
C. R. Mecanique 338 (2010) 434–449
Contents lists available at ScienceDirect

Comptes Rendus Mecanique

www.sciencedirect.com

Inverse problems

Nodal predictive error model and Bayesian approach for thermal
diffusivity and heat source mapping

Modèle nodal basé sur l’erreur de prédiction et approche bayésienne pour la cartographie
de diffusivité thermique et de terme source

H. Massard a,b,c, Olivier Fudym b,c,d,∗, H.R.B. Orlande a, J.C. Batsale d

a PEM/COPPE, Federal University of Rio de Janeiro, Brazil
b Université de Toulouse, mines Albi, CNRS, campus Jarlard, 81013 Albi cedex 09, France
c École des mines Albi, centre RAPSODEE, campus Jarlard, 81013 Albi, France
d TREFLE-ENSAM, UMR 8508 CNRS, 33405 Talence cedex, France

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 16 August 2010

Keywords:
Heat transfer
Thermal diffusivity mapping
Heat source mapping
Infrared image processing
Metropolis–Hastings
Inverse problem
Bayesian estimation

Mots-clés :
Transferts thermiques
Champ de diffusivité thermique
Cartographie de terme source
Traitement d’images infrarouges
Metropolis–Hastings
Problèmes inverses
Estimation bayésienne

This article aims at solving a two-dimensional inverse heat conduction problem in order
to retrieve both the thermal diffusivity and heat source field in a thin plate. A spatial
random heat pulse is applied to the plate and the thermal response is analysed. The
inverse approach is based on the minimisation of a nodal predictive error model, which
yields a linear estimation problem. As a result of this approach, the sensitivity matrix is
directly filled with experimental data, and thus is partially noisy. Bayesian estimators, such
as the Maximum A Posteriori and a Markov Chain Monte Carlo approach (Metropolis–
Hastings), are implemented and compared with the Ordinary Least Squares solution.
Simulated temperature measurements are used in the inverse analysis. The nodal strategy
relies on the availability of temperature measurements with fine spatial resolution and
high frequency, typical of nowadays infrared cameras. The effects of both the measurement
errors and of the model errors on the inverse problem solution are also analysed.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Un problème de conduction 2D est traité pour estimer un champ de diffusivité thermique
et terme source sur une plaque mince. Un flash photothermique spatiallement aléatoire est
appliqué à la plaque et on analyse le champ de réponse thermique. L’inversion est abordée
en minimisant un modèle basé sur l’erreur de prédiction, ce qui permet de rester dans
un cadre d’estimation linéaire. Une conséquence directe est que la matrice de sensibilité
est construite avec les données expérimentales, et donc contient des erreurs de mesures.
On développe des estimateurs bayésiens tels que l’estimateur du Maximum à Postériori ou
dans le cadre des algorithmes de Monte Carlo et Chaînes de Markov (Metropolis–Hastings),
pour les comparer à la solution des Moindres Carrés Ordinaires. Les résultats sont obtenus
à partir de données simulées. L’approche nodale est liée à l’obtention de mesures par
thermographie infrarouge. On analyse à la fois l’effet des erreurs de mesures et des erreurs
de modèles sur les résultats de l’estimation.
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1. Introduction

The mapping of thermophysical properties from thermal images provided by an infrared camera is a difficult inverse
problem, due to both the large amount of measured data to be processed and the elevated number of parameters to be
estimated, as well as the low signal-to-noise ratio. It is thus of interest to implement a linear estimation approach, in order
to obtain low computational costs, which can be achieved by minimising a prediction error model instead of an output
error model [1]. Usual inversion methods implemented so far to retrieve the parameter fields are generally based on local
estimation algorithms that study correlations between pixels. Moreover, in the case of the heat pulse response analysis,
the signal-to-noise ratio can be increased by applying a spatially random heat pulse heating [2]. Unfortunately, this kind of
approach makes it necessary to fill in the sensitivity matrix directly with some linear operations on the measured data. Then
the stochastic nature of the regression matrix may yield a bias in the estimates when an ordinary least squares approach is
computed. In a previous work, this problem was addressed with the Total Least Squares (TLS) estimation method [3].

