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1. Introduction

The Neo-Hookean stored-energy function
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where o stands for the small-strain shear modulus, I; is the first principal invariant of the right Cauchy-Green deforma-
tion tensor C, and A1, A2, and A3 are the associated principal stretches of C!/2, is known to describe reasonably well the
mechanical response of rubbery materials at small and moderate deformations. In addition, its very simple mathemati-
cal structure has permitted the construction of closed-form solutions for many fundamental boundary-value problems [1],
including problems of homogenization [2,3]. For these reasons, expression (1) is generally regarded as the simplest valid
prototype for rubber elastic materials.

Since its derivation in the 1940’s [4], numerous refinements of relation (1) have been proposed in the literature which
give better agreement with experimental data and, in some cases, do capture the limiting chain extensibility of rubber elas-
tic materials at large stretches; the interested reader is referred to the paper of Vahapoglu and Karadeniz [5] for a fairly
complete catalogue of hyperelastic constitutive models of rubber proposed between 1930 and 2003. Many of these “re-
fined” models, however, are of considerable mathematical complexity, contain a number of material parameters of uncertain
physical value, and/or provide but a somewhat marginally better fit to the experimental data than the simple Neo-Hookean
relation (1). In this regard, the objective of this Note is to construct a new (incompressible and isotropic) hyperelastic
model that: (i) is simple and amenable enough to analytical closed-form solutions for fundamental boundary-value and
homogenization problems, as well as to numerical implementation in commercial finite element packages (e.g., ABAQUS),
(ii) contains material parameters which may be given a physical interpretation, and, more importantly, (iii) is able to accu-
rately characterize and predict the mechanical behavior of rubber elastic solids over the entire range of deformations.
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2. Proposed constitutive model

With the aim of constructing a closed-form stored-energy function that is ultimately of simple mathematical structure, we
begin by restricting attention to the subclass of incompressible isotropic stored-energy functions that—much like the Neo-
Hookean model—depend explicitly on the first principal invariant of the right Cauchy-Green deformation tensor I; = trC
but not on the second invariant I, = 1/2[(trC)? — trC2]; in the literature, this type of stored-energy functions is referred
to as generalized Neo-Hookean. Within this subclass, motivated by the particular I1-based form of relation (1), it is then
natural® to consider

-«

ol a)= (If —3%) (2)
where « is a real number, as a more appropriate basic measure of strain in place of the less general Neo-Hookean measure
ong(I1) = @(1; 1) =11 — 3. In line with the above reasoning, we then propose a stored-energy function for rubber elastic
materials which is a linear combination of the strain measures ¢ (I; «), as defined by expression (2), and write?
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Here, the integer M denotes the number of terms included in the summation, while w; and o (r=1,2,..., M) are

real-valued material parameters that need to be determined ultimately from macroscopic experiments (or possibly from
microstructural considerations).

2.1. Mathematical simplicity

Similar to any other closed-form stored-energy function of the first invariant I; (e.g., the Gent model [6]), the proposed
expression (3) embodies the basic elegance and simplicity of incompressible isotropic hyperelasticity. This is particularly
evident in the calculation of the associated Cauchy stress tensor, T, and incremental tangent modulus, £, quantities needed
in the analytical study of boundary-value problems, as well as in the numerical implementation in finite element programs.
Specifically, the Cauchy stress tensor resulting from (3) is simply

oW u
T= WFT —pl= (ZBl_"‘f,urI‘]”’_])FFT —pl (4)
r=1

where F stands for the deformation gradient tensor, p denotes the arbitrary hydrostatic pressure associated with the incom-
pressibility constraint, and I is the identity operator in the space of second-order tensors (i.e., I;j = §;;, with §;; denoting the
Kronecker delta). The principal Cauchy stresses are given by

M
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r=1
Moreover, the incremental tangent modulus takes the following simple form
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where the symbol ® has been introduced to denote the tensor product (i.e., (F®F);ju = FijFiy) and Z stands for the identity
operator in the space of fourth-order tensors (i.e., Zjju = 88 j1). In passing, besides its simplicity, it is worth remarking that
the explicit expression (6) is valid for all deformations as it stands. This is in contrast to the corresponding expressions
associated with stored-energy functions that are written in terms of the principal stretches 11, A, and A3 (e.g., the Ogden
model [7]). Indeed, stretch-based tangent incremental moduli exhibit singularities whenever A; = A; for i # j and therefore,
appropriate limiting expressions must be used in place of the singular general expressions in these cases.

