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A theoretical prediction of the steady state characteristics of a hydrodynamic short bearing
with a circumferential central feeding groove is presented. An implicit relationship between
the lubricant feeding pressure, the Sommerfeld number and the bearing eccentricity has
been derived and used to investigate the effect of the feeding groove and supply pressure
on the pressure field of the oil film and the bearing eccentricity. Curves relating the
eccentricity to the Sommerfeld number for various supply pressures are presented and
compared with published data obtained using numerical methods. A simplified explicit
model has also been derived and shown to be useful for low Sommerfeld numbers.
The steady state bearing characteristics predicted by the presented model are in good
agreement with those of other published research work using other approaches.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Hydrodynamic journal bearings are commonly used in various rotating machines with a range of design requirements.
In a hydrodynamic regime, an oil film is formed between the journal and the bearing. Oil is usually supplied to the bearing
through a hole or a groove in the low pressure region of the oil film; axial and circumferential feeding grooves may be
used. A circumferential feeding groove is frequently used in applications where the applied load has a variable direction
such as crankcase bearings and automotive turbocharger bearings. The pressure in the oil film in hydrodynamic lubrication
is governed by a second order partial differential equation derived by Reynolds [1]. This equation was solved analytically
by Sommerfeld [2] using the long bearing assumption and by Dubois and Ocvirk [3] in the case of a short bearing. The
Sommerfeld assumption accounts for both positive and negative pressures in the lubricant film. This assumption is valid
only if the applied load is low or the supply pressure is relatively high. Gümbel [4] neglected the negative pressures in the
Sommerfeld solution leading to a discontinuity of the flow of the lubricant film. Although physically and mathematically
unacceptable, this solution is frequently employed especially in the case of the short bearing theory since it allows for
solutions in close agreement with experimental data [5,6]. More accurate solutions, particularly for finite length bearings,
have been obtained using numerical methods to solve Reynolds equation by Christopherson [7] and Raimondi [8].

In the above cited references, it is usually assumed that the lubricant is supplied to the bearing through a hole or an axial
groove located in the low pressure region of the oil film. For more accurate prediction of bearing characteristics, the effect
of feeding solution has later been introduced in subsequent research work. Singh [9] considered the effect of the angular
position of the axial supply groove on the static characteristics of the bearing. Roy [10] determined the static and dynamic
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Nomenclature

c radial clearance
e, ε eccentricity of journal bearing, eccentricity ra-

tio ε = e/c
F , F1, F2 hydrodynamic film reaction for a conven-

tional bearing, film reaction components
F p, F1p, F2p hydrodynamic film reaction for a bear-

ing with circumferential groove, film reaction
components

Fsm, F1sm, F2sm hydrodynamic film reaction for the
simplified model, film reaction components

h, h̄ lubricant film thickness, dimensionless film
thickness h̄ = h/c.

L, l length of bearing (m), length of half bearing,
l = L/2

p, p̄ film pressure for a conventional bear-
ing, dimensionless film pressure p̄(θ, z) =
4p(θ, z)c2/(μωL2)

pp, p̄p film pressure for a bearing with circum-
ferential groove, dimensionless film pressure
p̄p(θ, z) = 4pp(θ, z)c2/(μωL2)

P0, P̄0 lubricant supply pressure, dimensionless lubri-
cant supply pressure P̄0 = 4P0c2/(μωL2)

q, q̄ oil film force per unit length in the circum-
ferential direction for a conventional bearing,
dimensionless oil film force q̄ = 4qc2/(μωL3)

qp, q̄p oil film force per unit length in the circum-
ferential direction for a bearing with circum-
ferential groove, dimensionless oil film force
q̄p = 4qpc2/(μωL3)

R, D, r radius of bearing, diameter of bearing and ra-
dius of journal

U surface speed of journal
W0 load applied on the journal
z, z̄ axial coordinate, dimensionless axial coordi-

nate z̄ = 2z/L
γ attitude angle
θ angular coordinate measured from the mini-

mum film thickness position
μ viscosity of film lubricant
σ Sommerfeld number σ = μL3ωR/(4c2W0)

ω angular velocity of journal
Fig. 1 and Fig. 2 (a) and (b) illustrate the main
geometrical parameters.

characteristics of a hydrodynamic bearing supplied with an axial groove using a numerical approach and investigated the
effect of the angular position of the groove on static and dynamic characteristics of the bearing. Jeddi [11] applied the
finite element method to solve Reynolds equation and studied the effect of the shape of the feeding groove and the supply
pressure on the pressure profile. Crosby [12] presented an analytic analysis of cavitation in a short bearing supplied through
a circumferential feeding groove. The oil film is divided into several zones and boundary conditions are specified for each
zone so that an analytical solution to Reynolds equation is found for each zone. Jakeman [13] used the finite difference
method to solve Reynolds equation including the effect of cavitation for crankshaft bearings supplied with circumferential
central grooves.

