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Recent theoretical studies of the literature are concerned by the hollow sphere or spheroid
(confocal) problems with orthotropic Hill type matrix. They have been developed in
the framework of the limit analysis kinematical approach by using very simple trial
velocity fields. The present Note provides, through numerical upper and lower bounds,
a rigorous assessment of the approximate criteria derived in these theoretical works. To
this end, existing static 3D codes for a von Mises matrix have been easily extended to the
orthotropic case. Conversely, instead of the non-obvious extension of the existing kinematic
codes, a new original mixed approach has been elaborated on the basis of the plane strain
structure formulation earlier developed by F. Pastor (2007). Indeed, such a formulation
does not need the expressions of the unit dissipated powers. Interestingly, it delivers a
numerical code better conditioned and notably more rapid than the previous one, while
preserving the rigorous upper bound character of the corresponding numerical results. The
efficiency of the whole approach is first demonstrated through comparisons of the results
to the analytical upper bounds of Benzerga and Besson (2001) or Monchiet et al. (2008)
in the case of spherical voids in the Hill matrix. Moreover, we provide upper and lower
bounds results for the hollow spheroid with the Hill matrix which are compared to those
of Monchiet et al. (2008).

© 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

De récentes études dans la littérature ont porté sur l’établissement de critères macroscopi-
ques de milieux plastiques orthotropes de type Hill contenant des vides sphériques
ou sphéroïdaux. Pour évaluer ces critères, nous avons étendu les codes statiques et
cinématiques 3D existants du cas isotrope à l’anisotrope. Les codes statiques ont pu l’être
assez aisément, l’approche cinématique étant plus problématique du fait des indispensables
discontinuités de vitesses. Pour cette raison une nouvelle et originale approche mixte a
donc été élaborée sur la base de la formulation proposée par F. Pastor (2007) pour les
structures en déformation plane, cette formulation ayant l’avantage de ne pas nécessiter
l’expression des puissances dissipées unitaires. Cette approche mixte a débouché sur un
code mieux conditionné et significativement plus rapide que le code précédent, sans perdre
pour autant le caractère de borne supérieure rigoureuse du résultat. La pertinence de la
nouvelle approche a été d’abord démontrée sur le cas d’une matrice de von Mises, obtenu
comme cas particulier de la matrice de Hill. Puis, des bornes numériques sont fournies et
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comparées au critère établi par Benzerga et Besson (2001) et Monchiet et al. (2008) dans le
cas de la matrice orthotrope avec une cavité sphérique. Enfin, les prédictions de Monchiet
et al. (2008) dans le cas d’une cavité sphéroïdale plongée dans la matrice orthotrope sont
évaluées et discutées.

© 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

The well-known Gurson [1] isotropic criterion of ductile porous media has been obtained by studying a hollow sphere
with a von Mises rigid plastic matrix subjected to uniform strain rate boundary conditions. Gurson’s analysis consisted in
the use of a kinematic approach of limit analysis (LA) to obtain an upper bound to the exact macroscopic criterion for
isotropic porous materials. Later, following the kinematic limit analysis approach, several extensions of the Gurson criterion,
mainly accounting for void-shape effects, have been proposed (see among others [2–6]). Effects of plastic anisotropy of the
matrix have been addressed first in [7] for spherical voids, and later in the case of spheroidal (prolate and oblate) voids
by [8] and then [9]. For a detailed review on these developments, the reader is referred to [10]. A common aspect of the
theoretical studies dealing with orthotropic matrix is that they are all based on relatively simple trial velocity fields, largely
inspired from the isotropic case. Only few comparisons with cell calculation by means of finite elements are available in [9].

On the other hand, using finite element discretization of mechanical systems, original static and kinematic LA methods
made it possible to obtain rigorous lower and upper bounds allowing to control Gurson’s kinematic approaches for cylindri-
cal cavities [11,12]. In the axisymmetric and 3D study of [13] the Gurson criterion appears to be satisfactory for materials
with spherical cavities, although without taking into account the influence of third stress invariant as in [14].

