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A numerical study of the three-dimensional fluid flow has been carried out to determine
the effects of the transverse aspect ratio, A y , on the flow structure in two-sided non-facing
lid-driven cavities. The flow is complex, unstable and can undergo bifurcation. The numeri-
cal method is based on the finite volume method and multigrid acceleration. Computations
have been investigated for several Reynolds numbers and various aspect ratio values. At a
fixed Reynolds number, Re = 500, the three-dimensional flow characteristics are analyzed
considering four transverse aspect ratios, A y = 1,0.75,0.5 and 0.25. It is observed that
the transition to the unsteady regime follows the classical scheme of a Hopf bifurcation.
An analysis of the flow evolution shows that, at A y = 0.75, the flow bifurcates to a peri-
odic regime at (Re = 600) with a frequency f = 0.093 less than the predicted value in the
cubical cavity. A correlation is established when A y = 0.5 and gives the critical Reynolds
number value. At A y = 0.25, the periodic regime occurs at high Re value beyond 3500,
after which the flow becomes chaotic. It is shown that, when increasing A y over the unit,
the flow in the cavity exhibits a complex behavior. The kinetic energy transmission from
the driven walls to the cavity center is reduced at low A y values.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Research concerning the physical model of lid-driven cavity (LDC) flows is an area of continuing interest and was re-
garded as a benchmark study in some literature works. The interest is justified by the fact that its flow configuration is
relevant to many industrial applications such as boundary layers and vortex of different size with various instabilities. How-
ever, despite the simplicity of the geometry, the LDC flow exhibits a number of interesting physical features such as complex
instabilities, transitions, bifurcations and turbulence.

By far, the most studied configuration is that of two-dimensional one-sided LDC flow set up by constant speed motion
of a single wall [1,2]. A recent work has been carried out by Lin et al. [3] who applied the multirelaxation time lattice
Boltzmann model to compute two-dimensional LDC flows at three aspect ratio values 1, 1.5 and 4, and for different Reynolds
numbers from 100 to 7500. They found steady solutions for square cavity flows, whereas, at the aspect ratios 1.5 and 4
unsteady solutions prevail at Re = 7500 where periodic flow exists manifested by the rapid changes of the shapes and
locations of the corner vortices.

While some LDC flow phenomena have revealed 2D solutions, many subtleties of third dimensionality are missing. The
recent progress in numerical analysis and computer hardware has made it possible to investigate 3D LDC flow simulations
[4,5]. Ding et al. [6] discussed the effectiveness of using the local multiquadric differential quadrature method to study the
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Fig. 1. Geometric description of the two-sided non-facing lid driven cavity flow.

three-dimensional LDC flow. Albensoeder et al. [7] extended the work of Botella and Peyret [2] and studied numerically the
three-dimensional flow in a one sided lid-driven cavity.

Migeon et al. [8] considered the 3D LDC flow in which one wall moves with uniform velocity. The authors examined the
flow spanwise structures in order to prove its three-dimensionality for a Reynolds number of 1000. In addition, a numerical
study has been conducted to reveal the existence of only one corner-vortex on each end-wall.

Further studies in the literature are concerned with the appearance of bifurcations caused by Taylor–Görtler–Like insta-
bilities (TGL). Koseff and Street [9] observed local TGL vortices over the span of the cavity with spanwise aspect ratios 1,
2 and 3. Chicheportiche et al. [10] analyzed the first bifurcation of a three-dimensional lid-driven cavity flow characterized
by the TGL instabilities by a global linear stability analysis and a direct numerical simulation. Peng et al. [11] considered a
two-dimensional LDC flow to study the transition from laminar to chaotic regime via Hopf bifurcations.

Regarding flow instabilities, the classical one-sided LDC flow has been extended to two-sided driven problem. In fact,
when two facing walls move in parallel or anti-parallel horizontal directions the flow shows different behavior. In particular,
Albensoeder et al. [12] investigated the linear stability of the 2D incompressible flow of two symmetric counter-rotating
vortices in a two-sided LDC where the flow is driven by two facing walls. They found that the centrifugal instability when
both vortices are distant merges smoothly to an instability in which flow deceleration and straining of the vortex cores
are the determining factors. Not long ago, a new kind of 2D driven cavity in which the flow is driven by two sides non-
facing walls has been computed by Wahba [13] for the first time. He extended the work for the case of four-sided LDC and
established the critical Re number and bifurcation diagrams according to the steady and stable flow. He found that, at low
Reynolds numbers, the resulting flow field is symmetric with respect to one of the cavity diagonals for the two-sided driven
cavity, while it is symmetric with respect to both cavity diagonals for the four-sided driven cavity.