1 Another natural alternative is to consider ¥ (I1; ) = (I; — 3)%, but this measure—as opposed to (2)—has the disadvantage that it does not linearize
properly in the limit of small deformations.
2 Here and subsequently, the unbounded branch of the stored-energy function for non-isochoric deformations will be omitted for notational simplicity.
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2.2. Physical significance of material parameters

In spite of the fact that the proposed stored-energy function (3) has been constructed in a heuristic manner, the un-
derlying material parameters, i, and «, may be given a physical interpretation. To see this, we make contact with the
non-Gaussian statistical mechanics model recently put forward by Beatty [8], for which the macroscopic Cauchy stress ten-
sor has the form

T=w(I;)FF — pl (7)

where ¥ (I7) is a certain microstructural function (see relation (7.2), together with (7.1) in [8]) that contains information
about the statistical distribution of the underlying polymeric chains in the material.

Note that the proposed constitutive relation (4) for the Cauchy stress is precisely of the general form (7), indicating that
the constitutive constants p, and ¢, can potentially have physical significance (see [9] for a similar assertion regarding the
Gent model). It is beyond the aim of this Note to carry out an in-depth study of the connections between (4) and the general
form of the Beatty model (7), and so we limit ourselves to compare (4) with a special case of (7) which is particularly well
suited to reveal the fact that the material parameters w, and ¢ in (3) can indeed be given a physical interpretation. Such
a special case of the Beatty model (4) is essentially nothing more than the Arruda-Boyce 8-chain model [10] (but see
Section 6 in [8] for the relevant derivation and for some caveats):

_ nkT £7! (‘/11/3’7)FFT

3 Vhi/3n
In this last expression, the variables n, k, T, n denote, respectively, the chain density, the Boltzmann constant, the abso-
lute temperature, and the number of chain links in a representative single chain, while £~! denotes the inverse Langevin

function. The stored-energy function associated with (8) cannot be written in closed form, but a convenient power series
representation can be written as follows

AB pl (8)
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where the parameters C, are known functions of the number of chain links n (e.g, C; =1, C; = 1/(10n), C3 =
11/(52512), ...).

A glance at (9) suffices to recognize that by choosing i = 3"~ 1rnkTC;, oy =1, and M = oo, the proposed stored-energy
function (3) reduces identically to the Arruda-Boyce 8-chain model. Thus, for this particular choice, the material con-
stants u, and o do have physical value, as they can be directly associated with a Langevin-type statistical distribution of
the underlying polymeric chains. From a broader perspective, the special power series structure of expression (9) does also
suggest that the parameters y, and «; in the similar but much richer functional structure (3) can be associated with more
general (than Langevin) forms of statistical distributions of the polymeric chains. The verity of such a physical interpretation
of the material constants w, and «; is worth studying in future work.

2.3. Predictive capabilities over the entire range of deformations
In the sequel, we demonstrate the ability of the proposed model to characterize and predict the mechanical response of

rubber elastic materials for large ranges of deformations. From a qualitative point of view, it is first appropriate to remark
that expression (3) admits the following polynomial representation

0 H1—i[ M [i-1 )
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from which it is a simple matter to deduce that in the limit as I; — 3 expression (3) reduces to
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Thus, in the small-deformation regime, the model response is seen to be independent of the material parameters o, and,
what is more, identically Neo-Hookean with

M
Zl/«r=//v (12)
r=1

In the moderate-deformation regime, by contrast, the model response departs from Neo-Hookean behavior, as it accounts for
higher-order polynomial terms in the invariant I; — 3. Incidentally, this feature—namely, accounting for higher-order terms
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in Iy — 3—has been shown (see, e.g., [11]) to work well in describing the behavior of rubbery materials at moderate de-
formations. Turning attention now to the large-deformation regime (i.e., Iy >> 3), it is plain to recognize that expression (3)
is strongly dependent on the parameters «; in this range of deformations. An immediate consequence of this strong de-
pendence is that the proposed model has the ability to capture the typical limiting chain extensibility of rubbers at large
stretches. This is easy to realize, for instance, by setting a sufficiently large value for some «;, which would drastically
penalize increases in deformation in the large-deformation regime. In summary, the proposed constitutive model appears to
have the right qualitative features to be able to characterize the behavior of rubber elastic materials over the entire range
of deformations.