Very recently, first investigations on ductile materials with oblate cavities in an isotropic von Mises matrix have been
done in the short paper [15]; in [16] are fully detailed the theoretical criteria and the numerical methods and their appli-
cation to both cases of prolate and oblate cavities, providing rigorous assessment of existing theoretical models of ductile
porous materials with spheroidal voids. In all the codes, the mechanical problem has been cast as a conic programming
problem solved by the very effective commercial code mosek [17].

The objective of the present paper is to provide numerical upper and lower bounds of the macroscopic criteria of porous
media having Hill orthotropic matrix [18]. The study focused first on the extension of the existing codes to the case of the
anisotropic matrix. For the static limit analysis approach, the static codes have been easily modified by mean of a simple
change of variables. This it not the case for the kinematic approach, mainly because of the velocity discontinuities allowed
through any tetrahedron side. To overcome this difficulty, we have extended to the 3D homogenization problem the mixed
formulation defined in [19] and applied to plane strain structures in von Mises and Gurson materials (see [20]). Indeed,
this mixed formulation requires only the plasticity criterion of the material, without any recourse to the expression of the
unit dissipated power as in the direct kinematic method used in [15] in the isotropic case. For comparison purpose, both
resulting codes are first applied to the Gurson problem for validation and comparison with previous results in the von Mises
matrix case. Then, owing to the good performance of the new codes, we provide numerical upper and lower bounds of the
macroscopic criterion in the case of hollow sphere and spheroid with a Hill orthotropic matrix. This allows to assess the
recent corresponding theoretical criteria available in the literature.

2. Formulation of the mixed kinematic approach of limit analysis

2.1. Brief recall of limit analysis

In this section, the basic principles of limit analysis theory are briefly recalled. According to [21], a stress tensor field, σ ,
is said to be admissible if it is both statically admissible (SA) (i.e., satisfies equilibrium equations, stress vector continuity,
and stress boundary conditions) and plastically admissible (PA), i.e., f (σ ) � 0, where f (σ ) is the local convex yield function.

Similarly, a strain rate tensor field, d, is admissible if it is both kinematically admissible (KA, i.e., it derived from a
piecewise continuous velocity vector field u, with bounded discontinuities [u], such that the velocity boundary conditions
are fulfilled) and plastically admissible (PA), i.e., the following associated flow rules (1.i), (1.ii) are satisfied:

d = λ
∂ f

∂σ
, λ f (σ ) = 0, λ � 0, f (σ ) � 0 (1.i)

[u] = ξ
∂ fnt

∂T
, ξ fnt(T ) = 0, ξ � 0, fnt(T ) � 0 (1.ii)

where [u] is the velocity jump across the discontinuity surfaces, and T the corresponding stress vector acting on them. The
criterion fnt(T ) results from the projection of the plasticity criterion f (σ ) on the Mohr plane, where n is the normal to
the element of the velocity discontinuity surface and T = (σnn, σnt1 , σnt2 ) is the stress vector on this element on which an
orthonormal frame (n, t1, t2) is defined.

It is worth noting that, if (1.i) and (1.ii) are fulfilled, the quantities σ : d and T · [u] become, respectively, the convex unit
dissipated powers πvol(d) and πdisc([u]), i.e.:
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πvol(d) = σ : d, πdisc
([u]) = T · [u] (2)

Let us assume that the virtual power of the external loads Pext can be written as the scalar product of a load vector
Q = Q (σ ) (with σ SA), and a generalized velocity vector q = q(u) (with u KA). The p components of Q and q are called
loading and kinematic parameters, respectively. The virtual power principle reads:

Pext = Q · q =
∫
V

σ : d dV +
∫
Sd

T · [u]dS (3)

where V is the volume of the mechanical system, and Sd the set of the velocity discontinuity surfaces.
A solution of the LA problem is a pair (σ , u) where σ and u are both admissible fields and associated by the normality

rule. In this case, the loading vector corresponding to the field σ is a limit load Q lim of the mechanical system. The
admissible loads Q belong to a set K whose boundary ∂ K is the locus of the limit loads Q lim . Classically, the limit loads
can be found or approached using two dual optimization methods. The first one is the static method which is in terms of
admissible stresses and leads to a lower bound of the limit loads.

