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We investigate the influence of an induced magnetic field on the peristaltic flow of an in-
compressible fourth grade fluid in a symmetric channel with heat transfer. Adopting long
wavelength, low Reynolds number and small Deborah number assumptions we derive the
solutions for stream function, pressure gradient, temperature, magnetic force function, in-
duced magnetic field and current density. Qualitative agreement is demonstrated between
the graphs and expected observations.
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1. Introduction

Considerable attention has been directed towards the study of peristaltic transport of fluids in the physiological and
engineering applications. Progressive waves have a critical role in the peristalsis. In fact such waves have been induced due
to expansion and contraction of an extensible tube and propagate along the length of tube, mixing and transporting the
fluid in the direction of wave propagation. This process appears in the tubular organs of the human body such as ureter, the
gastro-intestinal tract etc. and peristaltic pumping has been utilized for the blood transport in the extracorporeal circulation,
slurries and corrosive fluids. The transport of many fluids of physiological, pharmaceutical and industrial significance by cell
separators, roller and finger pumps, heart lung machine and arthopump is because of the peristaltic mechanism. With all
such motivations, several theoretical and experimental studies [1–15] have been done since the seminal work of Latham
[16]. These all attempts have been presented without taking into account the effect of an induced magnetic field. Very
recently, Mekheimer [17,18] and Hayat et al. [19] made critical advancement in the theory of peristaltic flows of couple
stress, micropolar and third grade fluids in the presence of an induced magnetic field. On the other hand, some authors
[20–26] in view of the processes of hemodialysis and oxygenation have discussed the peristaltic flows with heat transfer
but in the absence of an induced magnetic field.

The present research aims to examine the simultaneous effects of heat transfer and an induced magnetic field on the
peristaltic flow of fourth grade fluid in a planar channel. The solution expressions of the stream function, pressure gradient,
temperature, magnetic force function, induced magnetic field and current density are derived for small Deborah number.
The pumping and trapping phenomena are given proper attention. The effects of interesting parameters on the current
density, temperature and an axial induced magnetic field are studied.
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Fig. 1. Geometry of the problem.

2. Mathematical formulation

Let us consider an incompressible magnetohydrodynamic (MHD) fourth grade fluid in a planar channel of uniform thick-
ness 2a. In Cartesian coordinate system we choose X̄ in the direction of wave propagation and Ȳ transverse to it. The flow
description is shown in Fig. 1.

A constant magnetic field of strength H0 acting in the transverse direction results in an induced magnetic field
H(h̄x̄( X̄, Ȳ , t̄), h̄ ȳ( X̄, Ȳ , t̄),0). The total magnetic field is H+(h̄x̄( X̄, Ȳ , t̄), H0 + h̄ ȳ( X̄, Ȳ , t̄),0).

The wall of the domain is represented by

h̄( X̄, t̄) = a + b sin

(
2π

λ
( X̄ − ct̄)

)
(1)

where λ is the wavelength, a indicates the channel half width, b the wave amplitude, c the wave speed with which the
infinite train of sinusoidal wave progresses along the wall in the positive X̄ direction and t̄ the time.

The fundamental equations governing the flow in the fixed frame are:

∇ · V = 0 (2)

Equation of motion

ρ
dV

dt
= div T + μe

(∇ × H+) × H+ + ρgβT (T − T0)

= div T + μe

[(
H+ · ∇)

H+ − ∇H+2

2

]
+ ρgβT (T − T0) (3)

Energy equation

ρC p
dT

dt
= κ∇2T + Q 0 (4)

Induction equation

dH+

dt̄
= ∇ × (

V × H+) + 1

ς
∇2H+ (5)

In above equations ς = σμe is the magnetic diffusivity, C p the specific heat, T the temperature, Q 0 the constant of heat
conduction and absorption and κ the thermal conductivity.

