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Bounds are obtained on the volume fraction in a two-dimensional body containing
two elastically isotropic materials with known bulk and shear moduli. These bounds
use information about the average stress and strain fields, energy, determinant of the
stress, and determinant of the displacement gradient, which can be determined from
measurements of the traction and displacement at the boundary. The bounds are sharp if in
each phase certain displacement gradient field components are constant. The inequalities
we obtain also directly give bounds on the possible (average stress, average strain) pairs in
a two-phase, two-dimensional, periodic or statistically homogeneous composite.
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1. Introduction

A fundamental problem is to determine the volume fraction occupied by an inclusion in a body, or more generally the
volume fraction occupied by one material in a body containing two materials. This can usually be done by weighing the
body but this may not always be practical or the densities of the two materials may be close. Then one might seek to
bound the volume fraction from measurements of tractions and displacements (for elasticity) or current fluxes and voltages
(for conductivity) at the boundary of the body. If the body contains a statistically homogeneous or periodic composite (with
microstructure much smaller than the dimensions of the body), then such boundary measurements can yield information
about the effective tensors of the composite and it has long been recognized (see, for example, [1–4]) that bounds on
effective tensors (which involve the volume fraction and material moduli) can be inverted to yield bounds on volume
fractions. As shown in [5], even if the body does not contain a statistically homogeneous or periodic composite, but provided
that the applied tractions (or boundary displacements), or current fluxes (or boundary voltages) are such that the fields in
the body would be uniform were it filled with a homogeneous material, then boundary measurements can yield information
about the effective tensor of a composite containing rescaled copies of the body packed to fill all space in a periodic
structure. Bounds on this effective tensor yield universal bounds on the response of the body when such special boundary
conditions are applied, which generalize those first obtained by Nemat-Nasser and Hori [6,7]. They can then be inverted
to yield bounds of the volume fraction [5], and when the volume fraction is asymptotically small the resulting bounds
include those obtained by Capdeboscq and Vogelius [8,9] (for conductivity) and Capdeboscq and Kang [10] (for elasticity)
using polarizability tensor bounds [11,8]. Other bounds on the volume fraction, involving constants which are not easy to
determine, were obtained by Kang, Seo and Sheen [12], Ikehata [13], Alessandrini and Rosset [14], Alessandrini, Rosset and
Seo [15], Alessandrini, Morassi and Rosset [16,17] and Morassi, Rosset and Vessella [18].

Given this close connection between bounding the effective tensor of a composite material and bounding the response
of the body when these special boundary conditions are used, one might wonder if methods that are used to obtain bounds
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on effective tensors of composites could also be used to bound the response of the body with any boundary conditions
on the fields, and then be inverted to bound the volume fraction. For conductivity such an approach has been successfully
taken by Kang, Kim, and one of the authors [19], using the translation method of Murat and Tartar [20–22] and Lurie and
Cherkaev [23,24] which is one of the most successful methods for bounding effective tensors of composites: see the books
[25–28]. For a certain class of inclusion shapes (such that the field inside the inclusion is uniform for appropriate boundary
conditions) one of the resulting volume fraction bounds gives the exact volume fraction. For special boundary conditions
the bounds reduce to those obtained in [5], and for asymptotically small volume fractions the bounds reduce to those of
Capdeboscq and Vogelius [8,9].

The initial goal of this paper was to use the translation method to extend [19] to elasticity, using measurements obtained
under a single, but arbitrary, loading, and that is essentially done in Section 3. The attainability conditions for the resulting
bounds obtained in Section 4 then lead us to a new method for obtaining bounds which is not based on variational princi-
ples. This method, the method of splitting, is described in Section 5. It correlates volume averages of various quantities over
each phase and then projects the information onto the quantities of interest to obtain the desired bounds. This approach
is likely to have wider applications, and in particular could lead to new bounds on the response of (possibly non-linear)
multiphase bodies for many properties, not just for elasticity.

The bounds we derive also directly give bounds on the possible (average stress, average strain) pairs in a two-phase,
two-dimensional, composite. These bounds are the natural generalization to elasticity of the conductivity bounds on possible
(average electric field, average current field) pairs obtained by Raı̆tum [29,30] and Tartar [31] (see also Chapter 22.4 in [27]),
which can also be generalized to non-linear materials [32–36]. Only when one of the phases is void, has the complete
characterization of possible (average stress, average strain) pairs been obtained [37]. In principle bounds on the possible
(average stress, average strain) pairs could be obtained from knowledge of the G-closure of all possible effective elasticity
tensors associated with composites of the two phases mixed in prescribed proportions. However, this G-closure is only
partly known (for a survey of results see [25–27]).