In this article, we make use of a Bayesian approach [4–12] for the solution of an inverse problem involving the estimation
of some thermal parameters fields in a two-dimensional heat conduction problem. The physical problem is formulated in
terms of the nodal strategy advanced in [2,3], so that the inverse problem is linear. Both the minimisation of the Maximum
a Posteriori Objective Function (MAP) and Monte Carlo Markov Chain (MCMC) methods, such as the Metropolis–Hastings (MH)
algorithm are examined as applied to the inverse problem under picture, as described below. The algorithms are tested with
direct simulations obtained with a finite volume model for two kinds of samples: periodic square media and a crack in a
homogeneous medium. The effects of both measurement and model errors on the estimation results are also analysed.

2. Physical problem and mathematical formulation

The physical problem examined in this article involves two-dimensional transient heat conduction in a plate, with spa-
tially varying thermal conductivity and volumetric heat capacity. Boundaries are supposed insulated. This situation can be
found when testing a thin layer medium with partial lumping across the plate. For thick samples, the possible separation
of in-plane and out-of-plane temperature distribution has been discussed in [3]. Both internal steady heat generation and
convective heat losses are also considered. The initial temperature within the medium is non-uniform due to the initial
randomly distributed photo-thermal heat pulse. The mathematical formulation for this problem is given by:
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T (x, y,0) = T0(x, y) for t = 0, in 0 < x < Lx, 0 < y < L y (1d)

where C(x, y) is the local volumetric heat capacity in J m−3 K−1, k(x, y) is the local thermal conductivity in W m−1 K−1,
h(x, y) is the local convective heat transfer coefficient in W m−2 K−1 and g(x, y) is the local heat source, in W m−3.

In the direct problem associated with the mathematical formulation of such physical problem, the thickness of the
medium and the spatial variations of the volumetric heat capacity, thermal conductivity and initial temperature are known.
The objective of the direct problem is then to determine the transient temperature variation within the medium.

3. Nodal strategy and predictive model for the solution of the inverse problem

In this article we deal with the solution of an inverse problem involving the identification of inclusions or non-
homogeneities in a heterogeneous medium. This is accomplished through the identification of the spatially-dependent
thermal parameters, by making use of the nodal strategy advanced in [2,3].

For the solution of the inverse problem, we assume that transient temperature measurements are available at several
positions within the medium. The temperature measurements are assumed to be taken with an infrared camera. Such
measurement technique is quite powerful because it can provide accurate non-intrusive measurements, with fine spatial
resolutions and at large frequencies.

For the application of the nodal strategy [2,3] we rewrite Eq. (1a) in the following non-conservative form:
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An explicit discretisation of Eq. (2) using finite-differences results in:

Y n+1
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where the subscripts pair (i, j) denotes the finite-difference node at xi = i�x, i = 1, . . . ,ni , and y j = j�y, j = 1, . . . ,n j , and
the superscript n denotes the time tn = n�t , n = 0, . . . , (nt − 1). The other quantities appearing in Eq. (3) are given by:
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Eq. (4a) defines the forward temperature difference in time. Eq. (4b) approximates the Laplacian of temperature at time
tn and node (i, j). Eqs. (4c, d), are relative to the spatial derivatives of temperature.

By writing Eq. (3) for a given node (i, j) and all time-steps, we obtain:
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where

Jij =

⎡
⎢⎢⎢⎢⎢⎣

L1
i, j Dx1

i, j D y1
i, j −�t(T 1

i, j − T∞) �t

L2
i, j Dx2

i, j D y2
i, j −�t(T 2

i, j − T∞) �t

...
...

...
...

...

Lnt
i, j Dxnt

i, j D ynt
i, j −�t(T nt

i, j − T∞) �t

⎤
⎥⎥⎥⎥⎥⎦ (6a)

and

Yij =

⎡
⎢⎢⎢⎢⎢⎣

Y 1
i, j

Y 2
i, j

...

Y nt
i, j

⎤
⎥⎥⎥⎥⎥⎦ (6b)

Pij =

⎡
⎢⎢⎢⎢⎢⎢⎣

ai, j

δx
i, j

δ
y
i, j

Hi, j

Gi, j

⎤
⎥⎥⎥⎥⎥⎥⎦

(6c)

The vector of parameters at node (i, j) such as defined by Eq. (6c) contains the following parameters:

ai, j , which is the local thermal diffusivity in m2 s−1.
δx

i, j and δ
y
i, j , which are the local thermal conductivity gradients along the x and y directions, respectively, divided by

the heat capacity.
Hi, j is the local heat transfer convective coefficient divided by the local heat capacity, similar to a velocity in m s−1.
Gi, j is the local heat source divided by the local heat capacity, similar to a heating rate in K s−1.
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Fig. 1. Minimisation of the predictive error model.