The Cauchy stress tensor T̄ (with pressure p, identity tensor Ī and an extra stress tensor S̄) is:

T̄ = −pĪ + S̄ (6)

S̄ = μĀ1 + α1Ā2 + α2Ā2
1 + β ′

1Ā3 + β ′
2(Ā2Ā1 + Ā1Ā2) + β ′

3(tr Ā2)Ā1 + γ1Ā4

+ γ2(Ā3Ā1 + Ā1Ā3) + γ3Ā2
2 + γ4

(
Ā2Ā2

1 + Ā2
1Ā2

) + γ5(tr Ā2)Ā2

+ γ6(tr Ā2)Ā2
1 + {

γ7 tr Ā3 + γ8 tr(Ā2Ā1)
}

Ā1 (7)

Ān = dĀn

dt̄
+ Ān−1(grad V̄) + (grad V̄)T Ān−1, n > 1 (8)

Ā1 = (grad V̄) + (grad V̄)T (9)

where αi (i = 1,2), β ′
j ( j = 1–3) and γl (l = 1–8) are the material constants, Ān the Rivilin–Ericksen tensors d/dt̄ the

material derivative, μ the viscosity, tr the trace, T in the superscript is the matrix transpose and the velocity V̄ for two-
dimensional flow is
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V̄ = [
Ū ( X̄, Ȳ , t̄), V̄ ( X̄, Ȳ , t̄),0

]
(10)

The Maxwell’s relations in the absence of displacement current are

∇ · E = 0, ∇ · H = 0 (11)

∇ × E = −μe
∂H

∂t
, ∇ × H = J (12)

and

J = σ
(
E + μe(V × H)

)
(13)

Here J, μe , σ , E and H denote the electric current density, the magnetic permeability, the electrical conductivity, the electric
field and the magnetic field respectively.

It is noticed that the unsteady flow in the fixed frame ( X̄, Ȳ ) appears steady in the wave frame (x̄, ȳ) by the following
relations:

x̄ = X̄ − ct̄, ȳ = Ȳ

ū(x̄, ȳ) = Ū − c, v̄(x̄, ȳ) = V̄ (14)

in which (Ū , V̄ ) and (ū, v̄) are the velocity components in the fixed and wave frames respectively.
In the wave frame the resulting equations are

∂ ū

∂ x̄
+ ∂ v̄

∂ ȳ
= 0 (15)

ρ

(
ū

∂

∂ x̄
+ v̄

∂

∂ ȳ

)
ū + ∂ p̄

∂ x̄
= ∂ S̄xx

∂ x̄
+ ∂ S̄xy

∂ ȳ
− μe

2

(
∂ H+2

∂ x̄

)
+ μe

(
h̄x̄

∂h̄x

∂ x̄
+ h̄ ȳ

∂h̄x

∂ ȳ
+ H0

∂h̄x

∂ ȳ

)
+ ρgβT (T − T0) (16)

ρ

(
ū

∂

∂ x̄
+ v̄

∂

∂ ȳ

)
v̄ + ∂ p̄

∂ ȳ
= ∂ S̄ yx

∂ x̄
+ ∂ S̄ yy

∂ ȳ
− μe

2

(
∂ H+2

∂ ȳ

)
+ μe

(
h̄x̄

∂h̄ ȳ

∂ x̄
+ h̄ ȳ

∂h̄ ȳ

∂ ȳ
+ H0

∂h̄ ȳ

∂ ȳ

)
(17)

ρC p

[
ū

∂

∂ x̄
+ v̄

∂

∂ ȳ

]
T̄ = κ

[
∂2 T̄

∂ x̄2
+ ∂2 T̄

∂ ȳ2

]
+ Q 0 (18)

We introduce the following non-dimensional quantities

x = x̄

λ
, y = ȳ

a
, t = ct̄

λ
, p = a2 p̄

cλμ
, M2 = Re S2 Rm, λi = αic

μa
(i = 1,2)

δ = a

λ
, Sij = aS̄i j

μc
(for i, j = 1,2,3), u = ū

c
, v = v̄

c

Re = caρ

μ
, Rm = σμeac, S = H0

c

√
μe

ρ
, φ = φ̄

H0a
, ηk = γkc3

μa3
(k = 1–8)

h̄x̄ = φ̄ ȳ, h̄ ȳ = −φ̄x̄, pm = p + 1

2
Re δ

μe(H+)2

ρc2
, E = −Ē

cH0μe

Pr = μC p

κ
, γ = T̄ − T0

T0
, Gr = βT gT0

cν

β1 = Q 0a2
1

κT0
, ξ j = β ′

jc
2

μa
( j = 1,2,3) (19)

where Pr, δ, Re, Rm , S and M are the Prandtl, wave, Reynolds, magnetic Reynolds, Strommer’s and Hartman numbers
respectively. Here pm is the total pressure which is sum of ordinary and magnetic pressures, E is the electric field strength,
β1 is the heat source/sink parameter, γ is the temperature and φ is the magnetic force function. Moreover T0 is the
temperature at y = h.