The quantitative capabilities of the stored-energy function (3) to model rubber elastic materials are illustrated next via
comparisons with experimental data available from the literature for 3 different types of rubbery solids: (i) a vulcanized
rubber (Treloar, 1944 [12]), (ii) a silicone rubber (Meunier, 2008 [13]), and (iii) a commercial elastomer from the tire
company Michelin (Lahellec et al., 2004 [14]). For demonstration purposes, it suffices to consider two terms (M = 2) in
expression (3)—the one-term (M = 1) stored-energy function can be shown to lead to good predictions for small and mod-
erate deformations but it cannot simultaneously capture the limiting chain extensibility at large stretches—and therefore we
write

1—aq 1—ap

3
W(11)=—20[l p (15 —3%) + S

pa (157 — 372) (13)

For convenience, we also write down explicitly the stress-strain relations resulting from the two-term stored-energy function
(13) for:

e Uniaxial loading (A1 = A, A2 = A3 =A~/2 with t, =t3 = 0):

2

3 _
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Biaxial loading (A =iz = A, A3 =12 with t, =tq, t3 =0):

1dw A
-1 _ 1ar 2
Spi=A t1_2—dA A+2k7§ 3 r(20% + 27 ) (15)

Pure shear (A1 = A, Ay =A"1, A3 =1 with t, =0):

R PR lar 2
Sp=A"ltr =" = A+A3+k523 r(A2 a2+ 1)" (16)

Simple shear (M = (¥ + VY2 +4)/2, Aa=(y — /Y2 +4)/2, A3 =1):

dw
Ses = 3=y, 3 17
ss d )/ —}—32 V + ) (17)

In the above expressions (14)-(17), we have introduced the scalar Piola-Kirchhoff stress measures Syn, Spi, Sps, and Sgs for
consistency with the experimental stress measurements, which are given in terms of force per unit undeformed area of
Cross section.

We begin by considering the classical experimental data of Treloar [12] for the uniaxial, biaxial, and pure shear load-
ing of a vulcanized rubber. Our immediate task is to find values for the four material parameters o, o2, (1, and o
in (13) that give the best fit to the data of any one of Treloar’s experiments. Because of the larger range of deformations
considered—with a maximum reported stretch of Apax &~ 7.5 (see Fig. 1(a))—we choose to fit Treloar’s uniaxial experiment.
After enforcing proper linearization (so that, in this case, u = w1 + u2 = 0.27 MPa), the best-fitting values for a1, a2, @1,
and w; obtained by means of a least-squares fit in this case are displayed in Table 1. The resulting stress-stretch model
response (14), together with the experimental data, is presented in Fig. 1(a). Note that the correlation between the model
and the experiment is excellent for the entire range of deformations considered.

Using the material parameters in Table 1—which, again, have been generated from the uniaxial tension data only—we
can readily make use of the constitutive relations (15) and (16) to predict the response for biaxial tension and pure shear
loadings. The results are presented in Fig. 1(b). The model prediction for pure shear is seen to be in good agreement with
the experimental measurements. The agreement between the model prediction for biaxial tension and the experimental
data is fair.
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Fig. 1. Two-term model (13) and the Gent model (18), with the material parameters of Table 1, compared with the data of Treloar (1944) [12] for:
(a) uniaxial tension, and (b) biaxial tension and pure shear of a vulcanized rubber.

