C. R. Mecanique 340 (2012) 804-817

Contents lists available at SciVerse ScienceDirect

Comptes Rendus Mecanique

www.sciencedirect.com

Out of Equilibrium Dynamics

A hybrid two-phase mixture model of detonation diffraction with
compliant confinement

Donald W. Schwendeman?, Ashwani K. Kapila®*, William D. Henshaw P

2 Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
b Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

ARTICLE INFO ABSTRACT
Article history‘: A multi-material two-phase hybrid model of heterogeneous explosives, with a reaction
Available online 15 November 2012 rate that is proportional to the gas-phase pressure excess above an ignition threshold, is
X examined computationally. The explosive is confined within a compliant inert, and the
Keyword.s' focus is on the behavior of an established detonation as it rounds a 90° corner and
Detonation . . . . ) . .
Diffraction undergoes diffraction. The numerical approach, a variant of Godunov’s method, is designed
Dead zone to capture interfaces between materials that can undergo phase change, and extends
Compliant confinement previous work of the authors on rigidly-confined two-phase detonations. The dependence
Multi-material two-phase model of the post-diffraction conduct on the strength of the confinement is explored by holding
Interface capturing the reaction-rate prefactor and the ignition threshold fixed, and considering confiners of

two different strengths. The aim is to determine whether a detonation that turns the
corner successfully when rigidly confined can experience failure when the confinement
is compliant.
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1. Introduction

A high-energy granular explosive is a complex material containing polycrystalline grains of the energetic component, held
together by a polymer and possibly containing additives, impurities, voids, gas-filed pores, and the like. When a detonation
is initiated by a stimulus such as a shock, the strongly heterogeneous material responds nonuniformly. Mechanical processes
such as friction and pore collapse generate hot spots where chemical reaction originates preferentially before spreading to
the bulk. Despite this heterogeneity at the grain scale, detonation fronts are remarkably smooth and reproducible when
observed at a scale representative of the device, and are thus indicative of an intrinsic homogenization underlying the
macro-scale response. Such complaisant behavior on the part of the explosive, coupled with the impracticability of routine
computations that resolve the microstructure, has led to the development of continuum engineering models at the macro-
scale. These models treat the explosive either as a single-phase or a two-phase homogeneous mixture of reactant and
product. Grain-scale processes are introduced as constitutive input, phenomenological rather than founded on a rational,
ab initio derivation that bridges the scales, and crucially dependent upon calibration with experiments.

The single-phase approach assumes that the two constituents, the reactant and the product, are in mechanical and
thermal equilibrium and subject to a single reaction at a rate that attempts to incorporate microstructural effects. A well-
studied example of this approach is the ignition-and-growth model originally proposed by Lee and Tarver [1] and later
refined by Tarver and colleagues [2-5]. The two-phase approach recognizes explicitly the porous nature of the explosive,
treating it as a mixture of two distinct but coexisting phases and allowing mutual exchange of mass, momentum and energy
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across the interfacial boundaries. Constitutive expressions for the interfacial exchange supplement the balance laws; they
incorporate the micromechanical submodels and their formulation is constrained by thermodynamic principles. A prominent
example of this approach is the two-phase model considered by Baer and Nunziato [6].

Given the somewhat ad hoc nature of these models, it is important to assess how well they perform in capturing and
predicting observed phenomena in complicated geometries. When suitably calibrated, both types of models have repli-
cated various aspects of planar, one-dimensional experiments well; see, for example, Tarver and colleagues cited above for
the ignition-and-growth model, and Baer and collaborators [6-8] for the two-phase model. Nonplanar geometries, how-
ever, have been a greater challenge. Consider, in particular, the appearance of dead zones in corner turning. Experiments
have shown that when a well-established detonation diffracts around a sharp corner, it leaves behind a sustained pocket
of unreacted material, or a dead zone, in the vicinity of the corner [9-11]. In earlier studies we have demonstrated that
the standard ignition-and-growth model does not admit dead zones for either rigid [12] or compliant [13] confinement.
In a later study [14] we considered a modification of the ignition-and-growth model to account for the effect of desensiti-
zation by weak shocks, and this enhanced model was shown to be capable of admitting dead zones. An alternate approach
to desensitization was outlined in [15].