The vector of parameters at node (i, j) contains five parameters involving only four independent functions k, C , h and g .
Moreover, all the five parameters appear in Eq. (6c) are divided by C . This fact makes the simultaneous estimation of the
five parameters quite ill-conditioned. However, for materials with sharp interfaces as in the cases examined herein, the
thermal conductivity gradients are zero except at the interfaces. Moreover, as it will be shown by the sensitivity analysis
in Section 4.2, the sensitivity coefficient with respect to the convective heat transfer coefficient is very low for the cases of
interest for this work, so that this parameter can be neglected in the formulation of the problem. Also, by considering the
thermal diffusivity a = k/C as an unknown parameter to be estimated, instead of the thermal conductivity k, turns out that
the two remaining parameters a and G are independent.

The sensitivity matrix defined in Eq. (6a) is a function of the temperature field, thus depends on these parameters. This
fact would yield a non-linear estimation procedure when minimising an output error model, that is based on the difference
between the direct model given by Eq. (5) and the corresponding experimental data.

One way to circumvent this problem is to use a predictive error model, such as shown in Fig. 1. In that scheme, the
measurement data are directly passed to the model, seen as a predictor.

The objective function to minimise may be chosen as the L2 norm of the predictive error e(t), such as:

Si, j = eT
i,jei,j = (Yij − JijPij)

T (Yij − JijPij) (7)

In Eq. (7), the measurements in Yij are chosen as the “observable data” (ym(t) in Fig. 1), while the predictive model,

obtained from the sensitivity matrix, is also built with the experimental data (Ŷ (t) in Fig. 1).
Eq. (5), when used as a predictor, yields a linear dependence of the system response with respect to the vector of

parameters, based on the knowledge of the sensitivity matrix. With the spatial resolution and frequency of measurements
made available by infrared cameras, the sensitivity matrix can be approximately computed with the measurements [2,3].
It is of interest to point out that the choice is made to solve simultaneously as many local linear estimation problems
as supplied by the measurement device (for instance the number of pixels). In this paper, we utilise a Bayesian approach
[4–12] for the solution of the parameter estimation problem (7). In next sections, the subscript relative to the node (i, j) is
omitted in order to simplify the notation, but the estimation still is made locally at each node.

4. Bayesian approach for the solution of inverse problems

In the Bayesian approach to statistics, an attempt is made to utilise all available information in order to reduce the
amount of uncertainty present in an inferential or decision-making problem. As new information is obtained, it is combined
with any previous information to form the basis for statistical procedures. The formal mechanism used to combine the new
information with the previously available information is known as Bayes’ theorem [4,5,9–11]. Therefore, the term Bayesian
is often used to describe the so-called statistical inversion approach, which is based on the following principles [4]:

1. All variables included in the model are modeled as random variables.
2. The randomness describes the degree of information concerning their realisations.
3. The degree of information concerning these values is coded in probability distributions.
4. The solution of the inverse problem is the posterior probability distribution.

Bayes’ theorem can then be stated as [4,5,9–11]:

πposterior(P) = π(P|Y) = πprior(P)π(Y|P)

π(Y)
(8)

where πposterior(P) is the posterior probability density, that is, the conditional probability of the parameters P given the
measurements Y; πprior(P) is the prior density, that is, the coded information about the parameters prior to the measure-
ments; π(Y|P) is the likelihood function, which expresses the likelihood of different measurement outcomes Y with P given;
and π(Y) is the marginal probability density of the measurements, which plays the role of a normalising constant.

If we assume the parameters and the measurement errors to be independent Gaussian random variables, with known
means and covariance matrices, and that the measurement errors are additive, a closed form expression can be derived for
the posterior probability density. In this case, the likelihood function can be expressed as [4,5,9–11]:
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π(Y|P) = (2π)−M/2
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where Ye is the vector of estimated variables, obtained from the solution of the forward model with an estimate for the
parameters P, M is the number of measurements and W is the inverse of the covariance matrix of the errors in Y.

Similarly, for the case involving a prior normal distribution for the parameters we can write:

π(P) = (2π)−nP |V|−1/2 exp

[
−1

2
(P − μ)T V−1(P − μ)

]
(10)

where μ and V are the known mean and covariance matrix for P, respectively.
By substituting Eqs. (9) and (10) into Bayes’ theorem, except for the normalising constant in the denominator we obtain:

ln
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[
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where

SMAP(P) = [
Y − T(P)

]T
W

[
Y − T(P)

] + (μ − P)T V−1(μ − P) (12)

Eq. (11) reveals that the maximisation of the posterior distribution function can obtained with the minimisation of the
objective function given by Eq. (12), denoted as the maximum a posteriori objective function [4,5,9–11]. Eq. (12) clearly shows
the contributions of the likelihood and of the prior distributions in the objective function, given by the first and second
terms on the right-hand side, respectively.