Table 1
Material parameters fitted to the uniaxial data of Treloar (1944) [12].
Two-term model (13) o1 =1.08 1 =0.2699 MPa
ay =4.40 2 =0.00001771 MPa
Gent model (18) Jm =85.91 m=0.27 MPa

We now turn attention to the more comprehensive set of experiments of Meunier et al. [13] for the uniaxial compres-
sion/tension, biaxial tension, pure shear compression, and pure shear tension loadings of a silicone rubber. Similar to the
preceding case, our first task is to find values for the four material parameters o, o2, (41, and w; in (13) that give the best
fit to the data of any one of the experiments while being consistent with a proper linearization in the limit of small defor-
mations. Once more, because of the larger range of deformations considered, we choose to fit the uniaxial data (including
both compression and tension). The best-fitting values for o1, a2, 41, and w, obtained in this case are given in Table 2. The
resulting stress-stretch model response (14) is presented in Fig. 2(a), where it is seen to be in excellent agreement with the
experiment for the entire range of deformations considered.

Making use of the material parameters in Table 2, we can readily employ the constitutive relations (15) and (16) to
predict the response for biaxial tension, pure shear compression, and pure shear tension. The results are presented, together
with the corresponding experimental measurements, in Fig. 2(b), (c), and (d), respectively. Here again, the model predictions
are seen to exhibit a remarkably good agreement with the experimental data for all three loading conditions.

Finally, we consider the experiments of Lahellec et al. [14] for the uniaxial tension and simple shear of a commercial
elastomer synthesized by the tire company Michelin. Following the approach of computing the values for the material
parameters in (13) from the single experiment with largest applied deformation, in this case, we generate the values of o,
o, 1, and o given in Table 3 by fitting the uniaxial tension measurements of Lahellec et al. [14]. In spite of exhibiting
a distinctive nonlinearity at relatively small deformations, the uniaxial response of this commercial elastomer is shown in
Fig. 3(a) to be well characterized by the theoretical stress-stretch relation (14). Using the material parameters in Table 3, it
is then a simple matter to employ the constitutive relation (17) to predict the simple shear response of the elastomer. The
result, which is plotted in Fig. 3(b), is seen once more to be in good agreement with the experimental measurements.

In summary, the above examples have demonstrated the ability of the proposed stored-energy function (13) to model,
fairly accurately, the mechanical response of different classes of rubbery solids under a wide variety of loading conditions.
In this regard, it is important to re-emphasize that for all three elastomers examined in Figs. 1-3, the underlying material
parameters, iy and «;, were obtained by (least-squares) fitting only the data of one experiment (uniaxial loading), and that
these same fitted parameters were then used to predict the behavior of the elastomers under different loading conditions.
This approach—of fitting just one experiment>—has served to highlight: (i) the truly predictive capabilities of the model,
and (ii) the ease and numerical robustness to determine the values of its material parameters (, and o.

3 Of course, the material parameters in (13) can alternatively be computed by fitting all the available experiments (not just uniaxial loading), which may
possibly lead to an improved overall fit to the experimental data.
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Fig. 2. Two-term model (13) and the Gent model (18), with the material parameters of Table 2, compared with the data of Meunier et al.
(2008) [13] for: (a) uniaxial compression and tension, (b) biaxial tension, (c) pure shear compression, and (d) pure shear tension of a
silicone rubber.

Table 2
Material parameters fitted to the uniaxial data of Meunier et al. (2008) [13].
Two-term model (13) a1 =3.837 1 =0.032 MPa
oy =0.559 M2 =0.3 MPa
Gent model (18) Jm=15.42 n=0.332 MPa

2.4. Comparison with existing I1-based models

In the literature, there are a number of Ii-based constitutive relations for rubber elastic materials [5]. Among these,
arguably the most widely utilized are the Gent model:

wc(11)=—’g’“ ln[l—hj_3] (18)

where © and J, are material constants, and the already introduced Arruda-Boyce model (9). Despite their seemingly
different functional forms, the Gent and Arruda-Boyce models can be shown to be essentially identical to each other [15],
with the practical difference that the Gent—as opposed to the Arruda-Boyce—model is closed-form and therefore simpler to
use and more numerically robust [16].