The second method, involving only the displacement velocities as variables, is the classical kinematic (or upper bound)
method. Let us assume that the velocity field u is qd-admissible, i.e., u is admissible and verify q(u) = qd , where qd is a
fixed value of q. The classical kinematic approach of LA consists in solving the following minimization problem, for various
values of qd:

Q · qd = min
qd-admissible u

( ∫
V

πvol
(
d(u)

)
dV +

∫
Sd

πdisc
([u]) dS

)
(4)

As a consequence, the classical method needs the analytical expressions of the unit dissipated powers πvol(d) and
πdisc([u]). From a numerical point of view, these expressions must be taken into account without difficulty when using
optimization algorithms. But this is not so easy in the case of an anisotropic matrix when out-of-axis discontinuities are
present as here. For this reason, a kinematical mixed formulation is investigated by extending the formulation of [19,20]. By
doing so, only the plasticity criterion is required as in the static code.

2.2. Formulation of the mixed kinematic problem to be solved

Let us now consider a KA virtual velocity field u. The virtual power principle (VPP) states that the stress tensor fields σ
and the load vector Q are in equilibrium if, for any KA u, Eq. (3) is verified. The mixed formulation of [19] and [20] can be
modified as:

max
Q ,σ ,σ ′ F = Q · qd (5.i)

s.t.
∫
V

σ : d dV +
∫
Sd

(
σ ′ · n

) · [u]dS = Q · q(u) ∀KA u (5.ii)

f (σ ) � 0, f
(
σ ′) � 0 (5.iii)

where σ is a PA stress tensor inside the 3D finite elements, and σ ′ another PA stress tensor along the discontinuity surfaces.
The main advantage of this formulation is that the plasticity criterion f (σ ′) can be written in the anisotropy axes taken as
the global axes, instead of the local axes.

The previous formulation gives the exact solution if any velocity and stress fields could be taken into account. This is
not always the case when we consider a discretization of the mechanical system in finite elements, giving in fact only
estimates of the limit loads. Then, to preserve the rigorous kinematical character of the final result, we will need to modify
the numerical implementation of the virtual power principle (5.ii) on the basis of convexity properties when taking into
account the contribution of the discontinuities.

The mechanical 3D hollow spheroid is discretized in tetrahedrons as presented in [15] (or in [13] for the Gurson prob-
lem), with displacement velocities as virtual variables and independent stress tensors as real variables. First, we examine
the contribution of the continuous velocity fields to the VPP expression (3); the role of the inter-element discontinuities
will be analyzed in the next subsection.

2.3. Numerical contribution of the element velocity fields

A three-component nodal vector {u} is located at each apex of the tetrahedron, and the velocity u is assumed to vary lin-
early, giving rise to a constant strain rate {d} in the element. Then, a single stress tensor {σ } is assigned at each tetrahedron.
Thus, from its definition, the external power reads:
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Pext = q(u) · Q = {
q(u)

}T {Q } = {u}T [β]{Q } (6)

where [β]T is the matrix resulting from the calculation of the generalized velocity q(u).
Inside the element k, the strain rate {d} is defined by the classical equation:

{d}k = [B]k
{

un} (7)

where the vector {un} collects the twelve degrees of freedom of the element. Then the VPP (3) reads:
{

q(u)
}T {Q } =

∑
k

Vk
[{d}T

k {σ }] ∀KA u (8)

where Vk denotes the volume of the tetrahedron k. Using Eq. (7), and after the assembly of the elements, the relationship (8)
gives rise to the following variational system:

{u}T [−[α]{σ } + [β]{Q }] = 0 ∀KA {u} (9)

where the matrix [α] results from the assembly of the submatrices [α] = Vk[BT ] calculated for each element k in (8).