As an extension of Wahba’s work [13], for the three-dimensional configuration, the two-sided non-facing lid (3D-TSNFL)
driven cavity was performed by Ben Beya et al. [14] for the cubic case. The effects of aspect ratio on the 3D-TSNFL are not
yet analyzed and the purpose of the current study is to address this issue. In this respect, the main objectives of this study
are to reveal the flow patterns, the three-dimensionality of the flow and to analyze unsteadiness phenomena.

2. Physical modeling

The configuration of the three-dimensional parallelepiped enclosure, of width L, height H and depth D is sketched
in Fig. 1. The cavity has a span-wise aspect ratio A y = D

H and a longitudinal one defined by Ax = L
H and filled with an

incompressible flow of a Newtonian fluid with constant viscosity and constant density. The flow is driven by the top wall
to right and by the left vertical wall moving down with constant velocity u0. The scales H , u0, p0 = 1

2 ρ0u2
0, and t0 = H

u0
are used for the dimensionalization of the coordinate space xi = (x, y, z), velocity ui = (u, v, w), pressure p, and time t ,
respectively. The 3D-TSNFL driven fluid flow inside the enclosure obeys the Navier–Stokes equations that lead, in their
dimensionless form:

∂ui

∂xi
= 0 (1)

∂ui

∂t
+ ∂

∂x j
(uiu j) = − ∂ p

∂xi
+ 1

Re

∂ui

∂x j∂x j
(2)

The Reynolds number Re is defined by Re = u0 H
v .

According to the geometric model presented in Fig. 1, the velocity boundary conditions are:

• At z = 1: (moving wall) u = 1, v = 0 and w = 0;
• At x = 0: (moving wall) u = v = 0, and w = −1;
• At x = 1, y = 0, y = A y and z = 0; u = v = w = 0.
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Table 1
Minimum and maximum velocity components u and v on the centerline of the three-dimensional square cavity for different Re compared with those of
Ding et al. [6].

Re Ref. grid umin zmin wmin xmin

100 Present work (483) −0.21361 0.47702 −0.24971 0.81026
100 Ref. [6] (413) −0.205 0.48 −0.246 0.80
400 Present work (483) −0.22979 0.22433 −0.37685 0.87127
400 Ref. [6] (413) −0.231 0.24 −0.371 0.88

1000 Present work (483) −0.27447 0.12162 −0.42946 0.90410
1000 Ref. [6] (413) −0.258 0.12 −0.414 0.92

3. Numerical procedure

The dimensionless Navier–Stokes equations (1) and (2) were numerically solved using the following numerical method-
ology. The time derivative in the momentum equations is performed by an Euler backward second-order implicit scheme.
Linear terms are evaluated implicitly, while the non-linear terms are explicitly evaluated by means of an Adams–Bashforth
extrapolation. We have chosen a projection method [15] in order to avoid the difficulty that the strong velocity–pressure
coupling present in the continuity and the momentum equations bring forward. The momentum equations for a provisional
velocity field that may not be divergent are solved at each time step. A Poisson equation with homogeneous boundary con-
ditions is then solved and leads to update pressure and free divergence velocity fields. We have also implemented a finite
volume method on a staggered grid system in order to discretize the system of equations to be solved. The QUICK scheme
of Hayase et al. [16] is employed to minimize the numerical diffusion for the advective terms. Except the Poisson equation
which is solved using an accelerated full multigrid method (FMG) [17], the discretized equations are solved using the red
and black points successive over-relaxation RBPSOR method [18] with optimum relaxation factors. Finally, the convergence
of the numerical 3D velocity field is established at each time step by controlling the L2-residuals norm of all equations to
be solved by setting its variation to less than 10−8. In order to secure the steady state conditions, the following criterion
has to be satisfied:√∑

i, j,k

(
xn

i, j,k − xn−1
i, j,k

)2
< 10−8

Here the superscript n indicates the iteration number and the subscript sequence (i, j,k) represents the space coordinates
x, y and z.