In order to gain further insight into the new stored-energy function (13), the response of the popular Gent constitutive
relation (18)—which, again, is essentially identical to that of (9)—has been included in Figs. 1-3 for comparison purposes.
As for the two-term relation (13), the 2 material parameters @ and J,; in (18) are obtained by fitting the relevant uniaxial
data, after enforcing proper linearization. The results are given in Tables 1, 2, and 3, respectively, for the vulcanized rubber
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Fig. 3. Two-term model (13) and the Gent model (18), with the material parameters of Table 3, compared with the data of Lahellec et al. (2004) [14] for:
(a) uniaxial tension and (b) simple shear of a commercial rubber from Michelin.

Table 3
Material parameters fitted to the uniaxial data of Lahellec et al. (2004) [14].
Two-term model (13) a1 =0.6 M1 =2.228 MPa
oy =—68.73 M2 =1.919 MPa
Gent model (18) Jm=1.91x 10" 1L =4.147 MPa

of Treloar [12], the silicone rubber of Meunier et al. [13], and the Michelin elastomer of Lahellec et al. [14]. These same
fitted parameters are then utilized to predict the response of the rubbers under the various loading conditions.

Fig. 1 shows that the Gent model leads to very similar results to those generated by the two-term relation (13) for the
uniaxial, biaxial, and pure shear loading of the vulcanized rubber. For the silicone rubber, it is observed from Fig. 2 that
the Gent predictions are in good agreement with the experiments, but the agreement is noticeably not as good as that of
the model (13). Finally, Fig. 3 shows that the Gent model—as opposed to the new model (13)—is unable to characterize the
behavior of the Michelin elastomer for uniaxial loading, and, in addition, fails to predict its response under simple shear
beyond the small-deformation regime.

It is plain from Fig. 3 (and, although to a lesser extent, from Fig. 2 as well) that the main reason behind the overall
superior correlation between the two-term model (13) and the experimental data is not merely due to the fact that it
contains more material constants than the Gent model—namely, 4 constants (o1, o2, i1, and ) versus 2 (i and J,)—but
rather to its richer functional structure. Indeed, it is particularly evident from Fig. 3 that the functional form of the Gent
model is too restrictive to be able to characterize the strongly nonlinear response of some elastomers, even for uniaxial
loading. This favorable comparison provides further evidence supporting the use of expression (2) as a fundamental I-
based measure of strain.

3. Final remarks
3.1. Constitutive restrictions on (i, and o
The mathematical structure of the proposed stored-energy function (3) naturally embraces the notion of polyconvexity

introduced by Ball [17] to prove existence theorems in finite elasticity. In this connection, it is not difficult to show that
necessary and sufficient conditions for (3) to be strictly polyconvex read simply as

W/'(I1)>0 and W'(I)+211W"” (1) >0 (19)
where
M M
3l 37 —1) 4
w’(ll)ng;m;’ , W”(h)=;fﬂr1? (20)

Unfortunately, necessary and sufficient conditions on the parameters p, and ¢, that ensure that (3) is strictly polyconvex
do not exist. But it is straightforward to deduce from (19) that the conditions
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1
pr>0 and or>5 (r=1.2.....M) (21)

are sufficient.

Given that (strict) polyconvexity implies (strict) rank-one convexity [17], the restrictions (19) are also sufficient to ensure
the strong ellipticity of the stored-energy function (3). To see this connection more explicitly, we spell out the necessary
and sufficient conditions for the strong ellipticity of (3) (see, e.g., Section 4 in [18]):

W'(I1)>0 and W'(I1) +2(I =22 =2, HYW"(1) >0 (i=1,2,3) (22)

where it is recalled that the principal stretches A; > 0 (i =1, 2, 3) satisfy the incompressibility constraint Aq1AyA3 = 1. After
recognizing the string of inequalities I{ > I — Al.z — 2)\;1 >0 (i=1,2,3), it is evident that the conditions of strict polycon-
vexity (19)—and therefore the simpler parametric restrictions (21)—indeed imply the conditions of strong ellipticity (22).

Although desirable on a mathematical basis, the constitutive restriction of polyconvexity (19) has not yet been given
a strict physical interpretation and therefore its enforcement is arguable. On the other hand, the strong ellipticity con-
dition (22) must be enforced in general, since—consistent with experimental evidence on neat rubbery solids—it entails
physically that localized deformations (e.g., shear bands) cannot develop in the solid.