In recent work we have focused on the two-phase model and proposed a new numerical approach for it [16], which is
a variant of the Godunov method and includes a rational treatment of the non-conservative nozzling terms of the model.
We have employed it to examine in detail the initiation and propagation of a detonation following a weak planar im-
pact in a one-dimensional configuration [17] as well as its possible failure as it negotiates sharp corners and undergoes
diffraction [18]. These investigations assume a pressure-dependent reaction rate. We find, in particular, that the pressure
threshold for ignition and the reaction-rate prefactor can indeed act in concert with the pressure loss due to diffraction to
produce dead zones by themselves, without the introduction of additional mechanisms. The diffraction study in [18] was
restricted, however, to the explosive being confined within rigid walls. In this paper we relax this restrictive assumption and
re-examine the post-diffraction behavior of an established detonation when the confining walls are compliant. Specifically,
we explore whether a detonation that negotiates a sudden expansion successfully when confined rigidly can fail to do so
when confined compliantly.

The explosive geometry is taken to be a slab with a sudden expansion, i.e., a narrow donor charge attached to a wider
acceptor charge. The entire slab is surrounded by an inert, deformable medium whose lateral dimensions are large enough
so that its outer boundary does not influence the computation over the time of interest. This configuration, motivated by
the experiments of Ferm et al. [9], is similar to that employed in [18]. The compliant confinement is chosen to be strong
enough so that a steady, curved detonation is established in the donor charge by means of a high-pressure booster. As the
detonation crosses into the acceptor charge, experiments show that upon diffraction the reaction zone peels away from
the leading shock as the detonation goes around the corner, leading to the appearance of a dead zone in the vicinity of the
corner. We demonstrate that while a rigid confinement tends to suppress dead zones, a compliant confinement can indeed
promote their development.

The presence of the compliant confiner requires that the aforementioned numerical procedure designed for the two-
phase reactive model be suitably extended to accommodate what is now a more complex system. The extension must
ensure, in particular, that the interface separating the explosive and the confiner is computed accurately and robustly. This
is done by treating the explosive-confiner system as a two-phase, two-material, hybrid mixture, so that the same set of
equations apply everywhere in the domain. The two materials are the explosive and the confiner, and the term hybrid
signifies that the explosive component is itself a two-phase mixture composed of the energetic solid and the product gas.
The composition of the system is specified by a pair of material variables that advect with the solid-phase velocity. (A more
general situation involving multiple materials that would arise, for example, when there are inert inclusions embedded
within the explosive, can be treated in a similar fashion by introducing additional compositional variables.) The interface
between the explosive and the confiner is captured rather than tracked, by allowing it to have a finite thickness extending
to a few computational cells in which both constituents coexist simultaneously. In the bulk of the computational domain
outside the thin interfacial zones, a single material is effectively the lone component. Given the equations of state of the
individual components, construction of the equation of state of the mixture, in general, requires some closure conditions,
i.e., assumptions about mutual interaction between the constituents such as exchange of momentum and energy. Since the
mixture is introduced purely as a numerical construct designed to facilitate the treatment of the interface, we are afforded
a greater latitude in the selection of closure conditions. In particular, we base our choice on considerations of computational
convenience and robustness rather than on any preconceived physics of the interface. Our mathematical formulation further
assumes that certain constitutive parameters advect with the mixture, which follows similar formulations used by others,
see for example the work by Abgrall [19] and Saurel and Abgrall [20]. The numerical approach used to compute solutions
of the governing equations is a high-resolution Godunov scheme which is an amalgamation of that described in [18] for the
equations modeling two-phase reactive flow and in [21] for the equations modeling the collapse of a cavity. The approach
employs the exact solution of a Riemann problem to compute numerical fluxes and to advance the constitutive parameters
which determine the state of the mixture and are governed by non-conservative advection equations.