In this paper, an analytical solution to Reynolds equation for a hydrodynamic short bearing lubricated under pressure
through a circumferential central groove is presented. The groove divides the bearing into two narrow bearings. To solve
Reynolds equation, appropriate boundary conditions are applied and negative pressures in the oil film are set to zero.
Numerical integration of the pressure film is required to solve the explicit relationship between the eccentricity, the Som-
merfeld number and the feeding pressure. The effect of the groove and the supply pressure on the pressure profile and the
steady state characteristics of the bearing are investigated. A simplified analytical solution has also been derived applicable
in a limited domain.

2. Theory

2.1. Reynolds equation

Hydrodynamic lubrication of a circular bearing by an incompressible and isoviscous fluid is governed by the following
Reynolds equation [1]
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Reynolds equation is a second order partial differential equation for the pressure p; θ and z are respectively the circum-
ferential and axial coordinates as shown in Fig. 1. Analytical solution to this equation is available if the bearing is assumed
infinitely short or infinitely long. Numerical methods are usually applied to find the pressure distribution in the oil film
for finite length bearings. This paper is concerned with hydrodynamic short bearings supplied with central circumferential
groove as shown in Fig. 2. The groove divides the bearing into two narrow bearings; the length of each is usually small
compared to its diameter. Using the short bearing assumption, the variation of pressure in the circumferential direction
is neglected compared to that in the axial direction so that the first term in Eq. (1) is neglected compared to the second
term. This assumption is usually justified for bearings with L/D ratios lower or equal to 1/8. In practice, this assumption
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Fig. 1. Section of a hydrodynamic bearing.

Fig. 2. Longitudinal section of a journal bearing: (a) conventional bearing; (b) bearing with circumferential feeding groove.

is sometime used for L/D ratios as high as 1/2 because the error remains small on the torque and the flow. The error is
usually acceptable for the load but is quite high on the maximum pressure in the oil film [5].

Thus, Eq. (1), under the short bearing assumption, can be reduced as follows
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2.2. The pressure profile

The oil film thickness for a circular bearing at an angular position θ depends on the radial clearance c and the eccen-
tricity ratio ε = e

c , Fig. 1, and does not depend on the axial position z if the effect of misalignment is neglected. Thus,

h(θ, t) = c
(
1 − ε(t) cos θ

)
(3)

Substituting the time derivative of oil film thickness h in Eq. (2) and assuming a constant viscosity μ, the following equation
is obtained

∂2 p

∂z2
= 6μc

h3(θ, t)

(
ε(ω − 2γ̇ ) sin θ − 2ε̇ cos θ

)
(4)

where γ is the attitude angle and ω the angular velocity of journal.
A double integration of the above equation with respect to z gives

p(θ, z, t) = 3μc

h3(θ, t)

(
ε(ω − 2γ̇ ) sin θ − 2ε̇ cos θ

)
z2 + C1z + C2 (5)

where C1 and C2 are two integration constants determined by applying the boundary conditions.
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In a steady state condition, γ̇ = ε̇ = 0, so that Eq. (5) reduces to

p(θ, z) = 3μc

h3
(εω sin θ)z2 + C1z + C2 (6)

In the conventional short bearing theory, it is assumed that the bearing is supplied through a hole or an axial groove located
in the low pressure zone of the oil film and the ends of the bearing are subjected to the atmospheric pressure. Thus, if the
origin of the z axis is chosen at the middle of the bearing, the following boundary conditions are applied

p(θ, z = ±L/2) = 0; ∀θ

Consequently, the following pressure profile is obtained

p(θ, z̄) = μωL2

4c2
p̄(θ, z̄) (7)

where

p̄(θ, z̄) = 3ε sin θ

(1 − ε cos θ)3

(
z̄2 − 1

)
(8)

and

z̄ = 2z

L

A short hydrodynamic bearing of length L, having a central circumferential feeding groove, forms two infinitely short half
bearings having each a length l = L/2.

