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Abstract

We study the solutions to quasilinear elliptic equations with high contrast coefficients. The energy formulation leads to work
with variable exponent Lebesgue spaces LP=() in domains with a complex microstructure scaled by a small parameter £. We
derive rigorously the corresponding homogenized problem. It is completely described in terms of local energy characteristics of
the original domain. 7o cite this article: C. Choquet, L. Pankratov, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Modeles non linéaires de type double-porosité a croissance non standart. Nous étudions les solutions d’équations quasili-
néaires elliptiques a coefficients fortement contrastés. La formulation variationnelle associée conduit a travailler dans des espaces
de Lebesgue a exposant variable LP:() dans des domaines 2 la microstructure complexe caractérisée par un petit parametre €. Nous
obtenons rigoureusement le probleme homogénéisé correspondant. 11 est déterminé par les caractéristiques variationnelles locales
de la microstructure. Pour citer cet article : C. Choquet, L. Pankratov, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Version francaise abrégée

Nous considérons le probleme variationnel (2), ou K, est une fonction qui dégénere sur une partie asymptotique-
ment dense du domaine (voir (K.1)—(K.2)). Le domaine est un milieu dispersé vérifiant (C.1)—(C.2). En contrdlant
les caractéristiques locales (7)-(8) du domaine, nous obtenons rigoureusement le probléme homogénéisé corres-
pondant a (2). Il est décrit dans le théoreme 2.1 : la solution u#° de (2) converge dans LPO(')(.Q;}) vers la solution

u de Jpom[u] — min, u € Wol’pO(')(.Q), avec Jhom[u] = [ (A(x, Vu) + %M“(") +b(x,u) — g(x)p(x)u)dx. De

* Corresponding author.
E-mail addresses: c.choquet@univ-cezanne.fr (C. Choquet), leonid.pankratov@univ-pau.fr (L. Pankratov).

1631-0721/$ — see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crme.2009.09.004



660 C. Choquet, L. Pankratov / C. R. Mecanique 337 (2009) 659666

plus, dans la partie matricielle du domaine, ( |u [O=2(u(x)u — |uf|?) + ﬁmﬂ”()‘)) converge faiblement
vers b(x, u). Apres avoir construit (§3) des approxunatlons ad hoc de u®, nous prouvons le théoréme 2.1 en quatre
étapes : 0. il existe une fonction u telle que u® — u dans L”O(')(Q;); 1. on a lim J®[u®] < Jhom[w] pour toute

fonction w € WhPoO) () 2. on a lim J¢[u?] > Jhom[u] (ainsi ¥ minimise Jhom dans Wé’pO(')(Q)); 3. on prouve le
résultat de convergence dans la partie matricielle. Finalement, nous illustrons notre résultat dans le cadre d’un exemple
périodique, retrouvant ainsi une formulation plus usuelle du probleme homogénéisé.

1. Introduction

We study rigorously the asymptotic behavior as ¢ — 0 of solutions to quasilinear equations of the form

()2 o(x)-2 ut

—div(K, (x)|Vu|™* Vu®) + |u| =g°(x), xe (1)

with a high contrast coefficient K. (x). This equation is naturally associated with variable exponent Lebesgue and
Sobolev spaces, L (-) and W!-P:() These types of functional space with non-standard growth are nowadays mainly
used for the modeling of electrorheological fluids (see, e.g., [1,2]) and for image restoration [3]. Egs. (1) arise, e.g.,
from compressible flows in porous media, and non-Newtonian flow through thin fissures.

Our homogenization problem is closely related to the so-called double-porosity models widely discussed in the lit-
erature (see [4,5]). A linear double-porosity model was first mathematically derived in [6]. Nonlinear models, a general
non-periodic model and a random model were handled in [7,8], [9] and [10], respectively. Here, instead of using the
above geometrical assumptions, following the approach introduced in [11], we only impose conditions on the local
energetic characteristics of the problem. These characteristics contain the useful informations on the microstructure
and are adapted to the equation through penalty terms. This method covers a variety of concrete behaviors including
periodicity and almost periodicity.

Notational conventions. In what follows C, Cq, etc. are generic constants independent of ¢. The space L”(')(.Q) of
measurable functions ¢ in £2 such that 7)) 2(¢) = fg | (x)|P™®) dx < 400 endowed with the norm ol Lro @) =
inf{A > 0: T, g(%) < 1} is a Banach space. Following [12], the Sobolev space with variable exponent p is defined
by WhrO(2) = {¢ € LPO(£2): |V ¢| € LPO)(£2)}. The scalar product in R” is denoted by (-,-). We denote by 1¢ the
characteristic function of the set .Q,f ,k= f,m.Finally, forany0 <e < h < 1, K fl is an open cube centered at z € §2
with lengths equal to A.