The subsequent sections of the paper begin with a discussion of the governing equations in Section 2. Section 3 de-
scribes the configuration, lists the parameter set and identifies the reference scales. The numerical method used to compute
solutions of the equations is described in Section 4, and the results are given in Section 5. Conclusions from our numerical
study are drawn in Section 6.
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2. Governing equations

The explosive/confiner system is treated as a multi-material mixture consisting of the explosive and the inert confiner,
of which the explosive component is itself a two-phase mixture composed of the unreacted energetic material and the
detonation product. The detonation product is a gas, and even though we shall continue to refer to the unreacted material
as a solid, it is customary to model it as a fluid because of the high pressures involved. Each phase of the explosive obeys
separate balance laws of mass, momentum and energy, plus an equation that allows compaction of the solid phase driven
by the pressure difference between phases. Terms representing interfacial exchange of mass, momentum and energy appear,
corresponding to the non-equilibrium processes of reaction, drag and heat transfer.

2.1. Standard two-phase model

We begin by presenting the equations for the explosive component first, and then consider an extension of the model
to include the confiner. The equations are essentially those first proposed by Baer and Nunziato [6], with some modifica-
tions suggested by Bdzil et al. [22], and are the same as were used in our earlier study [18]. Although the computational
configuration is two-dimensional, we write down the equations in one space dimension for ease of presentation. Thus,

ad d ox
atu—i— aXf(u) =h(u) ™ + k(u) (1)
with
r a7 B 0 7 r—v ] FTF+C/p ]
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Here, « is the volume fraction, p is the density, v is the velocity, p is the pressure and E is the total energy. The overbar
denotes solid-phase variables while gas-phase variables have no overbar. The total energy of each phase is given by
E=e+ v E=é+ v
=e -, =e —_
2 )
where e is the specific internal energy of the gas and

es=e+ B(@)
is the specific internal energy of the solid. The internal energy of the solid is the sum of the internal energy of the

pure solid &, the compaction potential energy B(@) and the heat release §. The compaction potential accounts for
the configuration-dependent energy of the solid. We take
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where the zero subscript denotes quantities given by a reference ambient state. In addition, we employ a virial equation of
state for the gas phase and a stiffened equation of state for the solid phase so that

) .
Y 3 :f—k 3
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where y and y are ratios of specific heats, b is a virial gas coefficient, and 7 is a solid stiffening pressure. Finally, the
volume fractions satisfy the saturation constraint,

e(p,p)=

a+a=1

Source terms representing interactions between the phases appear on the right-hand side of the equations in (1). The
terms proportional to &y are the so-called nozzling terms. They arise naturally in the model and describe momentum and
energy exchange between the phases as the result of an effective change in the cross-sectional area of a virtual stream tube
in the gas phase. The undifferentiated source terms on the right side of (1) represent compaction, F, compaction work, p.F,
and an exchange of mass, momentum and energy between phases given by C, M and &, respectively. A number of choices
for C can be made depending on the assumed kinetics of the chemical reactions. Following [18] we let

_ 0 if p < pign (4)
—oap(p — pign) ifp> Dign
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where o > 0 is the reaction-rate prefactor and pjg, is an ignition pressure. The other quantities in the source terms are
assumed to have the form

F=a&(—p-B)uc (5)
M:DC+<5+%C>(V—\7) (6)
E=(E+B/p)C+ <8+%C>((v—0)\7)+H(T—T) (7)

where jic is the compaction viscosity, § is the drag coefficient, g = apB’ (&) is the configuration pressure, H is the heat-
transfer coefficient, and T and T are the temperatures of the gas and solid, respectively. These temperatures are given by

_ p T = p+ym
— T < < 5 v — - = .. -
(¥ = Dp(d +bp) ¥ —-Dp

Cy
where C, and C, are specific heats at constant volume. More details on the interaction terms can be found in [18].
2.2. Hybrid two-phase mixture model

With the description of the explosive component in place, the equation set can now be extended to apply to the hybrid
mixture. The balance equations remain the same as in (1) above, but now the solid phase is a multi-component mixture.
The major components are the explosive and the inert confiner. For the problem at hand there is also a third component,
a secondary explosive, capable of being readily set off so that it acts as a booster charge to initiate the primary explosive.
The distribution of the three components in the mixture is described by the identifier function ftg, defined initially over the
entire computational domain as

0 in the inert confiner
o =14 1 inthe primary explosive
2 in the secondary explosive booster