4. Results and discussion

4.1. Test case

Simulations were performed by using our three-dimensional finite volume code “NASIM” [14] for the test case of a 3D
lid-driven cubic cavity and validated with respect to Albensoeder et al. [7] works. For further validation, we compared the
present solutions corresponding to the test case with those of Ding et al. [6]. They simulated the flow in a cubic lid-driven
cavity (A y = 1) applying the local multiquadric differential quadrature method. Our numerical simulations were carried out
using our code in the case of a single-side lid-driven cubic cavity for different Reynolds. We have chosen to use a non-
uniform staggered grid of 483 nodes refined near the walls [14]. In fact, the selected mesh size provides a good compromise
between accuracy and CPU time in the range of Reynolds numbers to be investigated. In Table 1 are listed the extrema of the
u- and w-velocity components as well as their locations and compared with the results of Ding et al. [6] for Re = 100,400
and 1000. Fig. 2 shows a comparison of u- and w-velocity profiles along the centerline of the lid-driven cubical cavity of
the present work with Ref. [6] at the Reynolds numbers (Re = 400 and 1000). Our data as well as the centerline profiles
seem to be in good agreement with the results of Ref. [6].

4.2. Aspect ratio effects on the steady 3D-TSNFL driven flow

In what follows, we will present a detailed analysis of the aspect ratio effects on the three-dimensional flows in two-
sided non-facing lid-driven cavity for the steady solution obtained at Re = 500. For this fixed Reynolds number, four
transverse aspect ratios A y = 1,0.75,0.5 and 0.25 are considered. It is worth noting that Ax is maintained to 1 in all
simulations.

In Fig. 3 are presented the u- and w-contours at the mid-plane (y = 0.5) of the cavity for A y = 1 and 0.25. Three rolls
are observed for both components: a central large clockwise/anticlockwise roll and two asymmetric clockwise/anticlockwise
rolls close to the walls. The intensity of the large rolls seems to become feeble by lowering the aspect ratio from the unit
to 0.25. Stream traces at the mid-plane (y = 0.5) at Re = 500 for the two aspect ratio values A y = 1 and 0.25 are plotted in
Fig. 4.
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Fig. 2. Comparison of u- and w-velocity components distribution along the centerline of cubic cavity of the present work with Ref. [6] for (a) Re = 400 and
(b) Re = 1000.

Fig. 3. Contours of u- and w-velocity components at the mid-plane (y = 0.5) for Re = 500, (a) A y = 1 and (b) A y = 0.25.

The flow topology is characterized by two primary and two secondary vortices symmetrically distributed by the cavity
diagonal. It is clearly observed that the decrease of the aspect ratio affects the locations of the eddy centers. One can
notice that the two primary vortices centers move out towards the lower left and upper right corners as the aspect ratio is
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Fig. 4. Stream traces of the 3D-TSNFL driven flow at the mid-plane (y = 0.5) for Re = 500, (a) A y = 1 and (b) A y = 0.25.

Fig. 5. Iso-surfaces of the cross-flow velocity corresponding to the value (0.20) for different aspect ratios A y = 1,0.75,0.5 and 0.25 (from left to right) at
Re = 500.

Fig. 6. The trajectory of fluid particles for different combinations of aspect ratios A y = 1,0.75,0.5 and 0.25 (from left to right) at Re = 500.

decreased from A y = 1 to A y = 0.25. However, we can see that the two secondary vortex centers approached. Furthermore
the flow remains symmetrical by the diagonal for all A y values.

Cross-flow velocity iso-surfaces corresponding to the value (0.20) are presented in Fig. 5 for different aspect ratios A y =
1,0.75,0.5 and 0.25 at Re = 500. By decreasing A y from 1 to 0.25, we can observe, a general tendency of decrease in the
iso-surfaces zone for the chosen fixed value. We should point out that the two cross flows result of the two non-facing
lid-driven walls: motion of the top lid in the increasing abscissa-x and of the vertical wall in the decreasing z-direction.

Fig. 6 displays the trajectory of particles for the different envisaged cases at Re = 500. The introduction of a particle into
the mid-plane cavity of the flow leads to the formation of two counter-rotating cells: a right and a left primary vortex.
The right and left secondary vortices have not been shown by the tracks of particle as expected. The attractors seem to
vanish by decreasing A y from 1 to 0.25. The extrema values (umin and wmax) of velocity components through the cavity
centerline and the corresponding locations, at various values A y , are given in Table 2. In addition, the variation of these
extrema velocity components as function of A y , are plotted in Fig. 7. As it can be seen, umin and wmax evolve with an
opposite behavior. However, the u- and w-velocity components profiles at the mid-plane (y = 0.5) that are displayed in
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Table 2
Extrema variation of u- and w-velocity components as function of the transverse aspect ratio A y and the corresponding locations at the
mid-plane (y = 0.5) for Re = 500.