Considering now one half bearing and choosing the origin of the z axis at the middle of the half bearing, the lubricant
is supplied through the groove at a constant supply pressure P0, the boundary conditions for the half bearing are

p(θ, z = l/2) = P0; p(θ, z = −l/2) = 0; ∀θ

Using Eq. (6) and applying the above boundary conditions, the following pressure pp in a one half bearing is obtained

pp(θ, z) = μωL2

4c2
p̄p(θ, z̄) (9)

where

p̄p(θ, z̄) = 3ε sin θ

(1 − ε cos θ)3

(
z̄2 − 1

4

)
+ P̄0

(
z̄ + 1

2

)

z̄ = 2z

L
and P̄0 = 4c2

μωL2
P0 (10)

Both dimensionless pressure profiles, defined by Eqs. (8) and (10), contain regions with negative pressures. To determine
the hydrodynamic reactions using Sommerfeld boundary conditions [2], the pressure profile including negative pressures is
used. In another more admitted approach, proposed by Gûmbel, negative pressure region is considered to be a cavitation
zone and thus negative pressures are set to zero. For a conventional bearing, the negative pressure zone covers roughly half
of the film. The following pressure profile is therefore used

p(θ, z̄) = 0, θ ∈ [0, π ] (11)

For a bearing with a central circumferential groove, the positive pressures may cover more than half of the oil film. Thus,
the pressure is computed for the whole film using Eq. (10) and then negative pressure are set to zero. So that

pp(θ, z̄) = 0, if pp(θ, z̄) � 0 (12)

2.3. Circumferential distribution of the hydrodynamic reaction

For a conventional bearing, the oil film reaction par unit length in the circumferential direction q(θ) is found by inte-
grating with respect to z the pressure distribution p(θ, z̄) defined by Eq. (11)

q(θ) =
1∫

−1

p(θ, z̄)L dz̄ = μL3ω

4c2
q̄(θ) (13)

where
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Fig. 3. Hydrodynamic oil reaction components.⎧⎨
⎩ q̄(θ) = 1

2

ε sin θ

(1 − ε cos θ)3
, θ ∈ [π, 2π ]

and q̄(θ) = 0, θ ∈ [0, π ]
For a bearing with oil supply through a circumferential central groove, the oil film reaction par unit length in the circum-
ferential direction qp(θ) is found by numerical integration of the pressure pp(θ, z̄) in the active zone.

qp(θ) = 2

1/2∫
−1/2

pp(θ, z̄)
L

2
dz̄ = μωL3

4c2
q̄p(θ) (14)

where

q̄p(θ) =
1/2∫

−1/2

p̄p(θ, z̄)dz̄

The above equation accounts for the two half bearings.

2.4. Hydrodynamic oil film reactions

For a conventional bearing, the hydrodynamic force components F1 and F2 along respectively the axis (X1, Y1), shown
in Fig. 3, are found by integration of the circumferential force distribution q(θ) along the circumference of the bearing.

F1 =
2π∫
0

q(θ) cos θ R dθ = μRL3ω

2c2

2π∫
π

q̄(θ) cos θ dθ = F0 f1(ε)

F2 =
2π∫
0

q(θ) sin θ R dθ = μRL3ω

2c2

2π∫
π

q̄(θ) sin θ dθ = F0 f2(ε) (15)

where

F0 = μRL3ω

2c2
(16)

and

f1(ε) = 2ε2

(1 − ε2)2

f2(ε) = −π ε
2 3/2

(17)

2 (1 − ε )
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The resulting hydrodynamic force F is thus,

F =
√

F 2
1 + F 2

2 (18)

For a bearing supplied with a circumferential central groove, the hydrodynamic force components F p1 and F p2 are computed
by numerical integration of the circumferential force distribution in the oil film region with positive pressures

F p1 =
2π∫
0

qp(θ) cos θ R dθ = μRL3ω

2c2

2π∫
0

q̄p(θ) cos θ dθ = F0 f p1(ε, P̄0)

F p2 =
2π∫
0

qp(θ) sin θ R dθ = μRL3ω

2c2

2π∫
0

q̄p(θ) sin θ dθ = F0 f p2(ε, P̄0) (19)

It should be noted that in the above equation, q̄p(θ) is defined by Eq. (14) and F0 is defined by Eq. (16). To compute
the dimensionless forces f p1 and f p2, the eccentricity ε and the dimensionless pressure P̄0 have to be specified. The
pressure distribution is computed first by Eq. (10) then a numerical integration is required to find the circumferential force
distribution q̄p(θ) using Eq. (14). Finally, a second numerical integration of Eq. (14) is needed to compute the dimensionless
forces f p1 and f p2. The resulting hydrodynamic oil film reaction can, then, be found