Across a sharp interface fip would jump, but here the interfaces though thin are smeared, and across each interface jig is
prescribed to vary smoothly but rapidly between the values on either side of the interface. It is also assumed to advect with
the solid-phase velocity, i.e.,

d 3
9Ho | ;oMo _

0 8
at 0x (8)

Like the primary explosive, the other two solid components, the inert confiner and the secondary explosive, are also mod-
eled as compressible fluids, each with a stiffened-gas equation of state of the form of the second equation in (3). We
introduce constitutive variables i1 and fi, defined by

_ 1 _ YT
M1 = ﬁ’ H2 = ﬁ
which are also assumed to advect with the solid phase, i.e.,
a 7 _ a T
i 58 o =12 9)
at ax

The mixture internal energy for the solid phase is determined by
I _
e= E(Mlp +i2)+q
where q is specified by . Initially, the triple (y, 7, q) is defined separately for the three components as
(Ye, e, Q¢)  in the primary explosive

(v,7m,q) =13 (¥, 7y, Qp) in the secondary explosive booster
i, 7, 0) in the inert confiner
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booster charge plane of symmetry

inert confiner acceptor charge

Fig. 1. Initial configuration for corner turning. A detonation in the donor segment, initiated by the booster, will propagate to the right and diffract into the
acceptor segment.

3. Configuration, parameter set and reference scales

The configuration under study is illustrated in Fig. 1. Only the lower half below the plane of symmetry is shown. The
explosive sample is L-shaped, with the primary explosive forming the donor and the acceptor segments and the secondary
explosive comprising the booster segment. The inert confiner encloses the sample. It is noted that in the initial state shown
in Fig. 1 the interfaces are sharp and the components are separated, so that there is no region where two or more solids
coexist to form a mixture. In the exact solution such a state would persist as the flow evolves, but in the numerical
approximation a mixture exists right at the outset as the interfaces are smeared initially over two or three grid cells. The
smeared regions are thin and purely numerical, and we assign no particular physical significance to the state of the flow
within such regions.

For the computations a representative primary explosive is considered with the following ambient state:

Gas phase: «ap=0.27, po=1 kg/m3, po =0.25225 MPa, To =300K
Solid phase: @y =0.73,  fo=1900kg/m?,  po=7.6MPa, To=300K

The equation-of-state parameters for the explosive are chosen to be
Gas phase:  y =1.35, b =0.001 m>/kg, Cy, =2400]/(kgK)

Solid phase: y =5, 7T =3412.4 MPa, Cy, =1500]/(kgK)

and the heat release is

g=Q.=6.65x 10°J/kg

Two possible types of inert confiner, weak and strong, will be considered. In either case it is assumed that the confiner is
essentially all solid and in mechanical and thermal equilibrium with the explosive. The weak confiner is modeled by air-like
properties, and the strong confiner is taken to have the same physical properties as the explosive (with reaction set to zero
of course). In the confiner &g ~ 1 and the equation-of-state parameters are

(5,3412.4 MPa), strong confinement

10
(1.4,0), weak confinement (10)

The secondary explosive in the booster is also taken to be very nearly all solid, with the same equation of state as the
primary explosive but with a higher heat of reaction, Q, =2.5Qe, and a very low ignition pressure, pig, = 0.

The initial state and the exothermicity of the primary explosive allow its Chapman-Jouguet state to be determined
(see [17]). It is found that the CJ detonation velocity is

D¢ =7508.8 m/s
and the corresponding density, velocity, pressure and temperature are

pcy = 1906.2 l<g/m3, v =2044.3 m/s, pg = 21.300 GPa, Tqg=4577.1K
The (J state, along with the choices

trer=1ns,  Cy rer =2400]/(kgK) (11)
is chosen to provide the reference scales,

Vref = Dgy = 7508.8 m/s, Pref = pcj = 21.300 GPa

Xref = Vreftrer =7.5088 x 1073 M, pref = Pref/ Ve = 377.78 kg/m? (12)

Tref = V2¢/Cy ref = 23492 K, Erer = V2, =5.6381 x 107 ] /kg
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Table 1