A y umin zmin wmax xmax

1 −0.26344 0.57626 0.26344 0.42373
0.75 −0.25016 0.57626 0.25012 0.42373
0.5 −0.23250 0.57626 0.23243 0.43273
0.25 −0.15730 0.63558 0.15726 0.36441

Fig. 7. Variations of the extrema of velocity components through the cavity centerline as function of the transverse aspect ratio A y at the steady solution
Re = 500, (a) umin and (b) wmax.

Fig. 8. Spatial variations of velocity components at Re = 500 for different aspect ratio values A y = 1,0.75,0.5 and 0.25 at the mid-plane (y = 0.5), (a) u,
and (b) w .

Fig. 8 shows a symmetric trend (w + u = 0) with existence of two locations z = 0.7 and x = 0.3 respectively, where u and
w remain fixed for all aspect ratios.

4.3. Periodic solutions at various aspect ratios

Concerning the transition of the 3D-TSNFL driven flow, we found that this one became unsteady and we observed a
periodic regime when Re exceeded a threshold value. For instance, at Re = 600, a periodic solution has been found for two
configurations corresponding to A y = 1 and 0.75.
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Fig. 9. Temporal variations of velocity components at the monitoring point C1(0.25,0.5,0.25) for different time intervals at the Reynolds number Re = 600,
(a) u, (b) v and (c) w .
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Fig. 10. Square u-velocity component magnitude fluctuations against
the Reynolds number for (A y = 0.5).

Fig. 11. Identification of periodic regimes for the corresponding as-
pect ratios A y = 1,0.75,0.5 and 0.25.

Fig. 12. Magnitude of velocity across the rectangular cavity domain as function of the aspect ratio A y at fixed Re = 500.

Fig. 9 displays the periodic behavior of u-, v- and w-velocity components at the monitoring point C1(0.25,0.5,0.25)

We can notice a decrease in the amplitude of velocity components fluctuation from the cubic cavity (A y = 1) to that with
A y = 0.75. Furthermore, analysis of the frequency spectrum in A y = 0.75 indicates a frequency fluctuation equal to 0.0928.
This value is less than the frequency f = 0.1015 found in the test case (Ref. [14]). It is worth noting that all velocity
components oscillate with the same frequency.

According to A y = 0.5, we have identified a Hopf bifurcation (Ref. [19]) leading to periodic solutions around a Reynolds
number of Re = 850. Using the same method presented in the previous work (Ref. [14]), the critical Reynolds number
corresponding to the Hopf bifurcation is performed to be Rec = 817 ± 2% which is greater than Rec = 540 ± 2% relative to
the test case (see Fig. 10).

In Fig. 11 we have reported the Re values corresponding to periodic solutions at different A y . In fact, by making the
vertical walls closer, the onset of unsteadiness is significantly delayed. It is important to note that at the aspect ratio
A y = 0.25, the Reynolds number should be increased to a value close to 3500 requiring over 600 dimensionless time steps
to reach the unsteady regime.

In fact, the vortices such as those of Taylor Görtler which are responsible for the appearance of the unsteadiness and
consequently producing bifurcations become less predominant when the confined cavity loses volume.

The influence of the aspect ratio on the velocity magnitude over the whole cavity domain can be also observed in Fig. 12.
This figure reflects a net increase in the flow intensity through the entire cavity as A y increases.
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Fig. 13. Iso-surfaces of the transverse velocity component v for the specific value (−0.06383) for different aspect ratio values A y = 1,0.75,0.5 and 0.25
(from left to right) at Re = 500.

Fig. 14. Iso-contours of the transverse velocity component v at the mid-plane (y = 0.5) for the steady case (Re = 500), (a) A y = 1 and (b) A y = 0.25.

Fig. 15. Iso-surfaces of the kinetic energy (Ec = 0.4) for various values of transverse aspect ratios A y = 1,0.75,0.5 and 0.25 at Re = 500.