2. Preliminaries

Let Ω be a smooth bounded domain in R
2, occupied by a two-dimensional elastic body. Assume that the body is made

from two different isotropic elastic materials, characterized by their bulk moduli κ1 and κ2 and shear moduli μ1 and
μ2. Denote, respectively, by σ and ε the stress and strain fields acting on the body under consideration. These fields are
governed by the following equations:

ε = Sσ = (1/2μ)σ + (1/4κ − 1/4μ)(Trσ)I, ∇ · σ = 0, ε = 1

2

(∇u + ∇uT )
(1)

where u is the displacement field, S is the compliance tensor, I is the second order identity tensor, κ is the bulk modulus
(taking values κ1 or κ2) and μ is the shear modulus (taking values μ1 or μ2). Although two-dimensional bodies do not
occur in practice, this formulation is applicable to problems of plane stress or plane strain.

It is assumed that one can measure the traction σ · n and the displacement u at the boundary of Ω , where n is the
unit outward normal vector. From these measurements one can determine the volume averages of certain quantities. These
quantities are null-Lagrangians, functionals of u and/or σ which can be integrated by parts, and expressed only in terms of
boundary values: thus their variations are identically zero. Introducing angular brackets to denote a volume average, i.e.

〈g〉 = 1

|Ω|
∫
Ω

g (2)

and choosing notations so that ∇u has ∇u1 and ∇u2 as its first and second columns, rather than rows, the five null-
Lagrangians we will work with are the average fields,

〈σ 〉 = 1

|Ω|
∫

∂Ω

x(σ · n)T , 〈∇u〉 = 1

|Ω|
∫

∂Ω

n(u)T (3)

the energy,

〈σ · ε〉 = 1

|Ω|
∫

∂Ω

(σ · n) · u (4)

and the two additional null-Lagrangians

a = 〈detσ 〉, b = 〈det ∇u〉 (5)

To express the last two quantities in terms of boundary values, it is helpful to let j1 and j2 denote the divergence free
vector fields which are the first and second columns of σ , and to introduce the matrix
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R⊥ =
(

0 1
−1 0

)
(6)

for a clockwise 90◦ rotation. Then, as follows directly from the analysis in [19],

a = 〈 j1 · R⊥ j2〉 = 1

|Ω|
∫

∂Ω

q1(x)

( x∫
x0

q2

)
(7)

where q1 and q2 are the fluxes q1 = j1 · n and q2 = j2 · n, which are components of the traction σ · n, x0 ∈ ∂Ω and the last
integral in (7) is along the boundary ∂Ω in the counterclockwise direction. Also, as follows directly from the analysis in
[19],

b = 〈∇u1 · R⊥∇u2〉 = 1

|Ω|
∫

∂Ω

u1n · R⊥∇u2 = 1

|Ω|
∫

∂Ω

u1
∂u2

∂t
(8)

where ∂/∂t denotes the tangential derivative along ∂Ω in the counterclockwise direction.
These are not the only null-Lagrangians. For i = 1,2

〈σ · ∇ui〉 = 1

|Ω|
∫

∂Ω

(σ · n)ui (9)

is also a null-Lagrangian, but to simplify the analysis we refrain from considering these null-Lagrangians except in that
linear combination which gives the energy.

Our objective is to find inequalities (bounds) which link the values of the five null-Lagrangians with the volume fraction
in the body and the moduli of the materials. When the body is the unit cell of a periodic composite material and periodic
boundary conditions on the fields are imposed then the values of the average stress 〈σ 〉 and average displacement gradient
〈∇u〉 determine the values of the energy and a and b:

〈σ · ε〉 = 〈σ 〉 · 〈ε〉, a = det〈σ 〉, b = det〈∇u〉 (10)

as can be shown using Fourier analysis (see, for example, Section 13.3 in [27]). Also without loss of generality, by making
an infinitesimal global rotation if necessary, we can assume that 〈∇u〉 is symmetric, in which case it can be identified with
the average strain 〈ε〉. Thus for composites the inequalities we obtain give bounds on the possible (average stress, average
strain) pairs, and only incorporate the volume fractions of the two isotropic phases and their moduli.