Dimensionless upstream state and equation of state parameters.
Parameter Value Parameter Value
Ao 0.73 y 5
o 5.0293 T 0.16021
Po 3.5682e—4 Cy 0.625
To 1.2770e—2 q 0.11795
00 2.6470e—3 y 1.35
Po 1.1843e—5 b 0.37778
To 1.2770e—2 Cy 1

Dimensionless quantities may now be defined in the usual way by dividing each dimensional quantity by its corresponding
reference scale given in (11) or (12). The result leaves the governing equations in (1) unchanged. The corresponding di-
mensionless initial state and the equation of state parameters for the entire configuration are listed in Table 1. In addition,
we require dimensionless parameters for the compaction viscosity in (5), the drag coefficient in (6), and the heat-transfer
coefficient in (7). For the purposes of this paper, we choose nominal values from the range of values considered in [17].
These dimensionless values are

e =0.05, 6 =20.0, H=0.2

The remaining parameters of the two-phase model, o and pjg,, are needed for the reaction rate in (4), and these will be
chosen later in Section 5 for the particular numerical experiments studied.

4. Numerical approach

The equations governing the hybrid two-phase mixture model in (1), (8) and (9) form a hyperbolic system of nonlinear
partial differential equations. This system, extended to two dimensions, can be written in the general form

Lyt LR =AW -2U+KO) (13)
at 0X; aX;

with Einstein summation convention used. Here, U denotes the state variables, F; the conserved fluxes, A;Uy, the non-
conservative nozzling and advection terms, and K the non-differentiated source terms. Our numerical approach for (13) is
a high-resolution shock-capturing method. The basic approach is discussed in [18] for the standard two-phase model, and its
extension to handle the advection equations that describe the solid-phase mixture follows the approach discussed in [21].
The numerical approach employs adaptive mesh refinement (AMR) following the approach described in [23], and it uses an
extension to parallel computing following the work in [24]. Since the essential components of the numerical method are
discussed in detail elsewhere, we provide only a brief summary of the approach here.

A Cartesian grid with equal mesh spacings covers the domain of interest and forms the base grid for AMR. Refinement
grids are built on top of the base grid in a hierarchical fashion according to an estimate of the error. The solution in the
vicinity of shocks and contact discontinuities is represented on the finest grid level, and refinement grids are also generated
near sharp layers of reaction and/or interphase relaxation, so that a well-resolved numerical solution on the grid is obtained
economically. In addition, each grid in the AMR system may be partitioned and computed in parallel. The partitioning of the
grids and their distribution among a set of processors is done using a load-balancing algorithm. The parallel, AMR approach
provides good speed up of the calculations, so that well-resolved solutions are obtained for the results discussed below.

The numerical solution of the governing equations in (13) is advanced on the base grid and on each refinement grid using
a second-order slope-limited extension of Godunov’s method. Solutions of the associated Riemann problems for Godunov’s
method are used to evaluate the conservative fluxes and the non-conservative nozzling and advective terms. We use exact
solutions of the Riemann problems for the numerical scheme as this was found to give more accurate results than the
corresponding ones using approximate Riemann solvers, such as an HLLC solver. The non-differentiated source terms are
integrated numerically using a second-order Runge-Kutta error-control scheme, and this is incorporated into the scheme
using a second-order Strang time-splitting approach. The essential components of the overall scheme were shown to be
second-order accurate for smooth flows in [18] and [21]. It was shown further that well-resolved and accurate results were
obtained for solutions with shocks, detonations and contacts.

5. Numerical results

The primary goal of this study is to explore the influence of a compliant confiner on the post-diffraction behavior of
the detonation. Accordingly, we have elected to consider confiners of two different strengths: a strong confiner whose
physical properties are the same as those of the unreacted explosive and a weak confiner whose properties are those of
ambient air. Each is assumed to have a stiffened-gas equation of state, and the relevant parameters are specified in (10).
The post-diffraction behavior is also crucially influenced by the reaction rate, i.e., by the choices of the prefactor o and
the gas-pressure threshold for ignition pig, appearing in expression (4) for the reaction rate. In [18], four different cases
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Table 2
Reaction prefactor o and ignition threshold pjg, for cases I, II, Il
and IV in [18].
Case o Dign
1 10 0.45
Il 10 0.48
il 25 0.48
\% 25 0.53
15

0.5

0—0.12 -0.08 -0.04 0
X

Fig. 2. Steady, one-dimensional structure of the rigidly-confined detonation.

corresponding to different values of the reaction-rate parameters, listed in Table 2, were considered for investigating the
post-diffraction scenario under rigid confinement.