2. Statement of the problem and the main result

Let 2 = Q; U £2¢ be a bounded domain of R” (n > 2) with Lipschitz boundary 92, {$2¢ }(~0) being a family of
open subsets in £2. We assume that the set £2 is distributed in an asymptotically regular way in £2. It may consist
of N, (N; — +00) small isolated components or it may be defined as fibers becoming more and more dense.

Our aim is to study the asymptotic behavior, as ¢ — 0, of the solution u#® of the following variational problem:

Je[u] - min, u® e W"PE(')(Q) )
Pe(x) o(x) _ i L pe(:)
o] % def { S Gee(x) [Vul + -5 Iul g@u)dx  ifuew (£2) 3)
400 otherwise

with x,(x) = K (x)/ps(x). The growth functions p, and o possess the sufficient properties to ensure the existence
of a unique solution u® € WO1 pe() (£2) of the variational problem (2) (see [12]):

(A.1) for any e > 0, p, satisfies the following log-Holder continuity property
|Pe(x) = pe(3)| <wp, (Ix —yI) Vx,ye R, with r@})wl’fmln(l/r) <C “)
and there exist two real numbers p~ and p™ such that

L<p” <pe =minpe(x) < pex) < max p, (x) = pf <p" <400 in2 (5)

xef
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(A.2) the function o satisfies a log-Holder continuity property and there are real numbers o~ and o+ such that:

0<U_Emiga(x)Sa(x)<mal(a(x)za+<minM in 2 (6)

xX€R xeR xee n — PO(X)

We specify the asymptotic behavior of the growth functions {p;}:
(A.3) the sequence {p,} converges uniformly in §2 to a function pq satisfying a log-Holder continuity property.
Function K, describes the high-contrasted medium. It is a measurable function in 2 such that:

(K.1) there exists a real number ko such that 0 < kg < K. (x) < ko_l in .Q;
(K.2) for any ¢ > 0, there exists a real number k, such that SUP, e e K.(x)=k,>0and k, — 0as e — 0.

We now specify the microstructure of the domain. We make the following assumptions:

(C.1) the local concentration of the set .Qj has a positive continuous limit: there exists a continuous positive func-
tion p such that, for any open cube Kj, centered at x € 2 with lengths equal to & > 0
}}13%) slg%h " meas (K} N Q;) = p(x)
(C.2) for any & > 0, there is a constant C,,, > 0 such that, if the function p} is defined by p; = p. —C,, in £2, then:
(i) limg_q Cpg =0;
(ii) there exists a family of extension operators P° : wlre (')(.Q;) — Wl”’;(')(Q) such that, for any v® €
WLPS(')(Q;)’

PE'U‘,3 = ’L)"3 in ij and HPEUrS HWI*”;(')(Q) < @(H US HWLI’E(')(Q}))

where @ is a strictly monotone continuous function in R* such that @(0) = 0 and & () — +oo as
t — +00.

Condition (C.2) extends the classical result of [13] to variable exponent Sobolev spaces.
The local characteristic of the sets £2% and £2;, associated to the functional (3) are described by:

o the functional c;f'(_) associated to the energy in 2%, defined for z € £2, a € R" by

Pe () + h—Pe(x)_V|U6(x) —(x —z,a) pS(X))dx @)

h def
iy Hint [ (ewlve
K,fm.@_ff
where y € RT, and the infimum is taken over v¢ € Wl’pﬁ(')(Kz N .{2;);

e the functional b;’gh(.) associated to the energy exchange between .Qjc and £2;, defined for z € £2, B € R by

18
Pe(x) + m(X) |we|0<x) _i_hfpg(x)fyl?(x)‘we iy ps(X)> dx (8)

o(x)

b5l @ ) = inf / <x8(x)}vw€

Kj;

the infimum being taken over w® € WI'PS(')(K;).
We assume that the local characteristics of §2 are such that, for any sequence {p;}(~0) satisfying (A.1)-(A.3):
(C.3) for any x € £2, a € R”, there is a continuous function A(x, a) and a real number yyp, 0 < yy < p~, such that

lim fim A "c®" (x,a) = lim lim A7"c>" (x,a) = A(x, a) )
h—0e—0  PeO) h=0,50 PO
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(C.4) forany x € £2, B € R, there is a continuous function b(x, 8) and a real number y1, 0 < y; < p~, such that

lim hmh "b;’f’(.)(x, p) = lim Sli_)_nz)h*”b;’gh(_)(x, B) =b(x, B) (10)

h—0 e—

Contrary to the standard growth setting as considered in [7], the local characteristic b )(z B) is not homogeneous
with respect to the parameter 8. This induces the appearance of a nonlinear functlon b(x u) in the homogenized
functional which is described in the following theorem.