In Cartesian coordinates, σ and ε can be represented as 2 × 2 matrices. It is convenient to use the basis

B =
{

1√
2

[
1 0
0 1

]
,

1√
2

[
1 0
0 −1

]
,

1√
2

[
0 1
1 0

]}
(11)

so that an arbitrary symmetric matrix A = [ a11 a12
a12 a22

]
is represented by v = 1√

2
(a11 + a22,a11 − a22,2a12). Thus, from now on

we understand σ and ε as 3-dimensional vectors. If a 3-dimensional vector v represents a 2 × 2 symmetric matrix A in
this basis then its determinant is given by

det A = 1

2
v · T v (12)

where

T =
⎡
⎣ 1 0 0

0 −1 0
0 0 −1

⎤
⎦ (13)

The null-Lagrangian detσ plays a pivotal role in developing the bounds of the next section.
Recall that κ and μ denote the bulk and shear, respectively, moduli of the elastic body under consideration. Then, in the

basis B, the tensor S can be expressed by the matrix

S = 1

2

⎡
⎢⎢⎣

1
κ 0 0

0 1
μ 0

0 0 1
μ

⎤
⎥⎥⎦ (14)

because the elastic body is isotropic.
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3. Bounds obtained by the translation method using the null-Lagrangian detσ

Assume, in this section, that 〈σ · ε〉, σ0 = 〈σ 〉, ε0 = 〈ε〉 and a = 〈detσ 〉 can be evaluated or estimated. For i = 1,2, let κi
and μi be the bulk and shear, respectively, moduli of the i-th phase. Then,

κ = χ1κ1 + χ2κ2 and μ = χ1μ1 + χ2μ2 (15)

where

χi =
{

1 in phase i

0 otherwise
(16)

Define

μ∗ = max{μ1,μ2}, κ∗ = max{κ1, κ2} (17)

and fix α ∈ (− 1
2μ∗ , 1

2κ∗ ) to ensure that the translated tensor

L = S − αT (18)

is positive definite. The classical complementary energy minimization principle implies

〈σ · ε〉 = min〈σ 〉=σ0〈Sσ 〉=ε0∇·σ=0
〈detσ 〉=a

σ ·n=σ ·n on∂Ω

〈σ · Sσ 〉 (19)

where the additional constraints that 〈σ 〉 = σ0, 〈Sσ 〉 = ε0, and 〈detσ 〉 = a have been added since we know this information
about the minimizing fields. In the third constraint in (19) the divergence of σ is understood as the divergence of the matrix
that σ represents. Using (12) we then have

〈σ · ε〉 − 2αa = min〈σ 〉=σ0〈Sσ 〉=ε0∇·σ=0
〈detσ 〉=a

σ ·n=σ ·n on∂Ω

〈σ · Lσ 〉 (20)

Dropping the last three constraints in the minimum above and defining

e0 = ε0 − αTσ0 (21)

gives

〈σ · ε〉 − 2αa � min〈σ 〉=σ0〈Lσ 〉=e0

〈σ · Lσ 〉 (22)

This minimum can be found using the Lagrange multiplier method. In fact, if σ̂ denotes the minimizer of the right-hand
side of (22), then there exist two constant vectors λ1 and λ2 such that

2Lσ̂ = λ1 + Lλ2 (23)

Denoting by 〈σ̂ 〉1 and 〈σ̂ 〉2 the average of σ̂ on phase 1 and phase 2, respectively, from (23), we have

2L1〈σ̂ 〉1 = λ1 + L1λ2

2L2〈σ̂ 〉2 = λ1 + L2λ2 (24)

which gives

λ1 = 2(L1 − L2)
−1L1L2

(〈σ̂ 〉2 − 〈σ̂ 〉1
)

λ2 = 2(L1 − L2)
−1(L1〈σ̂ 〉1 − L2〈σ̂ 〉2

)
(25)

On the other hand, we can see that

〈σ̂ 〉1 = 1

f1
(L1 − L2)

−1(e0 − L2σ0)

〈σ̂ 〉2 = − 1
(L1 − L2)

−1(e0 − L1σ0) (26)

f2
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by solving the system

σ0 = f1〈σ̂ 〉1 + f2〈σ̂ 〉2

e0 = f1L1〈σ̂ 〉1 + f2L2〈σ̂ 〉2 (27)