4.4. On the three-dimensionality effects

In order to analyze the influence of aspect ratio on the three-dimensionality nature of the flow, the iso-surface of the
spanwise velocity component v for the specific value (−0.06383) and a fixed Re = 500 is shown in Fig. 13. From this
figure, we can see that the three-dimensional effects begin to decrease gradually until they disappear. This means that the
three-dimensional configuration seems to move to a two-dimensional configuration especially for the small aspect ratio
A y = 0.25.

The iso-contours of the v-velocity component (Fig. 14) with A y = 1 and 0.25 confirm the important 3D effects discussed
in the previous figure. In addition, a net symmetry of the flow pattern by the cavity diagonal is also observed. Fig. 15
displays the iso-surfaces of the kinetic energy defined by Ec = 1

2 (|u|2 + |v|2 + |w|2) corresponding to the value (Ec = 0.04)
for various aspect ratios A y at Re = 500. By making the spanwise vertical walls closer, the kinetic energy is less transmitted
from the driven walls to the cavity center. This may be explained by the fact that the decrease of the aspect ratio has led
to a decrease of the surface contact. Hence, the driven fluid particles become fewer and cause a net decrease of the kinetic
energy. We have also adopted another way to better analyze the 3D effects by visualizing the tensor gradient velocity ( ∂v )
∂ y
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Fig. 16. Iso-surfaces of the tensor gradient velocity component ( ∂v
∂ y ) (contour levels range between −4.5 and 1.5) at the steady solution for Re = 500,

(a) A y = 1 and (b) A y = 0.25.

Fig. 17. Time evolution of the u-velocity component at five mon-
itoring points C1, C2, C3, C4 and C5 for the aspect ratio value
A y = 1.5 at Re = 500.

Fig. 18. Periodic behavior of the 3D-TSNFL driven flow at Re =
500 of u-, v-, w-velocity components at the monitoring point
C1(0.25,0.5,0.25) for A y = 2.

for A y = 1 and 0.25 (Fig. 16). These results indicate that the transverse tensor gradient velocity is very dependent of the
aspect ratio.

4.5. Flow patterns for A y over the unit

In this section we will present the results for A y over the unit. Two configurations were used in this study relatively to
the aspect ratios A y = 1.5 and 2. The simulations were performed using a mesh of (48 × 80 × 48) nodes, a dimensionless
time of about 600 and a time step �t = 5 × 10−3.

The present computational simulation shows that the 3D-TSNFL driven flow at the aspect ratio A y = 1.5 undergoes a
developed unsteady state at the Reynolds number Re = 500. The time signal of the u-velocity component for A y = 1.5
and at five monitoring points is presented in Fig. 17. For this figure, the time dependent solution of the 3D-TSNFL driven
flow exhibits a periodic behavior during a limited temporal interval outside of which the flow remains steady. At this stage
(A y = 1.5) it seems that the flow migrates to a complex behavior and further analysis should be made to get a valid
conclusion. In fact, as the aspect ratio increases (A y = 2) and for the same Re = 500, a more maintained periodic solution is
reached with a frequency equal to 0.116 (Fig. 18).

5. Conclusion

The present study is aimed to confirm the A y effects in the 3D-TSNFL driven parallelepiped cavities using a finite volume
code with the help of a full multigrid acceleration.

The performance of the present model is demonstrated by a benchmark problem dealing with the cubic cavity (test
case).

Firstly, the structure of the flow patterns has been described in the steady case at Re = 500. Analysis of the flow topology
at the mid-plane (y = 0.5) demonstrates the presence of two primary and secondary vortices which remain symmetrical by
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the diagonal for all A y values. Furthermore, maxima of w-velocity component strengthens with the increasing value of A y ,
whereas the strength of minima u-velocity component weakens with increasing A y .

When Re exceeds a threshold value the flow exhibits a periodic state. In particular, a critical Re number of 817 ± 2%
computed for A y = 0.5 was found to be greater than the one predicted in the test case. Moreover, it is found that by
making the vertical walls closer, the onset of unsteadiness is significantly delayed.

It is observed that, for small values of A y , the kinetic energy is less transmitted from the driven walls to the cavity
center. The 3D effects are also reflected in the iso-surfaces of the transverse velocity component and those of the tensor
gradient velocity.

Finally, when A y attains the value greater than unit, the flow migrates to a complex behavior which needs to be more
clarified with further studies.
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