Theorem 2.1. Let (u?) be a sequence satisfying (2). Under the standing assumptions, the solution u® to (2) converges
strongly in LP0®) (.Q;) to u, solution to the following variational problem:

Jnomlu] = min, u e Wy " (2) (11)
P |, 10(x) _ . Lpo(-)
Tnom[u] def { fg (A(x,Vu) + FT6) |u| +b(x,u) —g(x)px)u)dx ifueWw, (£2) (12)
400 otherwise
Moreover, for any smooth function ¢ in §2, we have:
1 _ 1
lim f (—|u8|"(“ (oot — [uf*) + ——|u |U(x))§(x)dx = f b(x, 1)¢ (x) dx (13)
s—>09£ Pe(x) o(x) P

m

Note that the existence of the unique solution u € wLro®) (2) to (11) follows from the previous theorem. Indeed,
using (C.3)—-(C.4), one states that the functions A(x, a) and b(x, 8) are convex and locally Lipschitz with respect to
their second variable, and |A(x, a)| < C |a|?@ | |b(x, B)| < C |B1°™) Vx € £2. The continuity of Jpom in the space
wLpo0)(£2) follows from the latter results. The uniqueness of the solution to (11) immediately follows from the strict
convexity of Jhom. Finally, a minimizer of (12) is constructed in the proof of Theorem 2.1.

3. Auxiliary results
In this section, under the standing assumptions, we construct a convenient approximation for the solution to (3).

Lemma 3.1. For each h > 0, there exist a set BE" .Q; and a function Yo" € W) () such that:

i) 0<Y® " (x)<1in 2 and th(x) =1in 25 \ Beh

(i) lim,_ o meas 8" O(h o) Yas h — 0;
(>iii) for any function w € C0 (82), we have, as h — 0,

i [ (e w7 4 oy ar < [ (6w + 200l ooy a4
6—)09 o(x) o o (x)

Lemma 3.2. Let B&" be the set defined in Lemma 3.1. Let w € Cé (£2). Then there are a set D> C 2 and a function
yeh —vyeh wye WhreO(Q) such that

(i) B&" c D5 and Tim,_,¢ meas D" = o(1) as h — 0;
(i) maxyeq |V (x) — w(x)| < Ch;
(iii) the following relations hold true as h — 0:

{im / 2 (0) [V VER P = (1), lim/zg(x)’VVS’h’pa(x) g/A(x,Vw)Jro(l) (15)
£—0 e—0
DehUR;, 25 2
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Lemma 3.3. Let {p;}>0) be the sequence of functions defined in condition (C.2) and let the sequence {m}}>0)

defined in §2 by w} = min{p}, po}. Assume that a sequence {u®}>0y C WS’P;(')(Q) converges to a function u €
Cé (82) in LPO(')(Q;) and, moreover, f_Q (1?(x)kg(x)|Vu5|"8(") + %WEPW) dx < C. Then there are a set G C §2
with 825, C G, a function i® and a subsequence g, — 0 (still denoted by ¢ for convenience) such that

(i) limg_,omeas g; =0, where g; =G°N Q;;
il) u® =u® in 2% \ G5 and, moreover, limg_, ¢ ||u® x oy =0;
(i1) f\ f e—0 | ||Wl, g<)(gf)

(iii) the following inequality holds true:

* 18
lirrbf<x5(x)|Vu8 e ﬁw"(")) dx >/b(x,u)dx (16)
£—
gE

o(x)
4. Proof of Theorem 2.1

The minimizer u® of problem (2) is such that ||u®||y1, PO (25) < C. It follows from (C.2) that there is a function
u® = P?u® such that u® = u® in .st and ||u5||W1,,,;(.)(_Q) < C. Since p, converges uniformly to pg, then there exists
a parameter ¢ that does not depend on & such that ||u8||W1,p0(.>7;(_Q) < C and the family {u®}~0) is a compact set

in the space LPoO)(£2). Then one can extract a subsequence (still denoted by {u®}) which converges to a function
u € LP0O)(2). In particular,

