first glance it is very similar to 2D Navier–Stokes system (notice the viscous term H2
ε

10 �v). Solvability
of (27) can be established using the techniques from [12] employed for the governing system as well. Note that (27) is,
in fact, linear system so the main difficulty is the divergence equation, not allowing us to eliminate the pressure in the
variational formulation. That can be elegantly fixed by introducing the new unknown z = h3v + 6μhw0 (being, evidently,
divergence-free) and deriving the momentum equation for z instead of v. In addition the third component of the velocity is

determined by (16). It is important to notice that the viscosity H2
ε

10 is not equal to the viscosity μ of the lubricant.

Remark 1. To illustrate the difference between the standard Reynolds model, given by (12), (15), and derived effective law
(27), let us consider a simple case of rectangular domain, namely h = 1 and O =]0,1[2. We prescribe the pressure drop
q0 − q1 between sides x1 = 0 and x1 = 1 and take μ = 1 for notational simplicity. In this case, we can solve those two
problems and obtain the explicit solutions in the form2:

vR = (q0 − q1)i (28)

vB = (q0 − q1)

[
1 + 1 − e−

√
10
ε

e
−2

√
10

ε − 1

(
e−

√
10x2
ε + e

√
10(x2−1)

ε
)]

i (29)

Even in such simplified setting, we observe an additional term in the solution vB of the Brinkman-type equations repre-
senting the correction of the classical Reynolds solution vR . Moreover, note that vB = 0 for x2 = 0,1.

4. Rigorous justification

In this concluding section, we discuss justification by error estimate of the formally derived asymptotic model. It is well
known that, for the Reynolds solution the error of approximation, expressed in the rescaled L2 norm, is not better than
O (ε), depending on the boundary conditions under consideration (see e.g. [13]). We need to get better estimates for the
effective law (27) in order to justify its usage. For the original boundary conditions (4)–(5) describing real physical situation,
a satisfactory L2 or H1 error estimate seams to be unfeasible. That is due to the boundary layer effects polluting those
estimates.3 To avoid the boundary layer, we prove the error estimate in case of periodic boundary condition. We take O to
be a rectangle, h is assumed to be periodic, and we impose on ∂O periodicity condition:

(
uε, pε

)
is O periodic in x′ variable (30)

Using standard techniques (see e.g. [11, Proof of Theorem 1]), in such setting we can prove:

2 In both cases, the pressure is given by p0 = q0 + (q1 − q0)x1.
3 Indeed, in (29) the function e−

√
10x2
ε + e

√
10(x2−1)

ε is of the boundary layer type.
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Theorem 4.1. The following estimates hold:

∣∣∣∣∣
h∫

0

uε dy − h3

12μ
v − h

2
w0

∣∣∣∣∣
L2(O)

� Cε3,

∣∣∣∣∣ε2

h∫
0

pε dy − p0

∣∣∣∣∣
L2(O)

� Cε3 (31)

where (v, p0) is given by (27).

In case of Dirichlet condition, however, H−1 and H−2 error estimates can be proved, but the proof is tedious and
technical.
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