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The nonhomogeneous boundary value problem for the steady Navier–Stokes equations
is studied in a three-dimensional axially symmetric bounded domain with multiply
connected Lipschitz boundary. We assume that the boundary value is axially symmetric.
Our results imply, in particular, the existence of the solution with arbitrary large fluxes over
the connected components of the boundary, provided that all these components intersect
the axis of the symmetry. The proof uses the Bernoulli law for a weak solution to the Euler
equations and the one-side maximum principle for the total head pressure corresponding
to this solution.
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r é s u m é

Des conditions aux limites non-homogènes des équations de Navier–Stokes sont étudiées
dans une région bornée tridimensionnelle ayant symétrie axiale et la frontière multiplement
connexe. En particulier, dans le cas où toutes les composantes connexes de la frontière
intersectent l’axe de symétrie, les résultats obtenus impliquent l’existence d’une solution
pour flux arbitrairement grands. La démonstration est basée sur la loi de Bernoulli pour la
solution faible des équations d’Euler et sur le principe de maximum pour la fonction de
Bernoulli correspondante à cette solution.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let Ω = Ω0 \ ⋃N
j=1 Ω j be a bounded domain in R

3 with multiply connected Lipschitz boundary ∂Ω consisting of N + 1
disjoint components ∂Ω j = Γ j : ∂Ω = Γ0 ∪ · · · ∪ ΓN , Γi ∩ Γ j = ∅, i �= j. Consider in Ω the stationary Navier–Stokes system
with nonhomogeneous boundary conditions

⎧⎨
⎩

−ν�u + (u · ∇)u + ∇p = 0 in Ω

div u = 0 in Ω

u = a on ∂Ω

(1)

The continuity equation (12) implies the necessary compatibility condition for the solvability of problem (1):
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Fig. 1. Domain Ω .

∫
∂Ω

a · n dS =
N∑

j=0

∫
Γ j

a · n dS =
N∑

j=0

Fi = 0 (2)

where n is a unit vector of the outward (with respect to Ω) normal to ∂Ω and F j = ∫
Γ j

a · n dS .

Starting from the famous paper of J. Leray [1] published in 1933, problem (1) was a subject of investigation in many
papers (for a detailed survey of these results one can see the recent papers [2] or [3,4]). However, for a long time the
existence of a weak solution u ∈ W 1,2(Ω) to problem (1) was proved only under the condition of zero fluxes:

F j =
∫
Γ j

a · n dS = 0, j = 0,1, . . . , N (3)

or assuming the fluxes F j to be sufficiently small. Note that condition (3) requires the net flux F j of the boundary value a
to be zero separately across each component Γ j of the boundary ∂Ω , while the compatibility condition (2) means only that
the total flux is zero. Thus, (3) is stronger than (2) (condition (3) does not allow the presence of sinks and sources).

We shall study the problem in the axial symmetric case. Let O x1 , O x2 , O x3 be coordinate axis in R
3, (θ, r, z) be cylindrical

coordinates and vθ , vr, vz be the projections of the vector v on the axes θ, r, z. A vector-valued function h = (hθ ,hr,hz) is
called axially symmetric if hθ , hr and hz do not depend on θ , and h =(hθ ,hr,hz) is called axially symmetric without rotation if
hθ = 0 while hr and hz do not depend on θ . We will use the following symmetry assumptions:

(SO) Ω ⊂R
3 is a bounded domain with Lipschitz boundary and O x3 is the axis of symmetry of the domain Ω .

(AS) The assumptions (SO) are fulfilled and the boundary value a ∈ W 1/2,2(∂Ω) is axially symmetric.
(ASwR) The assumptions (SO) are fulfilled and the boundary value a ∈ W 1/2,2(∂Ω) is axially symmetric without rotation.
Assume that

Γ j ∩ O x3 �= ∅, j = 0, . . . , M, Γ j ∩ O x3 = ∅, j = M + 1, . . . , N

We will prove the existence theorem for the solution of problem (1), if one of the following two additional conditions is
fulfilled:

M = N − 1, FN � 0 (4)

or

|F j| < δ, j = M + 1, . . . , N (5)

where δ = δ(ν,Ω) is sufficiently small. In particular, (5) includes the case N = M , i.e., when each component of the bound-
ary intersects the axis of symmetry. In both cases (4) and (5) the fluxes F j , j = 0,1, . . . , M , are arbitrary.

