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Abstract

We study the solutions to quasilinear elliptic equations with high contrast coefficients. The energy formulation leads to work
with variable exponent Lebesgue spaces Lpε(·) in domains with a complex microstructure scaled by a small parameter ε. We
derive rigorously the corresponding homogenized problem. It is completely described in terms of local energy characteristics of
the original domain. To cite this article: C. Choquet, L. Pankratov, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Modèles non linéaires de type double-porosité à croissance non standart. Nous étudions les solutions d’équations quasili-
néaires elliptiques à coefficients fortement contrastés. La formulation variationnelle associée conduit à travailler dans des espaces
de Lebesgue à exposant variable Lpε(·) dans des domaines à la microstructure complexe caractérisée par un petit paramètre ε. Nous
obtenons rigoureusement le problème homogénéisé correspondant. Il est déterminé par les caractéristiques variationnelles locales
de la microstructure. Pour citer cet article : C. Choquet, L. Pankratov, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Keywords: Fluid mechanics; Homogenization; Double porosity; Non-standard growth

Mots-clés : Mécanique des fluides ; Homogénéisation ; Double porosité ; Croissance non standard

Version française abrégée

Nous considérons le problème variationnel (2), où Kε est une fonction qui dégénère sur une partie asymptotique-
ment dense du domaine (voir (K.1)–(K.2)). Le domaine est un milieu dispersé vérifiant (C.1)–(C.2). En contrôlant
les caractéristiques locales (7)–(8) du domaine, nous obtenons rigoureusement le problème homogénéisé corres-
pondant à (2). Il est décrit dans le théorème 2.1 : la solution uε de (2) converge dans Lp0(·)(Ωε

f ) vers la solution

u de Jhom[u] → min, u ∈ W
1,p0(·)
0 (Ω), avec Jhom[u] = ∫

Ω
(A(x,∇u) + ρ(x)

σ (x)
|u|σ(x) + b(x,u) − g(x)ρ(x)u)dx. De
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plus, dans la partie matricielle du domaine, ( 1
pε(x)

|uε|σ(x)−2(u(x)uε − |uε|2) + 1
σ(x)

|uε|σ(x)) converge faiblement
vers b(x,u). Après avoir construit (§3) des approximations ad hoc de uε , nous prouvons le théorème 2.1 en quatre
étapes : 0. il existe une fonction u telle que uε → u dans Lp0(·)(Ωε

f ) ; 1. on a limJ ε[uε] � Jhom[w] pour toute

fonction w ∈ W 1,p0(·)(Ω) ; 2. on a limJ ε[uε] � Jhom[u] (ainsi u minimise Jhom dans W
1,p0(·)
0 (Ω)) ; 3. on prouve le

résultat de convergence dans la partie matricielle. Finalement, nous illustrons notre résultat dans le cadre d’un exemple
périodique, retrouvant ainsi une formulation plus usuelle du problème homogénéisé.

1. Introduction

We study rigorously the asymptotic behavior as ε → 0 of solutions to quasilinear equations of the form

−div
(
Kε(x)

∣∣∇uε
∣∣pε(x)−2∇uε

) + ∣∣uε
∣∣σ(x)−2

uε = gε(x), x ∈ Ω (1)

with a high contrast coefficient Kε(x). This equation is naturally associated with variable exponent Lebesgue and
Sobolev spaces, Lσ (·) and W 1,pε(·). These types of functional space with non-standard growth are nowadays mainly
used for the modeling of electrorheological fluids (see, e.g., [1,2]) and for image restoration [3]. Eqs. (1) arise, e.g.,
from compressible flows in porous media, and non-Newtonian flow through thin fissures.

Our homogenization problem is closely related to the so-called double-porosity models widely discussed in the lit-
erature (see [4,5]). A linear double-porosity model was first mathematically derived in [6]. Nonlinear models, a general
non-periodic model and a random model were handled in [7,8], [9] and [10], respectively. Here, instead of using the
above geometrical assumptions, following the approach introduced in [11], we only impose conditions on the local
energetic characteristics of the problem. These characteristics contain the useful informations on the microstructure
and are adapted to the equation through penalty terms. This method covers a variety of concrete behaviors including
periodicity and almost periodicity.

Notational conventions. In what follows C,C1, etc. are generic constants independent of ε. The space Lp(·)(Ω) of
measurable functions φ in Ω such that Υp(·),Ω(φ) = ∫

Ω
|φ(x)|p(x) dx < +∞ endowed with the norm ‖φ‖Lp(·)(Ω) =

inf{λ > 0: Υp(·),Ω(
φ
λ
) � 1} is a Banach space. Following [12], the Sobolev space with variable exponent p is defined

by W 1,p(·)(Ω) = {φ ∈ Lp(·)(Ω): |∇ φ| ∈ Lp(·)(Ω)}. The scalar product in R
n is denoted by (·,·). We denote by 1ε

k the
characteristic function of the set Ωε

k , k = f,m. Finally, for any 0 < ε � h � 1, Kz
h is an open cube centered at z ∈ Ω

with lengths equal to h.