Thus, we have

λ1 = 2

f1 f2
(L1 − L2)

−2L1L2
(
e0 − 〈L〉σ0

)
λ2 = 2

f1 f2
(L1 − L2)

−2[( f2L1 + f1L2)e0 − L1L2σ0
]

(28)

For simplicity in calculations, assume first that α ∈ (− 1
2μ∗ , 1

2κ∗ ) so that L is invertible. Later we will consider the limiting
case where L is singular, but still positive semi-definite. It follows from (23) that

2e0 = λ1 + 〈L〉λ2

2σ0 = 〈
L−1〉λ1 + λ2 (29)

Moreover, we have

〈σ̂ · Lσ̂ 〉 = 1

4

〈(
L−1λ1 + λ2

) · (λ1 + Lλ2)
〉 = 1

4

[〈
L−1〉λ1 · λ1 + 2λ1 · λ2 + 〈L〉λ2 · λ2

]
(30)

On the other hand, it follows from (29) that

λ1 · λ2 = 2s0 · λ2 − 〈L〉λ2 · λ2 = 2σ0 · λ1 − 〈
L−1〉λ1 · λ1 (31)

Thus, it follows that

〈σ̂ · Lσ̂ 〉 = 1

2
[σ0 · λ1 + λ2 · e0]

= 1

2

[(
2e0 − 〈L〉λ2

) · σ0 + λ2 · e0
]

= e0 · σ0 + (L1 − L2)
−2

f1 f2

[
e0 − 〈L〉σ0

] · [( f2L1 + f1L2)e0 − L1L2σ0
]

(32)

This, together with (21) and (22), gives us the bound

〈σ · ε〉 − σ0 · ε0 − 2αa + 2α detσ0 �
(L1 − L2)

−2

f1 f2

[
e0 − 〈L〉σ0

] · [( f2L1 + f1L2)e0 − L1L2σ0
]

(33)

By taking limits, we can see that (33) is valid for α not only in (− 1
2μ∗ , 1

2κ∗ ) but also at − 1
2μ∗ and 1

2κ∗ . Although (33) looks
like a quadratic inequality with respect to α (because of the definitions of e0 and L in (21) and (18) respectively), we can
show that it is linear by expanding ( f1L2 + f2L1)e0 − L1L2σ0 and seeing that the coefficient of α2 is 0. Hence, the bound
in (33) improves or becomes worse (depending on the data given) as α tends to − 1

2μ∗ or 1
2κ∗ with the optimum value for

α occurring at one of the two limits. The arguments above can be summarized as

Theorem 3.1. The following bound

〈σ · ε〉 − σ0 · ε0

� min

{
1

f1 f2
(S1 − S2)

−2(ε0 − 〈S〉σ0
) · (( f1L2∗ + f2L1∗)e0 − L1∗ L2∗σ0

) − a − detσ0

μ∗ ,

1

f1 f2
(S1 − S2)

−2(ε0 − 〈S〉σ0
) · (( f1L2∗ + f2L1∗)e0 − L1∗ L2∗σ0

) + a − detσ0

κ∗

}
(34)

where Li∗ = Li |α=− 1
2μ∗ and Li∗ = Li |α= 1

2κ∗ , i = 1,2, holds.
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4. The attainability condition for (34)

In this section, we find conditions for the field σ to be such that the equality for (34) is attained. In other words, fixing
α ∈ [− 1

2κ∗ , 1
2μ∗ ], we find conditions on σ such that

〈σ · Lσ 〉 = 〈σ̂ · Lσ̂ 〉 (35)

where σ̂ is a minimizer of the right-hand side in (22) which can be found from (23) and (25). We have the following
lemma:

Lemma 4.1. (35) holds if, and only if,

Lσ = Lσ̂ = 1

f1 f2
(L1 − L2)

−1[ f2χ1L1(e0 − L2σ0) − f1χ2L2(e0 − L1σ0)
]

(36)

Proof. Since L is self-adjoint, the “if” direction is not hard to see. We thus only prove the “only if” direction. Define the
functional J by

J (σ ) = 〈σ · Lσ 〉 (37)

for all vector valued functions σ satisfying

〈σ 〉 = σ0, 〈Lσ 〉 = e0 (38)