For linear estimation problems such as the one considered here, the minimisation of the maximum a posteriori objective
function is obtained with [11]:

P̂MAP = [
JT WJ + V−1]−1[

JT WY + V−1μ
]

(13)

It is apparent in Eq. (13) how the prior information is used as a regularisation term. Obviously, when the prior informa-
tion for the parameters is poor, the diagonal terms of the covariance matrix are very large, and the MAP estimator tends
towards the maximum likelihood estimator, and there is no regularisation effect.

On the other hand, if different prior probability densities are assumed for the parameters, the Posterior Probability
Distribution may not allow an analytical treatment. In this case, Markov Chain Monte Carlo (MCMC) methods are used to
draw samples of all possible parameters, so that inference on the posterior probability becomes inference on the samples
[4,5,9].

In order to implement the Markov Chain, a density q(P∗,P(t−1)) is required, which gives the probability of moving from
the current state in the chain P(t−1) to a new state P∗ .

The Metropolis–Hastings algorithm [4,5,9] was used in this work to implement the MCMC method. It can be summarised
in the following steps:

1. Sample a Candidate Point P∗ from a jumping distribution q(P∗,P(t−1)).
2. Calculate:

α = min

[
1,

π(P∗|Y)q(P(t−1),P∗)
π(P(t−1)|Y)q(P∗,P(t−1))

]
(14)

3. Generate a random value U which is uniformly distributed on (0,1).
4. If U � α, define Pt = P∗; otherwise, define Pt = P(t−1) .
5. Return to step 1 in order to generate the sequence {P1,P2, . . . ,Pn}.

In this way, we get a sequence that represents the posterior distribution and inference on this distribution is obtained
from inference on the samples {P1,P2, . . . ,Pn}. We note that values of Pi must be ignored until the chain has converged to
equilibrium. For more details on theoretical aspects of the Metropolis–Hastings algorithm and MCMC methods, the reader
should consult Refs. [4,5,9].

In the nodal strategy described in Section 3, the sensitivity matrix is approximately computed with the measurements.
Therefore, for the implementation of the Metropolis–Hastings algorithm the uncertainties in the computation of the sen-
sitivity matrix need to be taken into account. By assuming that P and J are independent random variables, the sought
posterior probability density is then given by [4]:

π(P, J|Y) ∝ π(Y|P, J)π(P)π(J) (15)

where π(J) is the a priori distribution for the sensitivity matrix J.
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Fig. 2. (a) Distribution of materials A and B in a periodic square medium and (b) steady heat source distribution.

5. Sensitivity analysis and prior information

The cases examined below involve a thin plate, basically composed of two distinct base materials. The materials are
interposed in different ways in order to examine test-cases involving different functional forms for the thermal diffusivity
and heat source fields. For the sensitivity analysis and for the discussion of the prior information required for the solution
of the inverse problem within the Bayesian framework, we consider in this section a periodic square arrangement of the
base materials.

The following thermal properties are considered here for such materials:

kA = 10 W m−1 K−1, CA = 3.75 × 106 J m−3 K−1, aA = 2.66 × 10−6 m2 s−1

kB = 0.01 W m−1 K−1, CB = 1 × 105 J m−3 K−1, aB = 1.0 × 10−7 m2 s−1

Both the thermal diffusivity and heat source distributions are shown in Figs. 2(a) and (b). The scales on the axes corre-
spond to the pixel number. The thermal properties of the materials A and B are chosen in order to be representative of a
medium with a wide range of thermal diffusivity. A steady heat source term is considered applied within the medium, with
strength g = 5 × 105 W m−3 and with the spatial distribution shown in Fig. 2(b). Hence the non-zero values to be retrieved
are GA = 5 K s−1 and GB = 0.133 K s−1 respectively, as shown by the index value in Fig. 2(b).

In order to avoid the inverse crime of using the same direct solution for the generation of the simulated measurements
and for the solution of the inverse problem, a finite-volume solution algorithm was developed that yields the simulated
data. For the solution of the inverse problem, the plate is discretized with ni = n j = 128 internal nodes where the values of
the parameters in Pij were estimated. The space step is chosen according to the pixel size: �x = 200 μm. In this case, the
width and length of the plate are 0.0256 m.