2.4. Numerical contribution of the velocity discontinuities

According to [22], a discontinuity surface element (of normal n) can be assimilated to a thin zone where the appropriate
static and kinematic variables are respectively, in mathematical notation, the stress vector T ′ and the velocity jump vector
[u] associated by the normality law relatively to the fnt(T ′) criterion. The second left hand side term of (5.ii) becomes the
dissipated power πdisc when the optimal solution is reached (see [19,20]), so we can use the convexity of πdisc since the
velocity jump varies linearly along the discontinuity side. Hence an auxiliary stress tensor σ ′ is assigned at each apex i, j,
m of the triangular discontinuity side Sijm , and the integral on this side can be upper bounded by writing:∫

Si jm

(
σ ′ · n

) · [u]dS � Aijm
({[u]}T

i

[
σ ′

i

]{n} + {[u]}T
j

[
σ ′

j

]{n} + {[u]}T
m

[
σ ′

m

]{n})/3 (10)

where Aijm is the area of Sijm whose the normal is n. Using these bounds gives rise to a matrix [α′] in an analogous manner
than in the previous subsection.

Finally the resulting numerical form of the mixed problem (5) is the following:

Max{qd}T {Q } (11.i)

s.t. −[α]{σ } − [
α′]{σ ′} + [β]{Q } = 0 (11.ii)

f (σ ) � 0 ∀σ , f
(
σ ′) � 0 ∀σ ′ (11.iii)

+ KA velocity conditions (11.iv)

At this stage, it is worth recalling that the optimal velocities components are given by the values of the dual variables
associated to the rows of the final matrix [−α,−α′, β], which are available in the optimal solution obtained with the
code mosek or the interior point solver defined in [23] and intensively used in [19] and [20]. Now, to take into account
numerically the KA and PA conditions, we need to explicit the homogenization problem which is the purpose of this Note.
It is worth noting that there is no restriction to the allocated stress tensors, except the verification of the criterion; thus, for
any non-zero velocity field (and the corresponding strain rates and velocity jumps) an associated PA stress tensor can be
found. Consequently, from Hill’s maximum work principle, the upper bound character is preserved with the above selected
formulation.

3. Specific formulations of the considered homogenization problem

3.1. Formulation of the KA conditions

The present hollow spheroid problem, as in the Gurson one, is submitted to a uniform strain rate E at its boundary,
i.e., at each of the apexes of the external boundary triangles of Fig. 1, the velocity must verify the Hill–Mandel condition
ui = Eij x j (with i, j = x, y, z) where the z-axis here is the symmetry axis of the spheroid. Taking into account the objective
of comparison with the desired results of the literature in terms of projection of the macroscopic criterion, we suppose
that the strain rate tensor E is principal (as justified in [15]). Consequently, we can use the eighth of sphere in the positive
octant of the (x, y, z) frame as in [15]. In Fig. 1 the mesh is made of nlay layers of n2

div prisms (of triangular basis) discretized
in 14 tetrahedrons each, with ndiv = 4, nlay = 4.

Hence we can define three supplementary lines (constraints) whose associated virtual variables are Ex, E y, Ez (and three
columns for the associated macroscopic stresses), so that the previous conditions read ux = Exx, u y = E y y, uz = Ez z. Hence,
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Fig. 1. General view and O xz plane of an 896-tetrahedron mesh (a1/b1 = 0.5, f = 0.1).

for example for the first relation, in an additional column (located after those of the stresses and the Q i ) we initialize to 1
and −x the components of the column corresponding to the virtual variable ux and to the virtual variable Ex , respectively.
Since this additional column does not appear in the functional, the desired relation will be verified in the optimal solution.
This technique is in fact equivalent with the line condensation used in [20]. If the kinematic parameters are chosen as
a linear invertible combination of Ex , E y , Ez (represented by a non-singular square matrix A, for example), the above
coefficients x, y, z are dispatched on the three additional lines according to the inverse of A.