Since L is semi-positive definite, J is convex. It is not hard to see that for all t ∈ [0,1], σ = tσ + (1 − t)σ̂ satisfies (38).
Using (35) and the fact that σ̂ and σ are both minimizers of J , we have

J (σ̂ ) � J
(
tσ + (1 − t)σ̂

)
� t J (σ ) + (1 − t) J (σ̂ ) = J (σ̂ ) (39)

for all t ∈ [0,1]. It follows that

d

dt
J
(
tσ + (1 − t)σ̂

) = 0 (40)

or equivalently〈
L
(
tσ + (1 − t)σ̂

) · (σ − σ̂ )
〉 = 0 (41)

Letting t in (41) be 1 and 0, respectively, gives〈
Lσ · (σ − σ̂ )

〉 = 0 (42)

and 〈
Lσ̂ · (σ − σ̂ )

〉 = 0 (43)

From the difference of these two equations,〈
(σ − σ̂ ) · L(σ − σ̂ )

〉 = 0 (44)

we obtain the first equation of (36).
In order to see the second equation of (36), we calculate Lσ̂ on each phase. On phase 1,

Lσ̂ = λ1 + L1λ2

= 2e0 − 〈L〉λ2 + L1λ2

= 2e0 + f2(L1 − L2)λ2

= 2e0 + 2

f1
(L1 − L2)

−1[( f2L1 + f1L2)e0 − L1L2σ0
]

= 2

f1
(L1 − L2)

−1[ f1(L1 − L2)e0 + ( f2L1 + f1L2)e0 − L1L2σ0
]

= 2

f1
(L1 − L2)

−1L1(e0 − L2σ0) (45)

Similarly, on phase 2,
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Lσ̂ = − 2

f2
(L1 − L2)

−1L2(e0 − L1σ0) (46)

The lemma follows. �
Lemma 4.1 implies that if bound (34) is attained then there are two constant vectors D and E such that

Lσ = Lσ̂ = χ1 D + χ2 E (47)

We next show that (47) is the attainability condition for (34), that we are looking for in this section. In fact, denoting by
〈σ̂ 〉1 and 〈σ̂ 〉2 the average of σ̂ on phase 1 and phase 2, respectively, as in the previous section, we have

D = L1〈σ̂ 〉1, E = L2〈σ̂ 〉2 (48)

Plugging (26) into (48) and then the resulting values of D and E into (47), we obtain (36).
We have proved the theorem.

Theorem 4.2. The bound in (34) becomes equality if, and only if,

L∗σ = χ1 D + χ2 E (49)

where D and E are two constant vectors and L∗ is either L|α=− 1
2μ∗ or L|α= 1

2κ∗ . Moreover,

(i) if μ∗ = μ1 
= μ2 then

〈σ · ε〉 − σ0 · ε0 = 1

f1 f2
(S1 − S2)

−2(ε0 − 〈S〉σ0
) · (( f1L2∗ + f2L1∗)e0 − L1∗ L2∗σ0

) − a − detσ0

μ∗ (50)

is equivalent to

L|α=− 1
2μ1

σ = χ1 D∗ + χ2 E (51)

with D∗ = (d1,0,0) and this holds if and only if the field σ is constant on phase 2, and has constant first component (bulk part)
on phase 1;

(ii) if κ∗ = κ1 
= κ2 then

〈σ · ε〉 − σ0 · ε0 = 1

f1 f2
(S1 − S2)

−2(ε0 − 〈S〉σ0
) · (( f1L2∗ + f2L1∗)e0 − L1∗ L2∗σ0

) + a − detσ0

κ∗ (52)

is equivalent to

L|α= 1
2κ1

σ = χ1 D∗ + χ2 E (53)

with D∗ = (0,d2,d3) and this holds if and only if the field σ is constant on phase 2, and has constant second and third components
(shear part) on phase 1.