The plate is initially randomly excited with a pseudorandom binary sequence (PRBS), hence the initial temperature field
is randomly distributed as 20 or 40 ◦C [2]. This distribution is chosen in order to enhance the thermal gradients within the
plate, and consequently the local sensitivity coefficients. The heat transfer coefficient is assumed to have a constant value
equal to 10 W m−2 K−1. The temperature fields for t = 0 s and t = 2 s, are presented in Figs. 3(a) and (b).

For heterogeneous media involving sharp interfaces between homogeneous materials, such as shown in Fig. 2, the pa-
rameters δx

i, j and δ
y
i, j are zero except at the interfaces. For such cases, it was noticed in [2] that not considering these

parameters in the inverse analysis do not affect the estimation of the local thermal diffusivity within the homogeneous
parts of the medium, but only yields a bias at the interfaces. Therefore, these parameters are not included in the following
analysis in the parameter vectors to be retrieved. Obviously, this would not be the case for materials with smooth variations
of the thermophysical properties, such as functionally graded materials (FGM) or randomly variable physical properties in
dispersed systems [13].

5.1. Sensitivity analysis

A sensitivity analysis is now made in order to examine the effects of the heat losses on the surface of the plate, as well
as the possibility of estimating the aimed thermal diffusivity and heat source mapping. The reduced sensitivity coefficients
with respect to Hij , Gij and aij are plotted in Figs. 4(a) and (b) as a function of time for a specific pixel. The reduced
sensitivity coefficients are calculated by multiplying the original sensitivity coefficients, obtained from each element of the
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Fig. 3. (a) Initial and (b) final temperature field (t = 2 s).

Fig. 4. Reduced sensitivity coefficients for two pixels (a) material A and (b) material B.

sensitivity matrix given by Eq. (6), by the parameters that they correspond to. Fig. 4(a) presents the reduced sensitivity
coefficients at a pixel corresponding to material A, while Fig. 4(b) corresponds to a pixel in the material B. It must also
be pointed out that Fig. 4(a) is relative to a pixel where the heat source is zero, while Fig. 4(b) is for a pixel where
the heat source is g = 5 × 105 W m−3. For both pixels, the reduced sensitivity coefficient with respect to heat losses is
practically zero; hence, the parameter H cannot be accurately estimated with the proposed experimental procedure, but, at
the same time, it does not significantly affect the temperature field in the region. On the other hand, the reduced sensitivity
coefficients with respect to thermal diffusivity attain relatively large values. The reduced sensitivity coefficient with respect
to G is zero in Fig. 4(a), because the heat source is null at such specific pixel. On the other, Fig. 4(b) shows that the
reduced sensitivity coefficient with respect to G is constant at locations where the heat source term is non-zero. In fact, the
sensitivity coefficient with respect to G is given by �t , as shown by the sensitivity matrix, Eq. (6). We note that the reduced
sensitivity coefficients shown in Figs. 4(a) and (b) can vary from pixel to pixel not only due to the different base materials
and existence of source term, but also because of the initial random flash excitation, such as shown in Fig. 3(a). However,
the reduced sensitivity coefficients presented in Figs. 4(a) and (b) remain representative of those for different pixels.

Note also in Figs. 4(a) and (b) that, after passing through a maximum value at small times, the reduced sensitivity
coefficients with respect to the thermal diffusivity tend to zero quite fast, especially for the most diffusive material A.
Indeed, for times larger than 2 s, these reduced sensitivity coefficients become relatively small and the information provided
by the temperature measurements for the estimation of such parameter is drastically reduced. Moreover, as the reduced
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Fig. 5. Determinant of JT
ij Jij for different models for two pixels (a) material A and (b) material B.

sensitivity coefficients tend to zero for H and in some locations for G , the problem is highly ill-conditioned, despite the
fact that at some pixels the sensitivity coefficients are linearly independent (see Fig. 4(b)). This is also apparent from the
analysis of the determinant of the information matrix JT

ij Jij presented in Figs. 5(a) and (b), for the same pixels examined in
Figs. 4(a) and (b), respectively. In Figs. 5(a) and (b) the determinant of the information matrix are plotted for various sets of
parameters to be estimated. Such figures confirms the results of the sensitivity analysis, that is, the estimation of the heat
transfer coefficient must be better discarded, and that the estimation of the thermal diffusivity as a single parameter would
be better conditioned ing than the simultaneous estimation of both thermal diffusivity and heat source.

