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A three-dimensional solution of the mixed boundary value problem posed in Potential
Theory is proposed. The support of the Neumann condition is conformally mapped onto
a unit disk. On that disk, the solution is broken down as Fourier series of azimuthal
angle and linear combinations of known functions of the radial coordinate. It is shown
that the whole problem reduces highly nonlinear equations for the coefficients of the
mapping function. The present method of solution is to be applied to hydrodynamic impact
problem.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A mixed Neumann–Dirichlet boundary value problem is posed in Potential Theory. The Laplace equation is solved in
a half three-dimensional space. This configuration is relevant in several domains of the physics; among them a charged disk
in electrostatics, or the hydrodynamic impact problem known as the linearized Wagner problem [1]. This latter problem
is even more complicated since the line which bounds the two supports of the two boundary conditions is a part of the
solution.

We propose here a new mathematical solution of that Wagner problem. A semi-analytical solution of the problem is
hence established as a series of known functions whose properties are checked and analyzed. The proposed method has
not been studied for practical cases yet. However some physical properties of the solution, like hydrodynamic loads are
formulated. It is also expected that the present solution will help to propose new criteria regarding the stability of the
solution in connection with the regularity of the shape at the initial contact point.

2. Method of solution

An illustration of the linearized three-dimensional Wagner problem is shown in Fig. 1. A Neumann condition is pre-
scribed on a closed area D . A homogeneous Dirichlet condition is prescribed on the complementary surface F . Following
Korobkin [2] and Howison et al. [3] among others, the corresponding boundary value problem is formulated in terms of the
displacement potential φ as follows:⎧⎪⎪⎨

⎪⎪⎩

φ,xx + φ,yy + φ,zz = 0, z < 0
φ = 0, z = 0, (x, y) ∈ F
φ,z = f �(x, y, t), z = 0, (x, y) ∈ D

φ → 0,
(
x2 + y2 + z2) → ∞

(1)
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Fig. 1. Illustration of the linearized three-dimensional Wagner problem.

where f � is a regular enough function of the Cartesian coordinates (x, y) and time t . By using a theorem by Zaremba [4]
applied to the vertical displacement V = −φ,z , it is shown that the field V is induced by a unique distribution of sources
over the surface D . The source intensities identify with the planar Laplacian �2φ = φ,xx + φ,yy = S(x, y, t). In addition
V (x, y, z, t) is continuous throughout the fluid domain z � 0 including its boundary z = 0 and the contact line Γ . After
some algebra of the integral representation of field V , the following integral equation is obtained (see Korobkin [2]):

1

2π

∫
D

S(x0, y0, t)dx0 dy0√
(x − x0)2 + (y − y0)2

= f �(x, y, t) (2)

Additional conditions are prescribed along the contact line. This condition implies that not only the displacement potential
φ(x, y,0, t) and the vertical displacement φ,z(x, y,0, t) but also the horizontal displacements φ,x(x, y,0, t) and φ,y(x, y,0, t)
are continuous through Γ . Those conditions are necessary in order to determine the contact line Γ which is unknown.

By using the Riemann mapping theorem (see Nehari [5, pp. 173–174]), we introduce the conformal mapping function g
which turns the surface D onto a unit disk C1

Z = x + iy = g(ω), ω = ξ + iη (3)

where Z denotes a complex number in the physical plane z = 0. As function g is conformal (hence analytical), its derivative
never vanishes and the following formula is helpful to express the Green function of the problem.

1√
(x − x0)2 + (y − y0)2

= 1

|g(ω) − g(ω0)| = 1

|g′(ω)|
1

|ω − ω0| + T (ω,ω0)

|ω − ω0| (4)

The function T (ω,ω0) is regular since the leading order term behaves as O (|ω − ω0|). By substituting (4) in the integral
equation (2), it can be shown that S is a solution of

1

2π

∫
C1

S(ω0)dσ0

|ω − ω0| = Q (ρ,α, t), φ = 0, and φ,n = 0, at |ω| = 1 (5)

where the right-hand side Q depends on the solution S , but it is regular enough all over D . The integral equation in
combination with boundary conditions (5) proves that φ is the solution of the following boundary value problem now
posed on the unit disk

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ,ρ2 + 1

ρ
φ,ρ + φ,z̃2 + 1

ρ2
φ,α2 = 0, z̃ < 0

φ = 0, z̃ = 0, ρ > 1
φ,z̃ = Q (ρ,α, t), z̃ = 0, 0 < ρ < 1

φ → 0,
(
z̃2 + ρ2 → ∞)

(6)

where the vertical coordinate z̃ is formal, its connection with the original variable z is complicated and is not discussed
here. The method for solving the problem (6) is described by Korobkin and Scolan in [6]. Provided that Q has a Fourier
transform of the azimuthal variable α and a polynomial expansion with ρ , say