u® —>u in Ll’o('>(9;) (17)
It remains to show that u is the solution to the homogenized problem (11). The proof will be done in three steps. In
step 1, we prove that 1lim J¢[1®] < Jhom[w] for any w € WP (2). Step 2 is devoted to the proof of the inequality
lim Jé[u®] > Jhom[u]. Thus u is the minimizer of functional Jyom in Wé +Po() (£2). Finally, we prove in step 3 the weak
convergence of 1;1(é|u6|“<'>—2(uu5 — [t ) + L1uf|170) to b(-, ).
Step 1. Upper bound. Thanks to density arguments it is sufficient to state the result for an arbitrary function
w € C(l)(.Q). Let Y&, veh Deh pe the corresponding functions and set defined in Lemmas 3.1 and 3.2. We define
the function 75" € W1-P:0)(2) by

7o () Eyeh(nyveh(n), xef (18)
Since u® minimizes the functional J¢, J¢[u®] < J¢[T®"] and it is sufficient to prove that

lim fim J*[T%"] < Jhom[w] (19)

h—0 e—0

Let us enumerate the basic ingredients leading to (19). First, it follows from condition (C.1), assertions (i)—(ii) of
Lemma 3.1, and assertion (ii) of Lemma 3.2 that

}}in% H_H})/gs(X)Tg’h(X)dx=/g(X)p(X)w(X)dx (20)
—0 e—
2 2
It follows from assertion (i) of Lemma 3.1 and assertion (i) of Lemma 3.2 that
- 1
fim fim [ ——|v®"79||veh 7 —wo® ] dy =0 1)
h—0 e—0 o(x)
2

We note that VT&" = VV&" in 25\ D" Thus we have

hﬁ}) h_n%) 26 (0) [ VTP dx < /A(x, Vw) dx (22)
-0 e—

Q5\Deh 2

We decompose the remaining term in J¢[T%"] as follows:
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/ }fs(x)|VT€’h|p8(X) dx = / Jfg(x)|VY€’h|p£(x)(|V8’h|p£(x) _ |w(x)|p5(x)) dx

i Q5 UDeh
+ / }fg(x)(|VT8'h pe(x) |Vs,hvyg,h pg(x))dx
Q& UDsh
+ f xg(X)|w(x)VY8’h|”5(x) dx 23)
Q8 UDsh

Finally, it follows from (22)—(23), assertion (iii) of Lemma 3.1, assertion (ii) of Lemma 3.2 and Holder’s inequality
that

/xs(x)]VTg’hVS(x) dx </A(x,Vw)dx—i—/xg(x)’w(x)VYE’hVa(x) dx 4 jo (24)
2 22 2

where limy,_,o lims—0 | j‘i’h| = 0. Now inequality (19) immediately follows from (20), (21), (24) and assertion (iii) of
Lemma 3.1.

Step 2. Lower bound. In view of Lemma 3.3, we aim to reduce the problem to the case where u € Cé (£2). But the
functional J¢ is not continuous in the W!70®) topology unless we restrict ourself to the case when p, < po. So, we
note that

lim Ja[us] > lim 3 HQ(X)(|VME|P8(X)—7T$(X) B l)dx + lim Jng*[us]

e—0 e—0 e—0
ko)

where

77 [ & : S Gt ()| Vu |5 4 |u|"(") — gt () u)dx & fQ Far(x,u®, Vut)dx ifue W0 (2)
+o00 otherwise
Since maxp<g<| (—B:TQ(X)(BW(X)’”Q(") — 1)) > C(e), for any x € £2, with C(g) — 0 as ¢ — 0, it is now sufficient to
prove that lim, _, o J™ [u®] > Jhom[u].
First let u be an arbitrary Cé (£2) function and {u®}0) be a sequence which converges to the function u strongly
in LPO(‘)(.Q;) and such that J7 [u®] < C. We will show that

lim J™ [4°] = Jnom[u] (25)

e—0

Let {x®} be a set of points in §2 forming an A-periodic space lattice. We cover the domain £2 by cubes K ,fa with non-
intersecting interiors. We now apply Lemma 3.3 to the sequence {1} (s~0) and the function «. Using the regularity of
u and the strong convergence of the sequence {u°} ) to u in LPO(‘)(Q;), we check that

hm Z / xg(x)‘VAs‘n £ 4 > lim Zc *() Vu(x“))

e—0
K“ﬁ(ﬂ \gf

O 4x +o(1) ash— 0

— lim k; / |V 1
e—0
g5
It follows from the latter relation and Lemma 3.3(ii) that

lim J”e [u® hm(Zc ,() +Z / (U( ) U(x) —g (x)u)

e—0 e—0
K“ﬂQg

+ / e (. ", wg)m) Foll) ash—0 (26)
gs
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We pass to the limit in the inequality (26) first as ¢ — 0 and then as & — 0. Taking into account the strong convergence
of the sequence {u®}(s~0) to u in the space LPO(')(.Q;), the properties of the function p,, conditions (C.1), (C.3), and
Lemma 3.3 we obtain (25).