On Fig. 1 we show several possible domains Ω . In the case (a) all fluxes F0,F1 and F2 are arbitrary; in the case (b)
fluxes F0,F1,F2 are arbitrary, while the flux F3 has to be nonnegative, but there are no restriction on its size; in the case
(c) fluxes F0,F1 are arbitrary, while F2 and F1 has to be “sufficiently small”.

The main result reads as follows:

Theorem 1.1. Let the conditions (AS), (2) be fulfilled. Suppose also that one of the conditions (4) or (5) holds. Then the problem (1)
admits at least one weak axially symmetric solution.

If, in addition, the conditions (ASwR) are fulfilled, then the problem (1) admits at least one weak axially symmetric solution without
rotation.

The analogous results for the two-dimensional case were obtained in [2].
The preprint version of the results of this paper (with detailed proofs) see in [5].
The proof of Theorem 1.1 uses the Bernoulli law for a weak solution of the Euler equations and the one-side maximum

principle for the total head pressure corresponding to this solution (see the next section).
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2. Euler equation

We shall study the Euler equations
{

λ0(v · ∇)v + ∇p = 0 in Ω

div v = 0 in Ω
(6)

under the following assumption:
(E) Let the conditions (SO) be fulfilled. Suppose that axially symmetric functions v ∈ W 1,2(Ω) and p ∈ W 1,3/2(Ω) satisfy the Euler

system (6) for almost all x ∈ Ω . Moreover, suppose that∫
Γ j

v · n dS = 0 ∀ j = 0,1, . . . , N (7)

Denote P+ = {(0, x2, x3): x2 > 0, x3 ∈ R}. On P+ the coordinates x2, x3 coincides with coordinates r, z. From the condi-
tions (SO) it follows that

(S1) D := Ω ∩ P+ is a bounded plane domain with Lipschitz boundary. Moreover, C j := P+ ∩ Γ j is a connected set for
each j = 0, . . . , N .

From the last equality in (6) and from (7) it follows that there exists a stream function ψ ∈ W 2,2
loc (D):

∂ψ

∂r
= −rvz,

∂ψ

∂z
= rvr (8)

Denote by Φ = p + λ0
|v|2

2 the total head pressure corresponding to the solution (v, p).
If all functions are smooth, then from (8) the classical Bernoulli law follows immediately: “The total head pressure Φ(x) is

constant along any streamline of the flow”. In the general case the following assertion holds:

Theorem 2.1. Let the conditions (E) be fulfilled. Then there exists a set Av such that H1(Av) = 0 and for any compact connected set
K ⊂ P+ ∩ D̄ with ψ |K = const, the identities Φ(x) = Φ(y) hold for all x, y ∈ K \ Av .

Here and henceforth we denote by Hk the k-dimensional Hausdorff measure, i.e., Hk(F ) = limt→0+ Hk
t (F ), where Hk

t (F ) =
inf{∑∞

i=1(diam Fi)
k: diam Fi � t, F ⊂ ⋃∞

i=1 Fi}.
In the two-dimensional case Theorem 2.1 was obtained in [6, see Theorem 1]. The detailed proof of it is given in [2]. The

proof for the axial symmetric case is absolutely analogous.

Theorem 2.2. Let the conditions (E) be fulfilled. Suppose, in addition, that v|∂Ω = 0. Then for each j = 0, . . . , N there exists p j ∈ R

such that p(x) ≡ p j for all x ∈ C j \ Av . In particular, by axial symmetry,

p(x) ≡ p j for H2-almost all x ∈ Γ j, j = 0, . . . , N (9)

Moreover,

p0 = p1 = · · · = pM (10)

max
i, j=0,...N

|pi − p j|� δ1λ0‖∇v‖2
L2(Ω)

(11)

where the constant δ1 depends on Ω only.

To prove the equalities (10), the Bernoulli law and the fact that the axis O z is an “almost” stream line were used. More
precisely, O z is a singularity line for v, ψ , p, but it can be approximated by usual stream lines (on which Φ = const).

In order to prove the existence theorem (Theorem 1.1) under assumptions (5), the equalities (10) are sufficient. In the
case of assumptions (4), we need also a weak one-side maximum principle for the total head pressure Φ .