These results motivated the choice of the final experimental time as t = 1 s. Unfortunately, this quite small final time
imposes restrictions on the number of measurements available for the estimation procedure. For a measurement frequency
of 50 Hz (time step �t = 0.02 s), the number of experimental data available at each pixel is equal to 50 points.

5.2. Prior information

For the results presented below we assume that the errors in the measured temperatures are additive, uncorrelated,
normally distributed, with zero mean and known constant standard deviation σ . Note that the measurements Y used in
the linear model (5) are actually composed of the nodal temperature differences at subsequent times (see Eq. (4a)). Hence,
the likelihood function π(Y|P, J) is given by Eq. (13) with covariance matrix W−1 = 2σ 2I. With such hypothesis regarding
the temperature measurements, the prior distribution for the elements of the sensitivity matrix is also normal, with mean
values given Eq. (6a) and standard deviations deduced from Eq. (3) and the prior information, with:

σL = σ�t

√
6

(�x)2
+ 6

(�y)2
for Ln

i, j (16)

Two different levels of temperature measurement errors are in consideration: σ = 0.03 ◦C and σ = 0.2 ◦C, which corre-
spond respectively to 0.15% and 1% of the maximum temperature difference in the medium.

For MAP estimation, the prior information for the elements of the vector of parameters Pij is taken in the form of
normal distributions. The mean values for the thermal diffusivities aij , is taken as aA, that is the value of thermal diffusivity
of material A. The standard deviation for aij is first chosen as 4aA. The mean value for the heat source term is taken as 2,
while the standard deviation is chosen as 10GB.

For the Markov Chain Monte Carlo (MCMC) method, the prior distributions for the thermal diffusivity field a(x, y) are
assumed to be uniform within the interval [5 × 10−9,9 × 10−6] m2 s−1. Note that such interval encompasses most poor
conductors and does not provide any practical restriction to the values to be estimated for the parameters. The prior distri-
butions for the heat source parameters are assumed to be uniform within the interval [0,10] K s−1.

6. Results

The Markov chain for each pixel consisted of 1600 states, where the first 800 were neglected for the computation of the
statistics for the parameters. Generally, the acceptance ratio in the MH algorithm was of the order of 40% for measurements
with standard deviation errors of 0.03 ◦C and 60% for measurements with standard deviation errors of 0.2 ◦C an example of
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Fig. 6. MH acceptance ratio (a) σ = 0.03 ◦C and (b) σ = 0.2 ◦C.

Fig. 7. a(i, j) mapping for σ = 0.03 ◦C (a) with OLS (b) MCMC.

acceptance map is drawn in Fig. 6, for (a) σ = 0.03 ◦C and (b) σ = 0.2 ◦C respectively. The amplitude chosen for moving the
parameters was about 1% for thermal diffusivity and sensitivity matrix, and 3% for the heat source term.

6.1. Periodic medium with σ = 0.03 ◦C

Figs. 7(a) and (b) present a comparison of the estimated thermal diffusivity fields retrieved with ordinary-least squares
(OLS), and the Markov Chain Monte Carlo (MCMC) method implemented via the Metropolis–Hastings (MH) algorithm.
Figs. 8(a) and (b) present the retrieved source terms with OLS and MCMC methods. A comparison of these results with
the exact fields shown in Figs. 2(a) and (b) reveals that the MCMC method is capable of reasonably recovering the heat
source field, while the OLS fails if no regularisation is made. Both algorithms estimate efficiently the thermal diffusivity
distribution. As expected the estimation is biased at the interfaces between the materials A and B, due to the fact that
the thermal conductivity gradients have been neglected in Eq. (3), which means discarded in the corresponding terms of
Eqs. (6).

Similar results are shown in Fig. 9, which presents the thermal diffusivity variations along a particular line (the line
i = 55), obtained from OLS, MAP and MCMC and compared with the reference values. OLS and MCMC give very similar
results, but with a smoother and more detailed profile for MCMC. With the value of the prior standard deviations chosen
for the MAP estimator, there is no regularisation effect and the MAP results are identical to the OLS results. Some different
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Fig. 8. G(i, j) mapping for σ = 0.03 ◦C (a) with OLS (b) MCMC.