Making contact with the two-term relation (13) utilized in Section 2.3, it is relevant to remark that the inequalities (21)
are satisfied by the material parameters (o1, o2, (1, M2) generated from the experimental data of Treloar [12] and Meunier
et al. [13], as given in Tables 1 and 2, respectively, and therefore the resulting stored-energy functions satisfy conditions (22).
On the other hand, the material parameters obtained from the data of Lahellec et al. [14] (see Table 3) do not satisfy the
sufficient inequalities (21), but it is straightforward to verify that they lead to a stored-energy function (13) that is fully
consistent with the strong ellipticity conditions (22), as expected.

3.2. Generalizations

The proposed stored-energy function (3) constitutes a practical platform from which to account for more levels of com-
plexity to model rubbery solids. Below, we discuss some of these generalizations.

From the pioneering work of Rivlin and Saunders [19] (see also Chapters 10 and 11 in the monograph by Treloar [20] and
references therein), it is well known that the response of rubbery solids depends not only on the first principal invariant I,
but also on the second invariant I, = 1/2[(trC)2 — trC%]. The dependence on I, is, however, much weaker and that is
the main motivation to neglect I, effects altogether as a first approximation. Nevertheless, at the expense of sacrificing
mathematical simplicity, it may be of interest to explore generalizations of the stored-energy function (3) that incorporate
dependence on I,. A plausible generalization that has proved fruitful in the related context of the Gent model could consist
in adding the logarithmic term In(I;/3) to W [21]. Alternatively, given the theoretical and practical virtues of the strain
measure (2), it may also be of interest to explore

Y 31 31 s s
_ Or otr S 3
Wl =) —— > u (19 -3 +Z s (15 —3P) (23)
r=1
where s and v (s=1,2,..., N)—much like ; and u, (r=1,2, ..., M)—are real-valued material parameters.

Starting with the classical work of Bridgman [22], a variety of experiments have established that rubbery solids are not
exactly incompressible (and, in some cases, they may actually be quite compressible). In this regard, there are a number of
ways in which compressibility effects can be readily incorporated into the stored-energy function (3). For instance, a simple
compressible version of (3) is given by

M o1—q,

3 /
Wi, ) =30 517 =3%) Z,urln]-F (-1 (24)

r=1

Here, | = A1A2A3 and the parameter u’, which agrees with the Lamé constant in the ground state (recall that u = Zy:] e
corresponds to the other Lamé constant), serves to measure the compressibility of the material. Specifically, note that in the
limit of incompressibility as ©' — oo, expression (24) reduces identically to the stored-energy function (3), together with
the incompressibility constraint | = A1A2A3 = 1. In passing, it is fitting to record that a form similar to (24) has recently
been utilized to successfully model the compressible polybutadiene phase in a certain class of SBS triblock copolymers [23].

Examples of other phenomena that may be added to the stored-energy function (3) include Mullins, hysteresis, as well
as rate and thermal effects. The works of Miehe [24] and Ogden and Roxburgh [25] may be relevant here.

3.3. Application to reinforced and porous elastomers
Often times, rubbery solids are reinforced with fibers and/or particles to improve their stiffness. For use in packaging,

cushioning, and energy absorption applications, some elastomers are also weakened with voids. In a recent effort, Lopez-
Pamies and Ponte Castafieda [26] have put forward a novel homogenization theory that aims to model such classes of soft



0. Lopez-Pamies / C. R. Mecanique 338 (2010) 3-11 11

heterogeneous materials by incorporating direct dependence on the constitutive behavior of the underlying constituents
(e.g., the matrix and fibers in a fiber-reinforced material) and the microstructure (e.g., the size, shape, and distribution of
the fibers). As a first application of the theory, constitutive models have been recently derived for various classes of fiber-
reinforced [27-29] and porous [30-32] materials with constituents that are characterized by any I-based stored-energy
function of choice. With the help of (3), these homogenization results can now be utilized to model large classes of rubber
elastic composites.
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