5. The method of splitting

We introduce here another approach, not based on variational principles, using which we can deduce the previous
bounds. The main idea of the method is to split the domain into its phases, to correlate averages over each phase, and
then to project the information to obtain the desired bound. Moreover, this method allows us to add one more datum: the
null-Lagrangian b = 〈det ∇u〉. In other words, the known quantities are

E = 〈σ · ∇u〉, σ0 = 〈σ 〉, 〈∇u〉, a = 〈detσ 〉, b = 〈det∇u〉 (54)

Consider the four-dimensional space of 2 × 2 matrices with the basis

B =
{

1√
2

[
0 1

−1 0

]
,

1√
2

[
1 0
0 1

]
,

1√
2

[
1 0
0 −1

]
,

1√
2

[
0 1
1 0

]}
(55)

so that

σ = (0,σ1,σ2,σ3), ∇u = (F0, ε1, ε2, ε3) (56)

and
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a = 1

2

〈
σ 2

1 − σ 2
2 − σ 2

3

〉
, c ≡ b − 1

2
〈F0〉2 � b − 1

2

〈
F 2

0

〉 = 1

2

〈
ε2

1 − ε2
2 − ε2

3

〉
(57)

Note that the inequality in (57) is attained if, and only if, F0 is constant everywhere.
Defining (b for bulk and s for shear)

E1b = 〈χ1σ1ε1〉 = 2κ1
〈
χ1ε

2
1

〉
E2b = 〈χ2σ1ε1〉 = 2κ2

〈
χ2ε

2
1

〉
E1s = 〈

χ1(σ2ε2 + σ3ε3)
〉 = 2μ1

〈
χ1

(
ε2

2 + ε2
3

)〉
E2s = 〈

χ2(σ2ε2 + σ3ε3)
〉 = 2μ2

〈
χ2

(
ε2

2 + ε2
3

)〉
(58)

we have

E = E1b + E1s + E2b + E2s (59)

a = κ1 E1b + κ2 E2b − μ1 E1s − μ2 E2s (60)

c � E1b

4κ2
+ E2b

4κ2
− E1s

4μ1
− E2s

4μ2
(61)

On the other hand, it follows from the identities

〈εi〉 = 〈χ1εi〉 + 〈χ2εi〉, i = 1,2,3

〈σ1〉 = 2κ1〈χ1ε1〉 + 2κ2〈χ2ε2〉, 〈σ j〉 = 2μ1〈χ1ε j〉 + 2μ2〈χ2ε j〉, j = 2,3 (62)

that

〈χ1ε1〉 = 1

2(κ2 − κ1)

(
2κ2〈ε1〉 − 〈σ1〉

)
, 〈χ2ε1〉 = 1

2(κ1 − κ2)

(
2κ1〈ε1〉 − 〈σ1〉

)
〈χ1ε j〉 = 1

2(μ2 − μ1)

(
2μ2〈ε j〉 − 〈σ j〉

)
, 〈χ1ε j〉 = 1

2(μ2 − μ1)

(
2μ2〈ε j〉 − 〈σ j〉

)
, j = 2,3 (63)

Therefore these quantities are known.
Note that for i = 1,2,3,

〈
χ1ε

2
i

〉 − 1

f1
〈χ1εi〉2 =

〈(
χ1εi − χ1

f1
〈χ1εk〉

)2〉
� 0 (64)

with equality when εi is constant on phase 1. Similarly,

〈
χ2ε

2
i

〉 − 1

f2
〈χ2εi〉2 � 0, i = 1,2,3 (65)

with equality when εi is constant on phase 2. Therefore, defining the known quantities

A1b = 2κ1〈χ1ε1〉2

A2b = 2κ2〈χ2ε1〉2

A1s = 2μ1
(〈χ1ε2〉2 + 〈χ1ε3〉2)

A2s = 2μ2
(〈χ2ε2〉2 + 〈χ2ε3〉2) (66)

we have from (64) and (65)

E1b �
A1b

f1
, E2b �

A2b

f2
(67)

E1s �
A1s

f1
, E2s �

A2s

f2
(68)

Also, E1b and E2b can be eliminated using (59) and (60)

E1b = 1

κ1 − κ2

(
a − κ2 E + (κ2 + μ1)E1s + (κ2 + μ2)E2s

)
E2b = 1 (

a − κ1 E + (κ1 + μ1)E1s + (κ1 + μ2)E2s
)

(69)

κ2 − κ1
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Fig. 1. The region of possible (E1s, E2s), assuming that κ1 > κ2.