F p =
√

F 2
p1 + F 2

p2 (20)

2.5. Eccentricity ratio and attitude angle

For a conventional hydrodynamic bearing at steady state equilibrium, the load W0 applied on the journal is balanced by
the hydrodynamic force F applied by the oil film

W0 = F = μωRL3

c2

ε

4

√
16ε2 + π2(1 − ε2)

(1 − ε2)2
(21)

For a short bearing, the Sommerfeld number is usually defined as

σ = μL3ωR

4c2W0
(22)

Substituting W0 from Eq. (21) in Eq. (22), the following relation between the Sommerfeld number and the eccentricity ratio
is found

σ = (1 − ε2)2

ε
√

16ε2 + π2(1 − ε2)
(23)

The attitude angle γ defined in Fig. 3 is computed using the oil film force components F1 and F2

tanγ = − F2

F1
= π

√
(1 − ε2)

4ε
(24)

For a bearing with a central circumferential groove in steady state equilibrium, the external load W0 applied on the journal,
is balanced by the hydrodynamic force F p applied by the oil films of the two half bearings

F p = F0

√
f p1(ε, P̄0)2 + f p2(ε, P̄0)2 = W0 (25)

In this case, the relationship between the Sommerfeld number and the eccentricity ratio is written as

σ = 1√
f p1(ε, P̄0)2 + f p2(ε, P̄0)2

(26)

For a given eccentricity ratio ε and a dimensionless pressure P̄0, Eq. (26) along with Eqs. (14) and (19) are used to compute
the Sommerfeld number σ . In a more practical case, the Sommerfeld number σ and dimensionless pressure P̄0 are specified
and therefore the eccentricity ratio ε is computed using an iterative procedure.

The attitude angle γ is computed using the following equation

tanγ = − F p2

F p1
= − f p2(ε, P̄0)

f p1(ε, P̄0)
(27)
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2.6. Simplified steady state solution

The drawback of the computation method presented in Sections 2.3, 2.4 and 2.5 is that two numerical integrations are
required successively in Eqs. (14) and (19) to compute the hydrodynamic film reactions. Thus, an implicit relation exists
between the eccentricity ratio ε, the Sommerfeld number σ and the dimensionless pressure P̄0. In this section, a simplified
solution is presented in which no numerical integration is required and therefore a direct and explicit relation is established
between the eccentricity ratio ε, the Sommerfeld number σ and the feeding pressure P̄0. To avoid numerical integration, the
oil film pressures are set to zero for circumferential angles θ ∈ [0,π ] in a way similar to the half Sommerfeld assumption
of π film and the integration in Eq. (19) is limited to the domain θ ∈ [π,2π ]. The impact of the proposed simplification
shall be investigated in Section 3. Film reaction components F1s and F2s can now be obtained by analytical integration of
the circumferential force distribution

F1sm = LR

1/2∫
−1/2

2π∫
π

p(θ, z̄) cos θ dθ dz̄ = μL3ωR

8c2
f1(ε)

F2sm = LR

1/2∫
−1/2

2π∫
π

p(θ, z̄) sin θ dθ dz̄ = μL3ωR

8c2
f2(ε) − P0 RL (28)

The dimensionless force components f1(ε) and f2(ε) are given in Eq. (17).
The equilibrium between the load W0 applied on the journal and the hydrodynamic force Fsm applied by both oil films

of the half bearings can be written as

Fsm = μL3ωR

8c2

√
4ε4

(1−ε2)4
+

(
π

2

ε

(1−ε2)3/2
+ 8P0c2

μωL2

)2

= W0 (29)

Eqs. (22) and (29) can be written in the form of a relationship between the Sommerfeld number σ , the eccentricity ratio ε
and the dimensionless supply pressure P̄0.

σ = 1√
ε4

(1−ε2)4 + (
π
4

ε
(1−ε2)3/2 + P̄0

)2
(30)

The attitude angle is determined using the oil film components F1sm and F2sm given in Eq. (28)

tanγ = − F2sm

F1sm
= π

√
(1 − ε2)

4ε
+ P̄0(1 − ε2)2

ε2
(31)

Eqs. (30) and (31) establish an explicit relation between the eccentricity ratio ε, the Sommerfeld number σ , the dimension-
less pressure P̄0 and the attitude angle γ contrary to Eqs. (26) and (27) which establish a rather implicit relation between
these four quantities.