Fig. 9. Comparison of the estimated profiles of a(i, j) for the line i = 55.

choices for the prior have been tested but are not included here for the sake of clarity. However, the main trends of the
MAP estimator already deduced from Eq. (13) can be confirmed by the analysis of the results plotted in Fig. 9. Since the
prior information is used as a regularisation term, a small standard deviation (corresponding to a good prior knowledge of
the parameters) yields a retrieved parameter very close to the chosen prior mean values. When the STD is large there is no
regularisation effect. Moreover, assuming that both the mean and STD of a Gaussian variable are known would not be far
from an “inverse crime” since that would mean that the parameter distribution is already known.

Figs. 10 and 11 illustrate the resulting marginal posterior distribution and convergence behaviour of Markov chain, re-
spectively. Fig. 10 presents the marginal posterior distributions obtained from MCMC samples for the thermal diffusivity
and heat source estimated at pixel i = 84, j = 49. It can be noticed that the obtained posterior distributions closely follow a
Gaussian distribution, as expected from the Gaussian likelihood and the uniform prior assumed in this work. Fig. 11 presents
the evolution of the states of the chain for 1600 states at the pixel i = 84, j = 49. It can be seen from Fig. 11 that after the
burning states, the chain reached the convergence rapidly.

The standard deviation of the marginal posterior distributions can be averaged over the estimated fields in order to
evaluate the global dispersion of the retrieved parameters. These values are compared with the corresponding standard
deviations obtained with OLS. The results are given in Table 1. Previous comments about the performance of the MCMC
method are confirmed in this table, since the average standard deviations remain lower for this algorithm than for OLS.



444 H. Massard et al. / C. R. Mecanique 338 (2010) 434–449
(a) (b)

Fig. 10. Posterior distributions at pixel (84,49) (a) a(i, j) and (b) G(i, j).

Fig. 11. Evolution of Markov chains.

Table 1
Average standard deviation for OLS and MCMC methods.

Case Method Thermal diffusivity
(m2 s−1)
σ = 0.03 ◦C

Heat source
(K s−1)
σ = 0.03 ◦C

Thermal diffusivity
(m2 s−1)
σ = 0.2 ◦C

Heat source
(K s−1)
σ = 0.2 ◦C

Periodic OLS 2.9 ×10−8 0.64 1.4 ×10−7 2.7
Periodic MH 1.6 ×10−8 0.24 7.2 ×10−8 0.75
Crack OLS 1.4 ×10−8 0.32 – –
Crack MH 9.9 ×10−9 0.23 – –
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Fig. 12. a(i, j) map for σ = 0.2 ◦C (a) with OLS, (b) MCMC.

Fig. 13. Profiles for the line i = 55 (a) a(i, j) and (b) G(i, j).

6.2. Periodic medium with σ = 0.2 ◦C

The same estimation approaches examined above are now compared for errors in the measured temperatures of standard
deviation σ = 0.2 ◦C. The estimated thermal diffusivity fields are shown in Figs. 12(a) and (b). It is apparent in these images
that the MCMC method yields smoother results than the OLS approach.

Both the retrieved thermal diffusivity and heat source profiles along the line i = 55 are also plotted in Figs. 13(a) and (b).
For this high level of noise, the MCMC method still yields better results than OLS for the heat source map. However, the
heat source distribution is quite poorly retrieved by both the OLS and MCMC method, as shown in Figs. 14(a) and (b), when
compared with the reference map given in Fig. 2(b).

The average standard deviations of the marginal posterior distributions given by the MCMC approach are lower than the
corresponding standard deviations obtained with OLS, as shown in Table 1. In fact, the results shown in this table seem to
indicate that the difference of performances between the OLS and MCMC methods grows with the level of noise in the data.
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Fig. 14. G map for σ = 0.2 ◦C (a) OLS and (b) MCMC.

Fig. 15. Crack medium (a) a(i, j) and (b) G(i, j).

6.3. Crack in a homogeneous medium

The medium is composed with a homogeneous material A and an insulating crack B with thermal properties such that

kA = 10 W m−1 K−1, CA = 3.75 × 106 J m−3 K−1, aA = 2.66 × 10−6 m2 s−1

kB = 0.0257 W m−1 K−1, CB = 1 211 025 J m−3 K−1, aB = 2.12 × 10−8 m2 s−1

The crack has approximately a rectangular shape and is located in the center of the material. It has 2�x by 26�x, as
illustrated in Figs. 15(a) and (b), for the thermal diffusivity and heat source distributions, respectively. The scales on the axes
correspond to the pixel number. The applied steady heat source term is g = 5 × 106 W m−3. Hence the non-zero values to
be retrieved are GA = 1.33 K s−1 and GB = 4.129 K s−1 respectively, as shown by the index value in Fig. 15(b). In Figs. 16(a)
and (b) are shown both the initial and final temperature fields.