The non-dimensional configuration of the peristaltic wave can be represented by

h = h̄

a
= 1 + α sin(2πx) (20)

in which the amplitude ratio α is equal to b/a.
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Using

u = ∂Ψ

∂ y
, v = −δ

∂Ψ

∂x
, hx = ∂φ

∂ y
, hy = −δ

∂φ

∂x
(21)

Eq. (2) is automatically satisfied and Eqs. (3)–(18) can be arranged as

Re δ

(
∂Ψ

∂ y

∂

∂x
− ∂Ψ

∂x

∂

∂ y

)
∂Ψ

∂ y
+ ∂ pm

∂x
= δ

∂ Sxx

∂x
+ ∂ Sxy

∂ y
+ δ Re S2

(
∂φ

∂ y

∂

∂x
− ∂φ

∂x

∂

∂ y

)
∂φ

∂ y
+ Re S2 ∂2φ

∂ y2
+ Gr γ (22)

−Re δ2
(

∂Ψ

∂ y

∂

∂x
− ∂Ψ

∂x

∂

∂ y

)
∂Ψ

∂x
+ ∂ pm

∂ y
= δ

(
δ
∂ S yx

∂x
+ ∂ S yy

∂ y

)
− δ3 Re S2

(
∂φ

∂ y

∂

∂x
− ∂φ

∂x

∂

∂ y

)
∂φ

∂x
− Re δ2 S2 ∂2φ

∂x∂ y

(23)

δ Pr Re

[
∂Ψ

∂ y

∂γ

∂x
− ∂Ψ

∂x

∂γ

∂ y

]
= δ2 ∂2γ

∂x2
+ ∂2γ

∂ y2
+ β1 (24)

E = ∂Ψ

∂ y
− δ

(
∂Ψ

∂ y

∂φ

∂x
− ∂Ψ

∂x

∂φ

∂ y

)
+ 1

Rm

(
δ2 ∂2

∂x2
+ ∂2

∂ y2

)
φ (25)

Note that the values of Sxx , Sxy and S yy can be computed by employing Eqs. (7)–(10) and (21). Hence Eqs. (22)–(25) under
long wavelength and low Reynolds number approximations takes the form

∂ p

∂x
= ∂ Sxy

∂ y
+ Re S2 ∂2φ

∂ y2
+ Gr γ (26)

∂ p

∂ y
= 0 (27)

∂2γ

∂ y2
+ β1 = 0 (28)

E = ∂Ψ

∂ y
+ 1

Rm

∂2φ

∂ y2
(29)

The dimensionless boundary conditions are

Ψ = 0,
∂2Ψ

∂ y2
= 0,

∂φ

∂ y
= 0, at y = 0

Ψ = F ,
∂Ψ

∂ y
= −1, φ = 0, at y = h

∂γ

∂ y
= 0, at y = 0

γ = 0, at y = h (30)

where F is the dimensionless time mean flow rate in the wave frame. It is related to dimensionless time mean flow rate θ

in the laboratory frame through the expression θ = F + 1 in which

F =
h∫

0

∂Ψ

∂ y
dy (31)

and through Eq. (27) p �= p(y). The modified form of Eq. (26) is given by

∂ p

∂x
= ∂

∂ y

[
Ψyy

{
1 + 2Γ

(
∂2Ψ

∂ y2

)2}]
+ M2

(
E − ∂Ψ

∂ y

)
+ Gr γ (32)

where Γ = ξ2 + ξ3 is the Deborah number.
By Eqs. (27) and (32) we have

∂4Ψ

∂ y4
+ 2Γ

∂2

∂ y2

(
∂2Ψ

∂ y2

)3

− M2 ∂2Ψ

∂ y2
+ Gr

∂γ

∂ y
= 0 (33)
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3. Perturbation solution

Looking for a perturbation solution we first write

Ψ = Ψ0 + Γ Ψ1 + O (Γ )2 (34)

F = F0 + Γ F1 + O (Γ )2 (35)

p = p0 + Γ p1 + O (Γ )2 (36)

φ = φ0 + Γ φ1 + O (Γ )2 (37)

γ = γ0 + Γ γ1 + O (Γ )2 (38)

and then use in Eqs. (29) and (33). After doing this we get the equations of the next subsection.