A similar technique is used to impose the null symmetry values to the required velocity components of the planes
x = 0, y = 0 and z = 0. This original technique gives rise to a better conditioning of the final matrix and avoids to have to
renumber the rows when using the condensation technique.

3.2. Formulation of the PA conditions related to the Hill criterion

The Hill criterion, which is concerned with an orthotropic material of axis (x, y, z), reads:√
F (σy − σz)2 + G(σz − σx)2 + H(σx − σy)2 + 2Lσ 2

yz + 2Mσ 2
zx + 2Nσ 2

xy � σ0
√

2/3 (12)

Since the orthotropy axes here are assumed to be the same as the (x, y, z)-axis and the loading E is principal, the above
meshing and the symmetry conditions are justified. However, it is worth noting that neither the loading, nor the local fields
are axisymmetric.

The criterion (12) can be easily written in the conic form
√∑6

j=1 x2
j � x7 = σ0

√
2/3. In a similar manner as in [15],

a change of variables (σi j → (trσ , x2, . . . , x6)) is operated in order to minimize the number of real and auxiliary variables
of the numerical problem.

3.3. Formulation of the loading and kinematic parameters

Under the present Hill–Mandel boundary conditions, the virtual power principle classically reads:

P tot/V = Σx Ex + Σy E y + Σz Ez = Q · q (13)

For the next comparisons with the available results of the literature, i.e. the projection of the macroscopic criterion on the
(Σm,Σz − Σx) plane, the following loading and kinematic parameters are chosen:

Q 1 = Σm = 1

3
(Σx + Σy + Σz), Q 2 = Σz + Σx

2
− Σy, Q 3 = Σz − Σx (14)

q1 = Ex + E y + Ez, q2 = 2

3

(
Ez + Ex

2
− E y

)
, q3 = 1

2
(Ez − Ex) (15)

It is worth noting that the above components are not in agreement with the geometric transverse isotropy (with z as the
symmetry axis) resulting from the confocal spheroidal form of the matrix boundaries. This is not surprising since the further
considered plastic matrix is orthotropic.

3.4. General comments

– In the present formulation, there is no need to impose the normality law (here the incompressibility) with additional
constraints: the normality law is in fact automatically verified by the optimal solution. This property was pointed out
from the plane strain numerical problem in [14] as a consequence of the Karush–Kuhn–Tucker optimality conditions,
and the reasoning can easily be extended to the present 3D case. It was also proved in the same reference by a
variational formulation of the general mechanical problem, thanks to an appropriate extension of the Radenkovic and
Nguyen [24] presentation of the limit analysis problem.



F. Pastor et al. / C. R. Mecanique 340 (2012) 120–129 125
Fig. 2. Spherical void, von Mises matrix: comparison with the Gurson criterion, f = 0.1.

– Another advantage of the proposed mixed method concerns the better conditioning of the final numerical problem,
owing to the fact that the real variables, here the stress components, are free of SA conditions and independent to one
another. This feature implies that the constraint matrix is full-row rank, and no locking can occur as in the classical
kinematic method, particularly with continuous velocity fields.

– A last advantage of the method is its easy applicability to any material obeying to other classical isotropic or anisotropic
convex criteria, since only the expression of the criterion is needed. Hence, all the usual quadratic or conic criteria can
be taken into account by modifying only the same part of both present static and kinematic codes; the resulting
problems can be solved by using mosek as here, or with the help of a general convex code for non-polynomial criteria
(for instance the Gurson one as in [20]).