It was found that in all cases, diffraction past the corner created a region of extinguished reaction in the vicinity of
the corner, owing to an expansion-caused drop in the gas-phase pressure below pjg, at that location. The loss of reactive
support weakened the gas-phase shock even more than the diffraction-induced expansion alone. Away from the corner
the drop in the gas-phase pressure was less severe and the reaction continued, albeit at a reduced rate. The reduction
in rate caused the gas-phase shock to lose speed, but to a much lesser extent than in the region away from the corner.
A gradient of shock speed, and an associated gradient of post-shock gas-phase pressure, setup along the gas-phase shock,
drove the reaction-supported segment of this shock towards the wall, allowing it to overtake the unsupported segment of
the shock there and thereby raising the local gas-phase pressure and reviving the reaction. The extent of revival depended
upon a delicate balance between the reaction-rate prefactor o and the ignition threshold pjg,. For cases I and III the revival
was strong enough to overcome the temporary extinction and regenerate a detonation, while cases II and IV exhibited
sustained regions of extinguished reaction.

In this paper we undertake an investigation of case Il as an example of a representative situation that did not exhibit
a dead zone under rigid confinement, to determine whether this behavior changes when the confinement is compliant.

5.1. Rate stick

The corner-turning study assumes that a steady detonation has been established in the narrow donor section of the
test configuration, otherwise known as a rate stick, upstream of the corner. A brief description of the structure of this
detonation is given below for case Ill, o =25 and pjg, = 0.48. It was shown in [18] that for rigid confinement the steady,
planar detonation for this case has a one-dimensional structure that is compaction-led. In other words, a lead shock in
the solid is followed by a shock in the gas, and between the two shocks lies a compaction layer in which the solid volume
fraction rises from the ambient value at the solid shock to a maximum at the gas shock, the peak value being below the full-
compaction value of unity. The gas pressure rises to a level above pjgy at the gas shock, which then serves as the leading
edge of a reaction zone that extends behind the gas shock and in which the solid volume fraction declines as the reactant
is consumed. The structure is displayed in Fig. 2 where profiles of solid volume fraction, solid pressure and gas pressure are
plotted.

We now turn to the compliantly-confined rate stick. In it the detonation is initiated, computationally, by the attached
booster charge supplying a high-pressure stimulus. The case of strong confinement is considered first, for which Fig. 3
displays shaded contour plots of solid volume fraction and gas pressure at two different times. These plots show that
the initially square booster region expands rapidly due to the high pressure generated within it, deflecting the explosive—
confiner interface outwards and sending a detonation traveling in the explosive. As a result of the pressure release at the
interface the detonation front is curved, and the detonation approaches a steady state as it propagates down the rate stick.
The structure of this steady detonation along the plane of symmetry of the configuration is shown in Fig. 4. We note
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Fig. 3. Strong confinement: shaded contour plots of solid volume fraction and gas pressure for t = 1.5 (top) and t = 4.0 (bottom).
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Fig. 4. Structure of the strongly-confined detonation at the symmetry plane.

| O — T || O —
0 solid volume fraction 1 0 gas pressure 1.2

Fig. 5. Expanded views of the wavefront of the strongly-confined detonation at t = 4.0: shaded contour plots of solid volume fraction (left) and gas pressure
(right).

that the structure is qualitatively similar to the rigidly-confined case shown in Fig. 2, but the detonation speed is slower,
the reaction zone wider and the peak pressures lower in both the solid and the gas. The expanded plots in Fig. 5 show
that along the curved detonation front the gas pressure drops from the plane of symmetry towards the explosive-confiner
interface, thereby progressively weakening the reaction and broadening the reaction zone. Although diminished, the gas
pressure does not fall below pjgn and the reaction zone remains intact.