3.1. Zeroth order system

∂4Ψ0

∂ y4
− M2 ∂2Ψ0

∂ y2
+ Gr

∂γ0

∂ y
= 0

∂ p0

∂x
= ∂3Ψ0

∂ y3
+ M2

(
E − ∂ψ0

∂ y

)
+ Gr γ0

∂2φ0

∂ y2
= Rm

(
E − ∂ψ0

∂ y

)
∂2γ0

∂ y2
+ β1 = 0

Ψ0 = 0,
∂2Ψ0

∂ y2
= 0,

∂φ0

∂ y
= 0,

∂γ0

∂ y
= 0, at y = 0

Ψ0 = F0,
∂Ψ0

∂ y
= −1, φ0 = 0, γ0 = 0, at y = h (39)

3.2. First order system

∂4Ψ1

∂ y4
− M2 ∂2Ψ1

∂ y2
+ 2

∂2

∂ y2

(
∂2ψ0

∂ y2

)3

+ Gr
∂γ1

∂ y
= 0

∂ p1

∂x
= ∂3Ψ1

∂ y3
+ 2

∂

∂ y

(
∂2Ψ0

∂ y2

)3

− M2 ∂ψ1

∂ y
+ Gr γ1

∂2φ1

∂ y2
= −Rm

∂ψ1

∂ y

∂2γ1

∂ y2
= 0

Ψ1 = 0,
∂2Ψ1

∂ y2
= 0,

∂φ1

∂ y
= 0,

∂γ1

∂ y
= 0, at y = 0

Ψ1 = F1,
∂Ψ1

∂ y
= 0, φ1 = 0, γ1 = 0, at y = h (40)

Solving the resulting zeroth and first order systems and then invoking

F0 = F − Γ F1 (41)

we obtain the following expressions

ψ = B0

6M2

(
cosh(M y) − sinh(M y)

)
C1(y) + Γ

[
B4

0

108M8

(
cosh(3M y) − sinh(3M y)

) 17∑
Ci(y)

]
(42)
i=2
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(a) (b)

(c) (d)

Fig. 2. The pressure gradient dp/dx versus x for β1 = 1, α = 0.2, M = 1.5, Gr = 5, E = 0 and θ = −1.1 (a); β1 = 1, α = 0.2, Γ = 0.01, Gr = 3, E = 1 and
θ = −1.1 (b); β1 = 1, α = 0.2, Γ = 0.01, M = 1.5, E = 0 and θ = −1.1 (c); α = 0.2, Gr = 3, Γ = 0.01, M = 1.5, E = 1 and θ = −1.1 (d).

dp

dx
= B4

0

3M2

(
cosh(3M y) − sinh(3M y)

)(
L1(y) + L2(y)

) + Γ

[
− B4

0

54M8

(
cosh(3M y) − sinh(3M y)

) 5∑
j=3

L j(y)

]
(43)

φ = B0 Rm

2M

(
cosh(M y) − sinh(M y)

)
B1(y) + Γ

[
Rm B4

0

324M9

(
cosh(3M y) − sinh(3M y)

) 15∑
k=2

Bk(y)

]
(44)

γ = 1

2
β1

(
h2 − y2) (45)

where the values of the involved L j ( j = 1–5), Bk (k = 0–15) and Ci (i = 1–17) are given in Supplementary material.
The dimensionless axial induced magnetic field hx , current density J z and pressure rise �Pλ are defined as

hx = ∂φ

∂ y
(46)

J z = −∂hx

∂ y
(47)

�Pλ =
1∫

0

(
dp

dx

)
y=0

dx (48)

4. Graphical results and discussion

The purpose of this section is to study the influences of various parameters (i.e. material parameter Γ , Grashof num-
ber Gr, sink/source parameter β1, amplitude ratio α, Hartman number M and magnetic Reynolds number Rm) on the
temperature γ , current density J z , axial induced magnetic field hx , pressure gradient dp/dx, pressure rise �Pλ and axial
velocity u. Figs. 1–6 illustrate the effects of such variations.