Therefore (67) is replaced by

1

κ1 − κ2

(
a − κ2 E + (κ2 + μ1)E1s + (κ2 + μ2)E2s

)
� A1b

f1
(70)

and

1

κ2 − κ1

(
a − κ1 E + (κ1 + μ1)E1s + (κ1 + μ2)E2s

)
� A2b

f2
(71)

and the inequality in (61) is replaced by

c � 1

4κ1(κ1 − κ2)

(
a − κ2 E + (κ2 + μ1)E1s + (κ2 + μ2)E2s

)
+ 1

4κ2(κ2 − κ1)

(
a − κ1 E + (κ1 + μ1)E1s + (κ1 + μ2)E2s

) − E1s

4μ1
− E2s

4μ2
(72)

Now we have

1

κ1(κ1 − κ2)
+ 1

κ2(κ2 − κ1)
= − 1

κ1κ2
−κ2

κ1(κ1 − κ2)
− κ1

κ2(κ2 − κ1)
= κ1 + κ2

κ1κ2

κ2 + μ1

κ1(κ1 − κ2)
+ κ1 + μ1

κ2(κ2 − κ1)
− 1

μ1
= μ1κ2(κ2 + μ1) − μ1κ1(κ1 + μ1) − κ1κ2(κ1 − κ2)

κ1κ2μ1(κ1 − κ2)

= −μ1(κ1 + κ2) − μ2
1 − κ1κ2

κ1κ2μ1

= − (κ1 + μ1)(κ2 + μ1)

κ1κ2μ1

κ1 + μ2

κ1(κ1 − κ2)
+ κ1 + μ2

κ2(κ2 − κ1)
− 1

μ2
= − (κ1 + μ2)(κ2 + μ2)

κ1κ2μ2
(73)

Therefore (72) becomes

a − E(κ1 + κ2) + E1s(κ1 + μ1)(κ2 + μ1)

μ1
+ E2s(κ1 + μ2)(κ2 + μ2)

μ2
�−4κ1κ2c (74)

Thus (68), (70), (71) and (74) give us 5 inequalities on the pair (E1s, E2s). To project out the information about the un-
knowns (E1s, E2s) we observe that the volume fraction f1 = 1 − f2 must be such that these inequalities define a feasible
region in the (E1s, E2s) plane (see e.g. Fig. 1).

Note that when either f1 or f2 goes to 0, (68) cannot be satisfied. In this case, the feasible region is empty. Thus, in the
generic case, at a bound on f1, i.e. at the limiting value of f1, the feasible region shrinks to a point. In other words, in the
generic case, 3 of the inequalities will be satisfied as equalities and the remaining 2 as inequalities: the picture looks like,
e.g. Fig. 2. Note that the 3 inequalities which are satisfied as equalities must have “outward normals” n1, n2, n3 such that

α1n1 + α2n2 + α3n3 = 0 (75)

for some α1,α2,α3 � 0. The previous approach in Section 3 only took the four inequalities in (68), (70) and (71) into
account. The limiting value of f1 corresponds to the case where 3 of these were satisfied as equalities and the fourth as
an inequality. Thus, one sees immediately that the attainability condition is where the field is constant in one phase and
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Fig. 2. The feasible region shrinking to a point, assuming that κ1 > κ2.

either the bulk part or shear part is constant in the other phase. With the additional inequality (74), there will be 10 cases
to consider (number of ways to pick 3 equations from 5), 4 considered above and 6 new. However, not all of these 10 cases
satisfy (75); e.g. if κ1 > κ2, the triplet of equations that correspond to (68) and (74) do not satisfy (75) since if E1s and E2s

are both large and positive, all three equations are satisfied; i.e. the feasible region given by the three equations cannot be
a point, but is instead an open region. The question arises as to which of these 6 new cases satisfy (75).

It is obvious that the outward normals of the regions that satisfy the two inequalities in (68) are, respectively,

ν1 = (−1,0) (76)

and

ν2 = (0,−1) (77)

Without loss of generality, by relabeling the phases if necessary, assume that κ1 > κ2. In this case, an outward normal of
the region that satisfies (70) is

ν3 = (−κ2 − μ1,−κ2 − μ2) (78)

an outward normal of the region that satisfies (71) is

ν4 = (κ1 + μ1, κ1 + μ2) (79)

and, finally, an outward normal of the region that satisfies (74) is

ν5 =
(

− (κ1 + μ1)(κ2 + μ1)

μ1
,− (κ1 + μ2)(κ2 + μ2)

μ2

)
(80)

We now consider each triplet of normals that include ν5 to see when they satisfy (75). As said, (ν1, ν2, ν5) does not satisfy
(75). If (α,β) solves