The weakly-confined detonation is considered next. Shaded contour plots of solid volume fraction and gas pressure at
two different times are displayed in Fig. 6 and the structure of the steady detonation along the plane of symmetry of
the configuration is shown in Fig. 7. Again, the structure is qualitatively similar to those for rigid and strong confinements,
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] | | T | | T | [
0 solid volume fraction 1 0 gas pressure 12

Fig. 6. Weak confinement: shaded contour plots of solid volume fraction and gas pressure for t = 1.5 (top) and t =4.0 (bottom).
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Fig. 7. Structure of the weakly-confined detonation at the symmetry plane.

Tl | | — — | —
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Fig. 8. Expanded views of the wavefront of the weakly-confined detonation: shaded contour plots of solid volume fraction (left) and gas pressure (right).

but the reaction zone is wider still and the gas pressure and solid pressure peaks are yet smaller. Expanded views of
the detonation front in Fig. 8 show, as before, that as the detonation front curves away from the plane of symmetry the gas
pressure along it drops and the reaction zone widens. For the weak confiner the gas pressure drops below pis, before the
confiner-explosive interface is reached, thereby extinguishing the reaction and leaving a thin layer of unreacted explosive
trapped between the products of reaction and the confiner. In other words, a thin dead zone at the interface is a part of
the steady detonation structure in the rate stick under weak confinement.
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Fig. 9. Strong confinement: solid pressure (left), gas pressure (middle) and solid volume fraction (right) at t = 2.6 (top frames) and ¢t = 3.0 (bottom frames).

5.2. Corner turning
We now present the results of diffraction as the detonation propagates from the donor into the acceptor section.

5.2.1. Strong confinement

The numerical results for strong confinement are shown in Figs. 9, 10 and 11. Fig. 9 displays shaded contours of solid
pressure, gas pressure and solid volume fraction at two times, just before and after the detonation front has passed the
corner. At t = 2.6 the plots show a steady, curved front and a deflected interface separating the reaction products and
the confiner, as was seen earlier for the rate stick. The solid shock leads the detonation, followed by the gas shock and
then the reaction zone. Sandwiched between the two shocks is the compaction zone, nearly uniform in width across the
detonation and most clearly seen in the solid volume fraction plot. An important feature visible in the solid pressure plot is
the shock in the confiner which, being the result of pressure release across the hitherto horizontal interface but not directly
supported by a reaction zone, is noticeably weaker than the solid shock that leads the detonation. At t = 3.0 the wave has
gone past the corner. The portion of the front near the plane of symmetry is relatively unscathed by the passage into the
acceptor region but the portion in the vicinity of the corner is significantly affected. Two distinct segments now comprise
the wavehead. Starting at the plane of symmetry and proceeding along the front, a bulk of the wavehead forms a part of the
detonation, i.e., the leading solid shock is supported by the reaction zone. However, the segment of the lead shock close to
the corner and traveling down the left boundary of the acceptor charge is not a part of the detonation; it is simply a shock
transmitted from the inert into the explosive across the aforementioned boundary. This segment is the weaker of the two,
but is still capable of compacting the explosive. The bulk of the gas shock is also unaffected by passage across the corner,
except for a small portion near the corner which has undergone diffraction and hence acquired additional curvature and
suffered a loss in strength. Thus, corner turning leads to the following consequences: an increased separation between the
solid and gas shocks near the corner and hence a wider compaction zone, as well as a reduced reaction rate behind the gas
shock and hence a wider reaction zone. These features are again best viewed in the solid volume fraction plot.