Let U ⊂ R
2 be a domain with Lipschitz boundary. We say that the function f ∈ W 1,s(U ) satisfies a one-side maximum

principle locally in U , if

ess sup
x∈U ′

f (x) � ess sup
x∈∂U ′

f (x) (12)

holds for any strictly interior subdomain U ′ (Ū ′ ⊂ U ) with the boundary ∂U ′ not containing singleton connected compo-
nents. In (12) negligible sets are the sets of two-dimensional Lebesgue measure zero in the left esssup, and the sets of
one-dimensional Hausdorff measure zero in the right esssup.
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Theorem 2.3. Let the conditions of Theorem 2.2 be fulfilled. Assume that there exists a sequence of functions {Φμ} such that Φμ ∈
W 1,s

loc (D) and Φμ ⇀ Φ weakly in the space W 1,s
loc (D) for all s ∈ [1,2). If all functions Φμ satisfy the one-side maximum principle

locally in D, then

ess sup
x∈D

Φ(x) � max
j=0,...,N

p j (13)

In the two-dimensional case Theorem 2.3 was obtained in [6, see Theorem 2]; for the detailed proof of it see [2].

3. Sketch of the proof of the existence theorem

The existence of the solution to problem (1) is proved by the Leray–Schauder fixed point theorem. To apply this theorem,
we have to prove that the norms of all possible weak solutions w(λ) ∈ W̊ 1,2(Ω) of the following problem:

⎧⎨
⎩

−ν�w(λ) + λ
[(

w(λ) · ∇)
w(λ) + (

w(λ) · ∇)
A + (A · ∇)w(λ)

] + ∇p(λ) = λ
[
ν�A − (A · ∇)A

]
in Ω

div w(λ) = 0 in Ω

w(λ) = 0 on ∂Ω

(14)

are uniformly bounded by a constant independent of λ ∈ [0,1]. In (14) A ∈ W 1,2(Ω) is any axially symmetric solenoidal
extension of the boundary value a. The existence of such extension is proved, e.g., in [7, Corollary 2.3]. In the case of an
axially symmetric domain and boundary values the extension A can be chosen axially symmetric too. Notice that in the
proofs below we do not use any specific properties of A.

We prove this a priori estimate using the contradiction argument proposed by J. Leray [1] (this argument was used
also by many other authors). Assume the estimate is false. Then there exists a sequence {λk} ⊂ [0,1] and weak solutions
w(λk) ∈ W̊ 1,2(Ω) to problem (14) such that

lim
k→∞

λk = λ0 ∈ [0,1], lim
k→∞

Jk = lim
k→∞

∥∥∇w(λk)
∥∥

L2(Ω)
= ∞

Denote v(λk) = J−1
k w(λk) . Since ‖∇v(λk)‖L2(Ω) = 1, we can assume without loss of generality (modulo subsequence), that

{v(λk)} converging weakly in W̊ 1,2(Ω) to v ∈ W̊ 1,2(Ω), ‖∇v‖L2(Ω) � 1. It can be proved that the limit function v together
with the corresponding pressure function p satisfies the Euler equations (6) almost everywhere in Ω and v|∂Ω = 0. Since
the domain Ω and the data of problem (14) are axially symmetric, we conclude that v, p are axially symmetric too.

Multiplying (14) by J−2
k w(λk) , integrating by parts in Ω and passing to a limit as k → ∞ we obtain the following

equality:

ν =
∫
Ω

(v · ∇)v · A dx (15)

On the other hand, from Euler equations (6) it follows that

∫
Ω

(v · ∇)v · A dx = −
∫

∂Ω

pa · n dS (16)

Using (2), (9), and (10) we can rewrite the last formula in the following equivalent form:

∫
∂Ω

pa · n dS =
N∑

j=0

p jF j = p0

M∑
j=0

F j +
N∑

j=M+1

p jF j =
N∑

j=M+1

F j(p j − p0) (17)

Hence,

ν = −
N∑

j=M+1

F j(p j − p0) (18)

Now, if the assumption (5) is fulfilled with δ = 1
δ1(N−M)

ν , where δ1 is a constant from Theorem 2.2, then we have a
contradiction of (11) with (18). The proof for this case is complete.

The proof in the case (4) is more complicated; it is based on Theorem 2.3 and follows the ideas from the paper [2].
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