4. Validation of the new codes and assessment of theoretical approximate criteria

We are looking for the projection of the macroscopic criterion ghom(Σ) on the plane (Q 1 = Σm , Q 3 = Σz − Σx), all
values being normalized to σ0. In the static case, we optimize Q 3 for fixed Q 1 when Q 1 is not too close to Q max

1 which
is first determined by maximizing Q 1, other components being free. Conversely, for better convergence of the codes, Q 1 is
optimized for fixed values of Q 3. When using the mixed kinematic code, for example in the first case studied below, q3 is
fixed to 1.0 (or −1.0), q2 to zero and Q 1 is declared fixed to the desired value. In the following the porosity f is fixed to
0.1 and 0.01.

For validation purpose, the codes are first applied to the isotropic hollow sphere problem (e.g. with von Mises matrix as
a particular case of the orthotropic one), and then to the problem of a Hill matrix with spherical and oblate cavities. The
static model is discretized in a mesh with 13 layers of 12 × 12 prisms, i.e., 26,208 tetrahedrons. In the kinematic case the
mesh is defined by up to 17 × 17 × 17 prisms, i.e., 68,782 tetrahedrons in the anisotropic tests. With one processor core,
the static problem runs in about 5000 seconds on a recent Apple Mac Pro, using mosek with one processor core; the best
refined kinematic mixed problem is solved in 4500 seconds when the classical method of [15] needs at least five times
more CPU times: this better efficiency of the mixed approach was a bit unexpected, and pleasant surprise. . . Indeed, mixed
and classical kinematic methods were verified to give very close optimal results when using the same mesh and the von
Mises criterion, with a rigorous admissibility confirmation by post-analysis of the two optimal solutions.

4.1. Application to the hollow sphere problem

This subsection is devoted to the case of spherical cavities, for von Mises and Hill matrices. We compare the numerical
bounds to the following closed form expression, first derived in [7] for Hill orthotropic matrix and later retrieved in [8]:√

3

2

[
F (Σy − Σz)2 + G(Σz − Σx)2 + H(Σx − Σy)2

]
�

√(
1 + f 2

) − 2 f cosh
(
κΣ0

m/σ0
)

(16)

For a given Σ0
m , the corresponding optimum of Σz − Σx is readily obtained by solving with mosek the corresponding conic

problem with the cone defined by (16) and the linear constraint Σx + Σy + Σz = 3Σ0
m .

4.1.1. Case of a von Mises matrix
The (isotropic) von Mises case corresponds to F = G = H = 1/3, L = M = N = 1 which leads to κ = 3/2 and allows to

recover the classical Gurson criterion from (16). In Fig. 2 are compared the corresponding optimal values of Σz − Σx to the
results of the present static and kinematic codes.

For isotropic 3D loadings, it can be noted that the Gurson (black) value becomes located between the 3D bounds, as
expected since the Gurson value is the exact corresponding solution. It is worth noting also that the present 3D results
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Fig. 3. Spherical void, Hill matrix: comparison with the criterion of Benzerga and Monchiet, f = 0.1.

Fig. 4. Spherical void, Hill matrix: comparison with the criterion of Benzerga and Monchiet, f = 0.01.

are almost symmetrical around the Σm-axis, in contrast to those obtained in [14] where the loadings were axisymmetric.
Finally, this test confirms that the Gurson criterion is a good approximation of the exact one for spherical voids.