3. Results and discussion

Applying the short bearing theory, the 3D pressure profiles and the iso-value pressure curves for a conventional bearing
with low and high eccentricity ratios, ε = 1/4 and ε = 3/4, are shown, respectively, in Figs. 4 and 5. The negative pressures
are set to zero in these figures. The pressure profiles are symmetrical with respect to the bearing median axis. The maximum
dimensionless pressure for ε = 1/4 and ε = 3/4 are respectively, 0.97 and 29.91 at circumferential angles, 306◦ and 339◦ .
The pressure profiles of Figs. 4 and 5 are computed using Eq. (8). It should be noted that positive pressures are confined
to half of the film, for both eccentricities. For the other half of the oil film, the film may not be completely formed. The
maximum pressure is significantly higher for ε = 3/4 than for ε = 1/4 and located at an angle closer to the angle of
minimum film thickness. Figs. 6 and 7 show the pressure profiles for the same eccentricities ε as those of Figs. 4 and 5
in the case where lubricant is supplied to the bearing through a central circumferential groove at a dimensionless pressure
P̄0 = 0.24. Eq. (10) has been used to compute the pressure profiles of Figs. 6 and 7. The selected particular dimensionless
feeding pressure, P̄0 = 0.24, is identical to that of Ref. [13] which will be used for the validation of the proposed solution
at the end of this section. The pressure profiles are symmetrical with respect to the circumferential feeding groove. The
maximum dimensionless pressures for ε = 1/4 and ε = 3/4 are respectively, 0.37 and 7.59 at circumferential angles 306◦
and 339◦ . For the considered feeding pressure, the maximum dimensionless pressures are lower than those of a conventional
bearing for ε = 1/4 and ε = 3/4. The maximum pressure is reduced by a factor of 61% for ε = 1/4 and 74% for ε = 3/4.
The axial position of the maximum pressure is not centred for each half bearing but slightly shifted towards the side of
the supply groove but the circumferential position of the maximum pressure is the same for a conventional bearing and a
bearing with circumferential groove. The positive pressure region expands for an area larger than half of the oil film. The
positive pressure area is larger for ε = 1/4 than for ε = 3/4.
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Fig. 4. Dimensionless pressure profile for ε = 1/4: (a) 3D profile; (b) iso-values curves.

Fig. 5. Dimensionless pressure profile for ε = 3/4: (a) 3D profile; (b) iso-values curves.

Fig. 6. Dimensionless pressure profile: ε = 1/4 and P̄0 = 0.24: (a) 3D profile; (b) iso-values curves.

Fig. 7. Dimensionless pressure profile: ε = 3/4 and P̄0 = 0.24: (a) 3D profile; (b) iso-values curves.



346 S. Naïmi et al. / C. R. Mecanique 338 (2010) 338–349
Fig. 8. Dimensionless circumferential force distribution q̄(θ) for two dimensionless supply pressures P̄0 and two eccentricity ratios ε.

Fig. 9. The maximum dimensionless pressure for a conventional bearing and for two supply pressures.

Fig. 8 shows the force per unit length distribution in the circumferential direction for the eccentricities ε = 1/4 and
ε = 3/4 for both cases: a conventional bearing and a bearing with feeding groove. Hydrodynamic forces are confined to half
of the circumference of the bearing for the former and cover a larger angle for the latter particularly for an eccentricity
ε = 1/4. The variation of maximum pressure with eccentricity ε is depicted in Fig. 9 for a conventional bearing and for
a feeding under atmospheric pressure, P̄0 = 0, and a dimensionless pressure P̄0 = 0.24. The maximum pressure in the oil
film increases with eccentricity for the considered supply pressures and is higher for a conventional bearing except for
very small eccentricities and relatively high supply pressure. The circumferential angular position of the maximum oil film
pressure increases with the eccentricity ratio, as shown in Fig. 10, and is the same for either conventional bearing or a
bearing supplied with a circumferential groove. The increase of supply pressure seems to have no effect on the maximum
pressure angular position.

Similarly to a conventional bearing, the eccentricity ratio ε of a bearing with a central circumferential groove decreases
with Sommerfeld number σ , Fig. 11. However, for a given Sommerfeld number, the eccentricity is higher for the latter.

The attitude angle increases with Sommerfeld number as shown in Fig. 12. Compared to a conventional bearing, the
attitude angle is lower at low Sommerfeld numbers and is higher for high Sommerfeld numbers for high feeding pressures.