The standard deviation of the temperature measurements is σ = 0.03 ◦C. The amplitude chosen for moving the param-
eters was 1% for thermal diffusivity, 2% for moving the sensitivity matrix, and 13% for the heat source term. The Markov
chain for each pixel consisted of 1500 states, where the first 500 were neglected for the computation of the statistics for
the parameters. Generally, the acceptance ratio in the MH algorithm was of the order of 10%.
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Fig. 16. (a) Initial and (b) final temperature field.

Fig. 17. Thermal diffusivity mapping with a crack (a) OLS and (b) MCMC.

Figs. 17(a) and (b) show a comparison of the estimated thermal diffusivity fields retrieved by the OLS and MCMC meth-
ods, while the retrieved heat source maps, obtained with such methods, are presented in Figs. 18(a) and (b). Both algorithms
estimate reasonably the thermal diffusivity distribution. The OLS fails to retrieve the heat source map if no regularisation
is made. The MCMC method is capable of reasonably recovering the heat source field. These results are confirmed by the
analysis of the standard deviation maps, as shown in Figs. 19(a) and (b), as well as the average values given in Table 1.

Since simulated data are used herein, it is easy to compute the root mean square error (RMS). The RMS error is defined
here as

eRMS =

√√√√√ 1

I. J

J∑
j=1

I∑
i=1

[
aest(i, j) − aex(i, j)

]2
(17)

where

eRMS is the RMS error;
aest is the estimated thermal diffusivity at position i, j;
aex is the exact thermal diffusivity at position i, j;
I, J is the size of the matrix of measurements.
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Fig. 18. Heat source mapping with a crack (a) OLS and (b) MCMC.

Fig. 19. Posterior average standard deviation mapping (a) OLS and (b) MCMC.

Table 2
RMS error (crack case).

Method Thermal diffusivity
RMS error (m2 s−1)

Heat source
RMS error (K s−1)

OLS 6.8 ×10−8 4.2
MCMC 1.3 ×10−7 0.4

Table 2 presents the RMS errors for the results obtained with both the OLS and MCMC methods for the crack case. As for
the cases examined above involving the periodic medium, Table 2 shows that the heat source term can only be accurately
estimated with the MCMC method.

The computational times for the estimation of the thermal diffusivities with OLS were of the order of 1 s. Due to the
sampling procedure, the MH algorithm required 360 s for the results shown in the figures hereafter. These computational
times were obtained with a code developed under the MATLAB Platform, run in a Pentium 2.4 GHz, with 3 GB of RAM
memory.
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7. Conclusions

In this article the solution of a 2D inverse problem dealing with the identification of non-homogeneities or inclusions
in a medium with steady heat sources was proposed, through the simultaneous estimation of spatially-dependent thermo-
physical properties and heat source. A two-dimensional heat conduction problem was used for the comparison of different
techniques for the solution of the inverse problem. The heat conduction equation was written in a non-conservative form,
as a predictive model, in order to apply a nodal strategy that results in a linear estimation problem. In such form of the
heat conduction equation, the spatially dependent thermal diffusivity and heat source appear explicitly. For the experimen-
tal conditions examined in this paper, involving a material composed of homogeneous base materials with sharp interfaces
between them, and natural convective heat losses at the surface of the plate, the thermal conductivity gradient and heat
transfer coefficient were neglected in the inverse analysis.

The linear inverse problem resulting from the nodal approach was solved with an Ordinary Least Squares estimator, and
within a Bayesian frame with the Maximum A Priori estimator, and the approach of the Markov Chain Monte Carlo method
based on the Metropolis–Hastings algorithm. Among the techniques examined, only the Markov Chain Monte Carlo was
capable of accurately predicting both the spatially varying thermal diffusivity and heat source field.

The results presented herewith with simulated temperature measurements reveal that these techniques can accurately
identify non-homogeneous materials through the mapping of thermal diffusivity, even for strict cases involving sharp inter-
faces. Moreover, the MH algorithm seems to be relatively less sensitive to an increase in the measurement errors.

The results also showed the main problem arising with the MAP approach when a higher regularisation term is used,
yielding an important bias in the estimates towards the prior information.

Future works include the implementation of this approach for the simultaneous estimation of transient thermal diffusiv-
ity and heat source fields.
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