Q (ρ,α, t) = �
∞∑

n=0

∞∑
k=0

q(n)

k ρkeinα, ρ ∈ [0 : 1] (7)

after some algebra, it is shown that the displacement potential φ reads

φ(ρ,α,0, t) = 2

π
�

∞∑
ρn

∞∑
q(n)

k zk+n
[√

1 − ρ2 + (k − n)Dk−n(ρ)
]
einα (8)
n=0 k=0
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where

zκ =
π
2∫

0

(sinβ)κ+1 dβ, Dκ (ρ) =
1∫

ρ

νκ−1
√

ν2 − ρ2 dν (9)

The functions Dκ are defined on the interval ρ ∈ [0 : 1], they are determined from recursion formulæ. It is also proved
that Dκ (ρ) vanishes as (1 − ρ2)3/2 at the boundary ρ = 1− . At the contact line Γ , the normal displacement vanishes
(∂φ/∂ρ)(1,0, t) = 0 leading to the so-called Wagner condition

∞∑
k=0

q(n)

k zk+n = 0 (10)

The square root term in Eq. (8) hence disappears. We get the expected result that the displacement potential vanishes as
(1 − ρ2)3/2 at the boundary ρ = 1− . Accordingly the planar Laplacian S is calculated

S(ρ,α, t) = 2

π
�

∞∑
k=0

∞∑
n=0

einαρnq(n)

k zk+n

×
[

k√
1 − ρ2

− k(k + 1)

√
1 − ρ2 + (k − n)(k + n + 1)(k − n − 2)Dk−n−2(ρ)

]
(11)

We thus obtain a general solution of problem (1). It should be noted that the solution (11) is singular as (1 − ρ2)−1/2; that
is another proof of the results by Stephan [7].

By noting P the function

P (ω,ω0) = |ω − ω0|
|g(ω) − g(ω0)| (12)

we can now turn the original integral equation (5) into

1

2π

∫
C1

S(ρ0,α0, t)P (ω,ω0)dσ0

|ω − ω0| = f �(x, y, t), |ω| < 1 (13)

If the conformal mapping function g is expressed as an integer series of ω on C1, say g(ω) = ∑∞
n=1 bnω

n , the function P
can hence be broken down as follows (see Scolan and Korobkin [8]),

P =
∞∑

n,m=0

ρn
0ρm

n∑
p=0

m∑
q=0

c(p,n,q,m)e
i(n−2p)α0 ei(m−2q)α (14)

where the coefficients c(p,n,q,m) only depend on the coefficients bn ranged in the vector b. In Eq. (13), the integrals in α0
appear as Copson’s integrals (see Sneddon [9, pp. 69–71]). By using expansions (11) and (14), all integrals in (13) can be
performed analytically, yielding

∫
C1

S(ω0)P (ω,ω0)dσ0

|ω − ω0| = �
∞∑

k=0

∞∑
n=0

q(n)

k Hkn(ρ,α) (15)

where Hkn(ρ,α) are polynomials of ρ and Fourier series of α. If the function f � is broken down in the same way, the
integral equation reduces to a linear system for the coefficients q(n)

k ranged in the vector q, say

H(b)q = F (b) (16)

By using Wagner condition (10), denoted Cq = 0, the vector q can be eliminated, yielding a nonlinear system for b. In Wag-
ner problem, the function f � is precisely h(t) − f (x, y) where h(t) is the penetration depth at time t of the body whose
shape is described by the equation z = f (x, y) at initial time t = 0, that is to say when the body hits a liquid free surface.
By differentiating Eqs. (10) and (16) in time, it is shown that db

dt is proportional to the velocity U (t) = dh
dt .

We can assess the hydrodynamic loads whose vertical component, at the leading order, follows from

F (t) = −μ
d2

dt2

∫ ∫
φ(x, y,0, t)dx dy = −μ

d2

dt2

∫
φ(ρ,α,0, t)

∣∣g′(ω)
∣∣2

ρ dρ dα (17)
D C1
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where μ is density of the liquid. The function |g′(ω)|2 can be expanded as a Fourier series. By using the expression (8) of φ

and the Wagner condition (10), the force finally reads

F (t) = −2μ
d2

dt2
�[

bt A(q)b
]

(18)

where A(q) is a triangular matrix whose coefficients are linear combinations of q. bt denotes the transposed of vector b
and the overline is the complex conjugate. Once F (t) calculated, Newton’s law can be time integrated yielding explicitly the
penetration in terms of b and q.

3. Conclusion

A solution of a mixed boundary value problem is derived in Potential Theory. The method of solution provides a way to
solve the linearized three-dimensional Wagner problem. Basically a conformal mapping is used to turn the closed support
of the Neumann condition onto a unit disk. The problem hence reduces to highly nonlinear equations for the parameters
of the conformal mapping function. The expected behaviors of the solution at the intersection of Neumann and Dirichlet
condition are obtained.

The present formulation offers a way to analyze the stability of the solution in terms of the convexity of the closed
support of the Neumann condition. Other aspects of the mechanical problem can be investigated as the conservation of
energy and, depending on the kinematics of the body, the distribution of energy either in the liquid jet or in the bulk of
the fluid.
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