4.1.2. Case of a Hill matrix
Applications to anisotropic matrices required the following parameters whose values are those used in [8] (with another

form of the criterion): F = 0.331; G = 0.402; H = 0.168; L = 3.669; M = 1.141; N = 2.2. This gives rise to κ = 1.68806117.
In Figs. 3 and 4 are plotted the results of the present 3D codes and those obtained as above by solving the one-cone pro-
gramming problem issued from (16). The obtained lower and upper 3D bounds appear here also very close; the theoretical
results are less close to these bounds than in the above case, particularly when the macro-stress triaxiality becomes im-
portant. It is also noted that the exact solution appears not symmetric in this case. Moreover, the criterion (16) predicts a
value slightly greater than the numerical upper bound on the Σm-axis, contrasting with the Gurson result in the isotropic
case; this prediction results from the fact that the trial velocity fields used in the theoretical studies and which has led
to (16) do not contain the exact solution corresponding to the hydrostatic loading. Finally, it is interesting to note that the
criterion (16) does not violate the static approach anywhere. To conclude, it can be considered, at least from the present
tests, as a rather good approximation of the exact macroscopic criterion.

4.2. Case of a Hill matrix with oblate cavities

We still consider the previous orthotropic matrix obeying to the Hill criterion, but with an oblate void (see Fig. 1), with
a1/b1 = 0.2. In Figs. 5 and 6 the crosses represent the results obtained in the anisotropic case by Monchiet et al. [8]. The
form of the 3D results is similar to those obtained in [15] on the same oblate model but with a von Mises matrix. The
results of Monchiet et al. in the case of the orthotropic matrix are a bit far from the 3D bounds; this may be undoubtedly
due to the trial velocity fields used by these authors and inspired from the isotropic matrix case. To obtain significantly
closer 3D bounds, a quadratic variation of the velocity variables should be necessary, as in [20] for plane strain problems;
in this way the strain rate interpolation will be similar to that of the stresses in the present static program.

Finally, the search of corrective parameters qi to the criterion of Monchiet et al. in order to fit the obtained numerical
results was not considered in the present paper for the following reasons. First, obtaining as here the optimal Σz − Σx for
a fixed Σm from the parameterized criterion results in solving an optimization problem, even when the qi parameters are
fixed. Second, considering these parameters as additional variables leads to a non-trivial general optimization problem; this
needs to develop a specific solver, keeping in mind that the corrected criterion could become non-convex when introducing
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Fig. 5. Oblate void, Hill matrix: comparison with the criterion of Monchiet, f = 0.1.

Fig. 6. Oblate void, Hill matrix: comparison with the criterion of Monchiet, f = 0.01.

these parameters. Moreover, to be fully valid, this fitting should be searched for more general loadings than the principal
stress ones allowed here: this induces to mesh up to a half sphere; keeping also in mind that the corrective set should be
tested with several parameters set of the Hill matrix criterion, we can conclude that this would require non-realistic CPU
times, at least for the moment. Anyway, to facilitate future control about this mechanical problem with oblate voids, we
give in Appendix A almost all the values of the coordinates of Figs. 5 and 6.

5. Concluding remarks

The main purpose of this Note was to assess some theoretical approximate criteria recently available in the literature
concerning the hollow sphere or spheroid (confocal) with a Hill orthotropic matrix. To this end, the existing static codes for
von Mises matrices (see [15]) have been readily extended to this anisotropic context. In order to obtain the corresponding
upper bounds with discontinuous meshes, an original kinematic mixed formulation has been developed and implemented.
This allows to avoid the complexity of the classical kinematic approach as regards the indispensable discontinuity surfaces.
The resulting mixed code appears better conditioned and robust, allowing to enhance very refined meshes solved with
reasonable CPU times. Moreover, both static and kinematic codes can be rapidly adapted to problems involving another
classical matrix criterion, and less classical ones (for instance the Mises–Schleicher criterion), by modifying only the criterion
part common to both codes. Finally, the character of strict lower and upper bound 3D results has allowed also to quantify
the influence of the approximations used by the authors of the theoretical formulations that have been assessed.