524 T. Hayat, S. Noreen / C. R. Mecanique 338 (2010) 518–528
(a) (b)

(c) (d)

Fig. 3. The pressure rise �Pλ versus flow rate θ for β1 = 2, α = 0.2, M = 1.5, Gr = 5 and E = 1 (a); β1 = 2, α = 0.2, Γ = 0.01, Gr = 5 and E = 1 (b);
β1 = 2, α = 0.2, Γ = 0.01, M = 1.5 and E = 1 (c); Gr = 3, α = 0.2, Γ = 0.01, Gr = 5 and E = 1 (d).

(a) (b)

(c) (d)

Fig. 4. The axial velocity u for x = 0.2, Gr = 3, α = 0.2, β1 = −3, θ = 1.5, Gr = 5 and M = 2 (a); x = 0.2, Gr = 3, Γ = 0.01, β1 = 3, θ = 2.2, Gr = 3 and
α = 0.2 (b); x = 0.2, M = 1.5, Γ = 0.02, β1 = 3, θ = 1.5 and α = 0.2 (c); x = 0.2, M = 2, Γ = 0.01, β1 = 3, θ = 1.5 and α = 0.2 (d).
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. The axial induced magnetic field hx versus y for M = 4.5, β1 = 3, θ = 2.5, x = 0.2, α = 0.2, Rm = 1, Gr = 3 and E = 1 (a); Γ = 0.1, β1 = 3,
θ = 2.5, x = 0.2, α = 0.2, Rm = 1, Gr = 3 and E = 1 (b); Γ = 0.03, M = 5.5, β1 = 3, θ = 2.5, x = 0.2, α = 0.2, Rm = 1 and E = 1 (c); M = 5.5, Gr = 2,
θ = 2.5, x = 0.2, α = 0.2, Rm = 1, Γ = 0.03 and E = 1 (d); M = 4.5, Gr = 3, θ = 2.5, x = 0.2, α = 0.2, Rm = 1, Γ = 0.1 and β1 = 3 (e); M = 4.5, Gr = 3,
θ = 2.5, x = 0.2, α = 0.2, E = 1, Γ = 0.1 and β1 = 3 (f).

4.1. Pumping characteristics

Fig. 2 plots the dimensionless pressure gradient dp/dx with x. Through Figs. 2(a)–2(d) we can see that dp/dx is an
increasing function of Γ , M , Gr and β1 respectively. In the wider part of channel x ∈ [0,0.5] and x ∈ [1,1.2] the pressure
gradient is relatively small i.e. flow can easily pass without the imposition of large pressure gradient. In the narrow part of
channel x ∈ [0.5,1] much larger pressure gradient is required to maintain the flux to pass through it.

Pumping action is due to the dynamic pressure exerted by the walls on the fluid trapped between the contraction
region. Pumping against pressure rise is plotted in Fig. 3. The pressure rise �Pλ is sketched against the flow rate θ (in
waveframe). Pumping action divides the region into four sections: pumping region (�pλ > 0, θ > 0), augmented pumping
(�pλ < 0, θ > 0), retrograde pumping (�pλ > 0, θ < 0) and free pumping �pλ = 0. It is seen in Fig. 3(a) that pumping
performance is better for �pλ > 20 and for certain values of flow rate the pumping curves coincide showing that there
is no difference between the Newtonian and fourth grade fluids. For appropriate values of �pλ < 10, the pumping rate
decreases by increasing the values of Γ. For Γ = 0 there is linear relationship between pressure rise and flow rate. However
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(a) (b)

(c) (d)

(e)

Fig. 6. Current density J z versus y for Rm = 0.5, β1 = 3, M = 1.2, Gr = 5, θ = 3.8, x = 0.2, α = 0.2 and E = 5.5 (a); Rm = 1, α = 0.2, Γ = 0.001, β1 = 3,
x = 0.2, E = 6 and θ = 2.5 (b); M = 1.5, Rm = 1, α = 0.2, Γ = 0.001, β1 = 3, x = 0.2, E = 6 and θ = 2.5 (c); M = 1.5, Rm = 1, α = 0.2, Γ = 0.001, Gr = 3,
x = 0.2, E = 6 and θ = 2.5 (d); M = 1.5, β1 = 0, α = 0.2, Γ = 0.001, Gr = 3, x = 0.2, E = 6 and θ = 2.5 (e).

the curves becomes non-linear for Γ �= 0. Figs. 3(b)–3(d) depict that pressure rise �Pλ increases when values of M , Gr and
β1 are increased.