2. Statement of the problem and the main result

Let Ω = Ωε
f ∪ Ωε

m be a bounded domain of R
n (n � 2) with Lipschitz boundary ∂Ω , {Ωε

m}(ε>0) being a family of
open subsets in Ω . We assume that the set Ωε

m is distributed in an asymptotically regular way in Ω . It may consist
of Nε (Nε → +∞) small isolated components or it may be defined as fibers becoming more and more dense.

Our aim is to study the asymptotic behavior, as ε → 0, of the solution uε of the following variational problem:

J ε
[
uε

] → min, uε ∈ W
1,pε(·)
0 (Ω) (2)

J ε[u] def=
{∫

Ω
(
ε(x) |∇u|pε(x) + 1

σ(x)
|u|σ(x) − 1ε

f (x)g(x)u)dx if u ∈ W 1,pε(·)(Ω)

+∞ otherwise
(3)

with 
ε(x) = Kε(x)/pε(x). The growth functions pε and σ possess the sufficient properties to ensure the existence
of a unique solution uε ∈ W

1,pε(·)
0 (Ω) of the variational problem (2) (see [12]):

(A.1) for any ε > 0, pε satisfies the following log-Hölder continuity property∣∣pε(x) − pε(y)
∣∣ � ωpε

(|x − y|) ∀x, y ∈ Ω, with lim
τ→0

ωpε(τ ) ln(1/τ) � C (4)

and there exist two real numbers p− and p+ such that

1 < p− � p−
ε ≡ min

x∈Ω

pε(x) � pε(x) � max
x∈Ω

pε(x) ≡ p+
ε � p+ < +∞ in Ω (5)
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(A.2) the function σ satisfies a log-Hölder continuity property and there are real numbers σ− and σ+ such that:

0 < σ− ≡ min
x∈Ω

σ(x) � σ(x) � max
x∈Ω

σ(x) ≡ σ+ < min
x∈Ω

p0(x)n

n − p0(x)
in Ω (6)

We specify the asymptotic behavior of the growth functions {pε}:

(A.3) the sequence {pε} converges uniformly in Ω to a function p0 satisfying a log-Hölder continuity property.

Function Kε describes the high-contrasted medium. It is a measurable function in Ω such that:

(K.1) there exists a real number k0 such that 0 < k0 � Kε(x) � k−1
0 in Ωε

f ;
(K.2) for any ε > 0, there exists a real number kε such that supx∈Ωε

m
Kε(x) = kε > 0 and kε → 0 as ε → 0.

We now specify the microstructure of the domain. We make the following assumptions:

(C.1) the local concentration of the set Ωε
f has a positive continuous limit: there exists a continuous positive func-

tion ρ such that, for any open cube Kx
h centered at x ∈ Ω with lengths equal to h > 0

lim
h→0

lim
ε→0

h−n meas
(
Kx

h ∩ Ωε
f

) = ρ(x)

(C.2) for any ε > 0, there is a constant Cpε � 0 such that, if the function p
ε is defined by p

ε = pε − Cpε in Ω , then:
(i) limε→0 Cpε = 0;

(ii) there exists a family of extension operators Pε : W 1,p
ε(·)(Ωε

f ) → W 1,p
ε(·)(Ω) such that, for any vε ∈

W 1,pε(·)(Ωε
f ),

Pεvε = vε in Ωε
f and

∥∥Pεvε
∥∥

W 1,p
ε (·)(Ω)

� Φ
(∥∥vε

∥∥
W 1,pε(·)(Ωε

f )

)
where Φ is a strictly monotone continuous function in R

+ such that Φ(0) = 0 and Φ(t) → +∞ as
t → +∞.

Condition (C.2) extends the classical result of [13] to variable exponent Sobolev spaces.
The local characteristic of the sets Ωε

f and Ωε
m associated to the functional (3) are described by:

• the functional c
ε,h
pε(·) associated to the energy in Ωε

f , defined for z ∈ Ω , a ∈ R
n by

c
ε,h
pε(·)(z;a)

def= inf
vε

∫
Kz

h∩Ωε
f

(

ε(x)

∣∣∇vε(x)
∣∣pε(x) + h−pε(x)−γ

∣∣vε(x) − (x − z,a)
∣∣pε(x))dx (7)

where γ ∈ R
+, and the infimum is taken over vε ∈ W 1,pε(·)(Kz

h ∩ Ωε
f );

• the functional b
ε,h
pε(·) associated to the energy exchange between Ωε

f and Ωε
m, defined for z ∈ Ω , β ∈ R by

b
ε,h
pε(·)(z;β)

def= inf
wε

∫
Kz

h

(

ε(x)

∣∣∇wε
∣∣pε(x) + 1ε

m(x)

σ (x)

∣∣wε
∣∣σ(x) + h−pε(x)−γ 1ε

f (x)
∣∣wε − β

∣∣pε(x)
)

dx (8)

the infimum being taken over wε ∈ W 1,pε(·)(Kz
h).