Both static and mixed codes have been applied to the hollow sphere problem with, first, a von Mises (isotropic) matrix
and then with a Hill matrix. The von Mises test shows very close lower and upper bounds and confirms that the Gurson
criterion is a very good approximation of the exact one. In the case of a Hill matrix with spherical voids, the common
expression of [7] and [8] can be also considered as a good approximation of the exact criterion, but to a lesser extent than
previously. Finally, in the hollow spheroid problem with oblate void, the corresponding Monchiet et al. criterion appears too
far from the numerical bounds, owing to the two-component velocity fields considered by these authors. A way to improve
this analytical criterion is to consider a larger class of velocity fields. Investigation of particular cases such as cylindrical
voids in the Hill orthotropic material may constitute a first step in this research direction.
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Appendix A. Tables of MEF values – Hill matrix with oblate voids

Table 1
Results of present mef kinematic and static approaches for a Hill matrix with oblate void; form factor: a1/b1 = 0.2; porosity: f = 0.1 and 0.01.

Hill matrix, oblate void – f = 0.1 Hill matrix, oblate void – f = 0.01

Static Kinematic Static Kinematic

Σm/σ0 (Σz − Σx)/σ0 Σm/σ0 (Σz − Σx)/σ0 Σm/σ0 (Σz − Σx)/σ0 Σm/σ0 (Σz − Σx)/σ0

0.0 0.91731 0.0 0.94384 0.0 1.10793 0.0 1.11265
0.1 0.87088 0.1 0.90254 0.4 1.07246 0.40165 1.08327
0.2 0.81699 0.2 0.85555 0.8 1.01677 0.79753 1.03686
0.3 0.75057 0.3 0.79959 1.0 0.98005 1.17621 0.96888
0.4 0.68336 0.4 0.73536 1.2 0.93705 1.39610 0.92219
0.5 0.59753 0.5 0.66071 1.4 0.88130 1.59695 0.86280
0.60077 0.5 0.6 0.57427 1.6 0.81005 1.79838 0.78106
0.68462 0.4 0.7 0.4726 1.8 0.71240 1.99812 0.65472
0.75573 0.3 0.76102 0.39912 1.94787 0.6 2.05988 0.60024
0.82001 0.2 0.83348 0.30028 2.03917 0.5 2.14780 0.49992
0.87304 0.1 0.90923 0.175 2.10814 0.4 2.21550 0.39983
0.91844 0.0 0.99114 0 2.15959 0.3 2.26647 0.30017
0.95561 −0.1 1.02662 −0.1 2.19690 0.2 2.30470 0.20002
0.98409 −0.2 1.05262 −0.2 2.22239 0.1 2.32858 0.10165
1.00307 −0.3 1.06797 −0.3 2.23234 0.0 2.33562 0.0
1.00255 −0.4 1.06774 −0.40049 2.22443 −0.1 2.33451 −0.09863
0.99041 −0.5 1.04981 −0.50017 2.20467 −0.2 2.31175 −0.20027
0.96265 −0.6 1.01231 −0.59995 2.17125 −0.3 2.27689 −0.30064
0.91442 −0.7 0.95564 −0.69960 2.12480 −0.4 2.22576 −0.40067
0.83531 −0.8 0.90007 −0.77341 2.06619 −0.5 2.17518 −0.50018
0.8 −0.84112 0.79973 −0.87124 1.99340 −0.6 2.10005 −0.59963
0.7 −0.92105 0.7 −0.93081 1.8 −0.80222 1.99608 −0.71622
0.6 −0.96846 0.6 −0.97674 1.6 −0.93169 1.79865 −0.87439
0.5 −0.99417 0.5 −1.00223 1.39222 −1.01424 1.59016 −0.97129
0.4 −0.99544 0.4 −1.01077 1.2 −1.06228 1.39222 −1.03356
0.3 −0.99427 0.3 −1.00947 1.0 −1.09271 1.18916 −1.07255
0.2 −0.97956 0.2 −0.99719 0.8 −1.11132 0.79745 −1.11356
0.1 −0.95231 0.1 −0.97767 0.4 −1.12219 0.40178 −1.12213
0.0 −0.91731 0.0 −0.94892 0.0 −1.10793 0.0 −1.11265
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