ν5 = αν1 + βν3 (81)

then

β = κ1 + μ2

μ2
> 0 (82)

Thus, the triplet (ν1, ν3, ν5) never satisfies (75). Similarly, neither does the triplet (ν2, ν3, ν5). Next, solving the equation

ν5 = αν1 + βν4 (83)

gives

α = −κ2(μ1 − μ2)(κ1 + μ1)

μ1μ2
, β = −κ2 + μ2

μ2
(84)

Thus the triplet (ν1, ν4, ν5) satisfies (75) if, and only if, μ1 > μ2. By a similar technique, solving

ν5 = αν2 + βν4 (85)

we have

α = −κ2(κ1 + μ2)(μ2 − μ1)
, β = −κ2 + μ1 (86)
μ1μ2 μ1
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Therefore, the triplet (ν2, ν4, ν5) satisfies (75) if, and only if, μ1 < μ2. Finally, we consider the triplet (ν3, ν4, ν5). The
unique solution of

ν5 = αν3 + βν4 (87)

is

α = −κ2(κ1 + μ1)(κ1 + μ2)

(κ1 − κ2)μ1μ2
< 0, β = −κ1(κ2 + μ1)(κ2 + μ2)

(κ1 − κ2)μ1μ2
< 0 (88)

Hence, this triplet always satisfies (75).
We next find the desired bounds. We can do so by finding an appropriate linear combination of the equations in each

triplet involving (74) that satisfies (75) to obtain

Theorem 5.1. Assuming κ1 > κ2 , and recalling the definitions (66) and (63) of A1b, A2b, A1s , and A2s one has the bound

4cκ1κ2 � −κ1κ2(a + E(μ1 + μ2))

μ1μ2
+ A1bκ2(κ1 + μ1)(κ1 + μ2)

f1μ1μ2
+ A2bκ1(κ2 + μ1)(κ2 + μ2)

f2μ1μ2
(89)

with equality when F0 (the component of the antisymmetric part of ∇u) is constant everywhere, and the bulk component ε1 is constant
in phase 1 and constant in phase 2. If additionally μ1 > μ2 then one has

4cκ1κ2 �
κ2(a + E(−κ1 + μ2))

μ2
+ A1sκ2(κ1 + μ1)(μ1 − μ2)

f1μ1μ2
+ A2b(κ1 − κ2)(κ2 + μ2)

f2μ2
(90)

with equality when F0 is constant everywhere, the shear components ε2 and ε3 are constant in phase 1, and the bulk component ε1 is
constant in phase 2. Alternatively if μ1 < μ2 (and κ1 > κ2) then one has

4cκ1κ2 �
κ2(a + E(−κ1 + μ1))

μ1
+ A2sκ2(μ2 − μ1)(κ1 + μ2)

f1μ1μ2
+ A2b(κ1 − κ2)(κ2 + μ1)

f2μ1
(91)

with equality when F0 is constant everywhere, and both bulk and shear components ε1 , ε2 and ε3 are constant in phase 2.

Proof. As suggested by (88), we can add (74) to (70), multiplied by κ2(κ1+μ1)(κ1+μ2)
μ1μ2

, and (71), multiplied by κ1(κ2+μ1)(κ2+μ2)
μ1μ2

,

to eliminate both E1s and E2s . Doing so, we obtain (89). Similarly in the case that μ1 > μ2, we can use the first inequality
in (68), (71) and (74) to deduce (90). Finally, if μ1 < μ2 then the second inequality in (68), (71) and (74) yield (91). The
attainability conditions follow directly from the conditions under which the inequalities in (57) and (64) are satisfied as
equalities. �

It is an open question as to whether the bounds of Theorem 5.1 could be obtained using the translation method. Although
we suspect they could, the method of splitting has the advantage of immediately providing the attainability conditions.

Remark 1. The final set of bounds are the intersection of the inequalities provided by Theorems 3.1 and 5.1. Each of these
inequalities can be multiplied by f1 f2 to yield quadratic inequalities in f1 = 1 − f2 which may be easily solved to give
the maximum interval of f1 compatible with all the inequalities. If one is interested in bounds on (average stress, average
strain) pairs in composites then one should make the substitutions (10) in these inequalities. It remains to be investigated
whether the resulting bounds provide a complete characterization of the possible (average stress, average strain) pairs in
composites of two phases mixed in a given proportion, or whether there are some missing bounds.
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