The frames in Fig. 10 display the behavior at three later times. One notes that at t = 3.4 the gas pressure around the
corner has fallen just below the ignition threshold, leading to extinction of the reaction there. This extinction is confined
to a narrow region and is quite local. Otherwise, on a broad segment of the inert-explosive interface at the left boundary
of the acceptor charge for example, the gas pressure is high enough so that the reaction, although weak, is not shut off.
In fact, the gas pressure at the gas shock and hence the reaction rate at that location are showing hints of strengthening.
Further evidence of the revival can be seen in the plot of solid pressure, where an internal high-pressure ridge has begun
to develop behind the wavehead. This revival is seen to gain vigor at t = 3.6 and at t = 3.8 one clearly sees a secondary
detonation traveling down the explosive-inert interface. This trend continues in Fig. 11, where plots for t =4.0 and 5.0 are
displayed. The secondary detonation has now overtaken the solid shock near the interface, and a nearly circular detonation
is now advancing into the acceptor charge. Only a vestige of the partially-reacted explosive, or dead zone, can be seen in
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Fig. 10. Strong confinement: solid pressure (left), gas pressure (middle) and solid volume fraction (right) at t = 3.4 (top frames), t = 3.6 (middle frames)
and t = 3.8 (bottom frames).
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Fig. 11. Strong confinement: solid pressure (left), gas pressure (middle) and solid volume fraction (right) at t = 4.0 (top frames) and t = 5.0 (bottom frames).
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Fig. 12. Weak confinement: solid pressure (left), gas pressure (middle) and solid volume fraction (right) at t = 2.6 (top frames) and t = 3.2 (bottom frames).
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Fig. 13. Weak confinement: solid pressure (left), gas pressure (middle) and solid volume fraction (right) at t = 3.4 (top frames) and t = 3.8 (bottom frames).

the vicinity of the corner in the solid volume fraction plot, where, as observed above, the reaction had suffered extinction.
Otherwise the detonation has turned the corner successfully, as was the case for rigid confinement considered in [18].

5.2.2. Weak confinement

The numerical results for weak confinement are shown in Figs. 12, 13 and 14. As above, shaded contours of solid
pressure, gas pressure and solid volume fraction are displayed. Fig. 12 shows plots for two times, just before and after the
detonation front has passed the corner. At t = 2.6 the front is yet to reach the corner and the structure is that for the
weakly-confined rate stick discussed above; the detonation has a curved structure similar to that for the strongly-confined
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Fig. 14. Weak confinement: solid pressure (left), gas pressure (middle) and solid volume fraction (right) at t = 4.0 (top frames) and t = 5.0 (bottom frames).

case, with the exception that a thin dead zone of unreacted explosive is trapped between the detonation products and
the confining inert. At t = 3.2 the detonation has passed into the acceptor charge, and diffraction-induced weakening has
lowered the pressures at the front and expanded the size of the dead zone near the corner. Unlike the strongly-confined
case, no precursor transmitted shock has passed from the inert into the acceptor charge. The plots of Figs. 13 and 14 at
later times show that the size of the dead zone expands, and that the detonation fails to turn the corner. This behavior is
remarkably similar to the dead-zone observations seen in [9].

6. Conclusions

This paper presents a computational study of diffracting detonations in a compliantly-confined heterogeneous explosive,
modeled as a two-phase reactive material consisting of the unreacted explosive (solid) and the product of reaction (gas).
It complements our earlier study of detonation diffraction under rigid confinement [18]. The intent has been to determine
whether a detonation that turns a right-angled corner successfully under rigid confinement can suffer failure and produce
dead zones (pockets of extinguished reaction, observed experimentally in [9]) when confined by a compliant inert. Two
different strengths of confinement are examined for a given explosive, whose reaction rate is taken to be proportional to
gas-phase pressure excess above an ignition threshold.

The explosive configuration consists of a narrow slab of reactive material, the donor section, suddenly expanding into
a broader slab, the acceptor section. An inert, deformable confiner surrounds the explosive. Detonation in the donor section
is initiated by means of an explosive booster. As the detonation travels down the donor section the confiner behind the det-
onation front is deflected by the high-pressure products of reaction, and the front itself acquires a curved shape. Pressure at
the front is highest along the plane of symmetry and lowest at the interface with the inert. If the confiner is strong, then the
lowest gas-phase pressure at the front remains above the ignition threshold, and the detonation proceeds without any sign
of failure. If the confiner is sufficiently weak, then the gas pressure near the interface can fall below the ignition threshold
and a thin layer of explosive near the interface remains unburned. In either case, passage of the detonation past the sharp
corner lowers the gas-phase pressure further due to diffraction-induced expansion, and local regions of extinguished reac-
tion can occur. Whether these regions persist, leading to sustained dead zones, or are consumed by a reaction-rate recovery,
depends delicately upon the ignition threshold, the reaction-rate prefactor and the degree of compliance of the confiner. The
detailed discussion of the previous section considers the possibilities and identifies the mechanisms that determine whether
failure is transitory or sustained.
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