4.2. Flow characteristics

Fig. 4 illustrates the effects of various parameters on the transverse distributions of longitudinal velocity in a channel.
The performed analysis shows that axial velocity at the wall has the same value u(y = h) = −1 in the wave frame satisfying
the no-slip boundary condition for all values of the parameters. The parametric performance near the channel walls is
different when compared with the behavior in the centre of channel. However at the central line of channel y = 0 the
largest disparity occurs and important results may be listed as follows.

Fig. 4(a) reveals that an increase in Γ causes an increase in the velocity at the centre of channel. Fig. 4(b) shows that M
has inverse relation with velocity at the centre of channel. The influence of Grashof number on velocity profile is depicted in
Fig. 4(c). This figure elucidates that the velocity is an increasing function of Grashof number. Further an increase in velocity
is noticed at the central line y = 0 when β1 increases (Fig. 3(d)).
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(a) (b)

Fig. 7. The temperature distribution γ versus y for α = 0.2 and x = 0.2 (a); for γ = 0.9 and x = 0.2 (b).

4.3. Magnetic field characteristics

The variation of axial-induced magnetic field hx and the current density distribution J z across the channel for various
values of Γ , M , Gr, E , Rm and β1 are displayed in Figs. 5 and 6. The salient extracted results about an axial induced
magnetic field are reproduced below.

In the half region of the channel the induced magnetic field is in one direction whereas it is in the opposite direction
in the other half region. It is zero at y = 0 which is compatible with the boundary condition imposed on magnetic force
function.

Figs. 5(a) and 5(b) indicate the variation of axial induced magnetic field hx against y for the various values of Γ and M .
Magnitude of hx increases when Γ and M increase. Figs. 5(c)–5(e) depict the effects of Gr, β1 and E on an induced
magnetic field hx versus y. We note that magnitude of hx decreases when these parameters increase. The influence of
magnetic Reynolds number Rm on an axial induced magnetic field hx is presented in Fig. 4(f). Here magnitude of hx is an
increasing function of Rm .

Fig. 6 serves to present the variation of current density distribution J z within y for the different values of Γ , M , Gr, E ,
Rm and β1. It is noticed that the graphs of current density are parabolic in nature. Increase and decrease in J z for certain
ranges of y show that net current flow is zero. Behavior of parameters at the centre of the channel are quite different from
the ones near the walls of channel.

Fig. 6(a) presents the distribution of current density J z within y for different values of Γ. We noticed that magnitude of
J z decreases when Γ increases at the centre of channel while it increases for certain range of y near the walls of channel.
Fig. 6(b) depicts the effect of M on the current density. This shows that magnitude of J z increases when M is increased at
y = 0. Fig. 6(c) shows the behavior of J z against y for the different values Gr. It is evident from the figure that magnitude
of J z decreases when Gr is increased at the centre of channel. Figs. 6(d) and 6(e) reveal that at the centre of channel, the
current density J z presents itself as an decreasing function of β1 and increasing function of magnetic Reynolds number Rm

respectively.

4.4. Temperature characteristics

Fig. 7 is made to analyze the influences of important parameters on the temperature profiles. We noticed that solution
corresponding to Γ (1) is zero under the employed boundary conditions. Heat sink/source parameter β1 and amplitude ratio
α are the only significant parameters appearing in the temperature distribution. Figs. 7(a) and 7(b) reflect that temperature
increases with β1 and α respectively.

5. Concluding remarks

The peristaltic flow of a fourth grade fluid subjected to heat transfer and induced magnetic field has been examined. The
main points of the performed analysis are listed below.

• Both pressure gradient and pressure rise are increasing functions of Γ , M , Gr and β1.
• The magnitude of velocity is an increasing function of Γ , Gr and β1 while it decreases at the centre line of the channel

when M increases.
• Magnitude of induced magnetic field increases with Γ , M and Rm and decreases with Gr, E and β1.
• The magnitude of current density profiles has an increasing effect for M and Rm . However, the influence of Gr, β1 and

Γ on the magnitude of current density are opposite to that of M and Rm .
• The temperature distribution is an increasing function of α and β1.
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