This result in Cé (£2) remains true in W1 700)(£2) because the family {J T is uniformly in & continuous in the
Ww1roO) () topology. In addition, as emphasized after the main theorem, the functional Jpom is continuous in the
W70 (2) topology. This completes the proof of the “lim inf”-inequality for the functional J , and thus for J¢.

Step 3. Convergence result (13) in the matrix part. Suppose that the solution u of the homogenized problem is a
sufficiently smooth function (if not we use smooth approximations of u to construct u?). Let u® be the function defined
in (18) with w = u. Since u® is the solution to the variational problem (2), then

/(— div(Ke (0| Ve |77 0uf) + |uf| 707208 (@ — u®) dx = /gf(x)(lf —u®)dx 7)
2 2

It also follows from steps 1-2 that lim,_, ¢ J¢[&1°] — lim,_, ¢ J¢[u®] = 0. This relation together with (27) implies:

lim ||&®
e—0

—uf H L0y = 0 (28)

Consider now the functional b;’:’c) (z; B) defined in (8). It is clear that the minimizer w?h of the functional (8)
satisfies the Neumann boundary value problem for the following equation:
— div(Ke () Vs [Vws ! [P 7) 118 oyws [weh |77
+ pe(OR PO () (wf — B)|w® — " TP =0 in K (29)

Using (29) and condition (C.4), we prove that

b(x,B) = 81i_r)r(1)h_” (8)( / —pgl(x) |w§’h|g(x)_2(,3w?h - |w§’h’2)lfn (x) +/ L wg’h|a(x)lfn (x))

o(x)
Kj, Kj,
and then
Ly (ﬁwww ~[af) + %iﬁﬂ”“))z(x)dx = ! b, )¢ (x) d (30)

m

for any smooth function ¢. Relation (13) follows from (28) and (30). This completes the proof of Theorem 2.1.
5. Periodic example

It is important to show that the “intersection” of the conditions (A.1)-(A.3), (K.1)-(K.2), (C.1)—(C.4) is not empty.
We thus illustrate our result with a periodical example. We assume that, in the standard periodic cell Y = (0, 1)",
there is an obstacle M C Y with Lipschitz boundary 0. M. We assume that this geometry is repeated periodically
in the whole R”. The geometric structure within the domain §2 is then obtained by intersecting the e-multiple of
this geometry with §2. Let po be a log-Hélder continuous function such that 2 < p~ = min .5 po(x) < po(x) <
max .5 po(x) = pt < +ooin £2. Let {Pe}(e>0) be a sequence satisfying (A.1)—(A.3), defined by

@) E o) +do(x),  de=o(l) ase—0,  lime %O =d() 31)

e—0

We denote by u¢ = u®(x, y) and wh =wP (x, y) the unique solutions in respectively W; P 0(')(]-' ) and W;’p 0(')(/\/l) of
the following cell problems:

divy (k| V,u? |7 Vu) =0 in F

(k| Vyud [V, u —a, ) =0 ondM;  y— u’(y) Y-periodic (32)
— div, (knd(0) |V, WP |2V, W) 4 |wh| P PP =0 in M

wl(y)=B ondaM;  y—wh(y) Y-periodic (33)
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where F =Y\ M, v M is the outward normal vector to 9 M, a € R”, and S € R. In the cell problems (32) and (33)
x is a parameter. Regularity results for u* and w? are thus easily deduced from [14]. The following result holds.

Theorem 5.1. Under the aforementioned assumptions (see the beginning of the present section and especially (31)),
the solution u® of (2) converges strongly in LPO(‘)(Q?) to u the solution to the variational problem:

*
Jhom[u] = /(A(X, Vu) + %Iula(x) +b(x,u) — g(x)p*u) dx — min, uc Wol’m(')(.s?)
o(x

where p* = meas F, A(x, 8) = o [V, (x, y) — 2l dy, b(x, B) = [y (kg (BWP WP 702 — [wh |7 @) 4
st WP dy.
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