The relative eccentricity ε and attitude angle γ predicted using the simplified solutions of Eqs. (30) and (31) versus
Sommerfeld number are shown respectively in Figs. 13 and 14 and compared with the curves of Figs. 11 and 12. The
simplified model agrees with the full model for low Sommerfeld numbers and low supply pressures.
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Fig. 10. Variation of the angular position of the maximum pressure with eccentricity ratio. (The three curves are identical.)

Fig. 11. Variation of the eccentricity ratio with Sommerfeld number.

Fig. 12. Variation of the attitude angle with Sommerfeld number.

To assess the quality of prediction of the full and simplified models introduced in this paper, a comparison is attempted
with the results published by Crosby [12]. The results of this reference are obtained by an analytical solution of the pressure
field in which the cavitation in the oil film is accounted for. Fig. 15 shows that the variation of the eccentricity with
Sommerfeld number obtained in [12] is in good agreement with the full model proposed in this paper for the two supply
pressures P̄0 = 0 and P̄0 = 0.24. Results from the simplified model also agree with those of Crosby for a feeding under
atmospheric pressure but correlate with those of Crosby only at low Sommerfeld number for a feeding pressure P̄0 = 0.24.
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Fig. 13. Sommerfeld number and eccentricity ratio for the full and simplified model.

Fig. 14. Attitude angle versus Sommerfeld number for the full and simplified model.

Fig. 15. Eccentricity in different model.

In Table 1, the predicted static load W0 and the attitude angle γ by the full and the simplified models are compared
with those of Parkins [14] and Jakeman [13] for a set of bearing data obtained numerically using the finite difference
method and Jakeman has applied a cavitation model.

The results from the full model present a variation which does not exceed 18% for the attitude angle and 26% for the
hydrodynamic force compared to those of Jakeman and Parkins. The simplified model results are close to those found by the
full model because only high eccentricity ratios are considered, 0.79 to 0.942 and both models agree for low Sommerfeld
numbers and high eccentricity ratios as shown in Fig. 13.
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Table 1
Static load and attitude angle obtained by different approaches.

Commun input data Full model Simplified model Parkins [14] Jakeman [13]

ε μ (Pa.s) ω (rpm) c (mm) W0 (N) γ o W0 (N) γ o W0 (N) γ o W0 (N) γ o

0.790 0.04470 1180 0.04545 707.5 38.48 650.9 39.07 670.2 38.70 683.2 39.28
0.864 0.04139 1180 0.04705 1493.2 27.90 1461.0 28.65 1341.2 30.60 1352.0 31.59
0.869 0.01883 2200 0.04500 1494.8 27.37 1465.2 28.20 1285.2 31.84 1323.9 33.16
0.902 0.02897 1500 0.04760 2541.1 22.49 2523.9 23.11 2219.2 24.00 2212.0 24.84
0.917 0.01069 2900 0.04680 2621.3 20.56 2613.3 21.31 2230.3 23.30 2182.2 24.49
0.926 0.02414 1500 0.04840 3626.7 19.00 3621.3 19.56 3120.3 19.60 3044.6 20.29
0.930 0.01552 2200 0.04915 3714.7 18.43 3711.8 19.00 3125.0 18.70 3091.5 19.15
0.942 0.008794 2900 0.05015 3886.2 16.67 3891 17.33 3113.2 18.00 3089.6 18.63

L/D = 0.29; P0 = 0.2067 N/mm2

4. Conclusion

The effect of a central circumferential feeding groove on the steady state characteristics of a hydrodynamic short bearing
is investigated. The results are summarized as follows:

(i) A circumferential central groove divides the bearing into two half bearings and decreases the maximum oil film pressure
for a given eccentricity.

(ii) A higher supply pressure increases the oil film maximum pressure in each half bearing, expands the region of positive
pressures, shifts the maximum pressure position towards the feeding groove side and leaves invariant its circumferential
angular position.

(iii) The feeding through a circumferential groove affects steady state equilibrium, for a given Sommerfeld number. The
presence of the groove increases the eccentricity ratio and decreases the attitude angle compared to a conventional
bearing. The increase of supply pressure decreases the eccentricity and increases the attitude angle.

A simplified model for the prediction of the steady state equilibrium has also been derived. It is simple to use and estab-
lishes an explicit relation between the Sommerfeld number, the feeding dimensionless pressure and the eccentricity ratio.
However, this model is not accurate for high Sommerfeld numbers.
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