We assume that the local characteristics of Ω are such that, for any sequence {pε}(ε>0) satisfying (A.1)–(A.3):

(C.3) for any x ∈ Ω , a ∈ R
n, there is a continuous function A(x,a) and a real number γ0, 0 < γ0 < p−, such that

lim
h→0

lim
ε→0

h−nc
ε,h
pε(·)(x,a) = lim

h→0
lim
ε→0

h−nc
ε,h
pε(·)(x,a) = A(x,a) (9)
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(C.4) for any x ∈ Ω , β ∈ R, there is a continuous function b(x,β) and a real number γ1, 0 < γ1 < p−, such that

lim
h→0

lim
ε→0

h−nb
ε,h
pε(·)(x,β) = lim

h→0
lim
ε→0

h−nb
ε,h
pε(·)(x,β) = b(x,β) (10)

Contrary to the standard growth setting as considered in [7], the local characteristic b
ε,h
pε(·)(z;β) is not homogeneous

with respect to the parameter β . This induces the appearance of a nonlinear function b(x,u) in the homogenized
functional which is described in the following theorem.

Theorem 2.1. Let (uε) be a sequence satisfying (2). Under the standing assumptions, the solution uε to (2) converges
strongly in Lp0(·)(Ωε

f ) to u, solution to the following variational problem:

Jhom[u] → min, u ∈ W
1,p0(·)
0 (Ω) (11)

Jhom[u] def=
{∫

Ω
(A(x,∇u) + ρ(x)

σ (x)
|u|σ(x) + b(x,u) − g(x)ρ(x)u)dx if u ∈ W

1,p0(·)
0 (Ω)

+∞ otherwise
(12)

Moreover, for any smooth function ζ in Ω , we have:

lim
ε→0

∫
Ωε

m

(
1

pε(x)

∣∣uε
∣∣σ(x)−2(

u(x)uε − ∣∣uε
∣∣2) + 1

σ(x)

∣∣uε
∣∣σ(x)

)
ζ(x)dx =

∫
Ω

b(x,u)ζ(x)dx (13)

Note that the existence of the unique solution u ∈ W 1,p0(·)(Ω) to (11) follows from the previous theorem. Indeed,
using (C.3)–(C.4), one states that the functions A(x,a) and b(x,β) are convex and locally Lipschitz with respect to
their second variable, and |A(x,a)| � C |a|p0(x), |b(x,β)| � C |β|σ(x) ∀x ∈ Ω . The continuity of Jhom in the space
W 1,p0(·)(Ω) follows from the latter results. The uniqueness of the solution to (11) immediately follows from the strict
convexity of Jhom. Finally, a minimizer of (12) is constructed in the proof of Theorem 2.1.

3. Auxiliary results

In this section, under the standing assumptions, we construct a convenient approximation for the solution to (3).

Lemma 3.1. For each h > 0, there exist a set Bε,h ⊂ Ωε
f and a function Y ε,h ∈ W 1,pε(·)(Ω) such that:

(i) 0 � Y ε,h(x) � 1 in Ω and Y ε,h(x) = 1 in Ωε
f \ Bε,h;

(ii) limε→0 meas Bε,h = O(h
γ

p++1 ) as h → 0;
(iii) for any function w ∈ C1

0(Ω), we have, as h → 0,

lim
ε→0

∫
Ω

(

ε(x)

∣∣w∇Y ε,h
∣∣pε(x) + 1

σ(x)

∣∣wYε,h
∣∣σ(x)

)
dx �

∫
Ω

(
b(x,w) + ρ(x)

σ (x)
|w|σ(x)

)
dx + o(1) (14)

Lemma 3.2. Let Bε,h be the set defined in Lemma 3.1. Let w ∈ C1
0(Ω). Then there are a set Dε,h ⊂ Ω and a function

V ε,h = V ε,h(·,w) ∈ W 1,pε(·)(Ω) such that

(i) Bε,h ⊂ Dε,h and limε→0 meas Dε,h = o(1) as h → 0;
(ii) maxx∈Ω |V ε,h(x) − w(x)| � Ch;

(iii) the following relations hold true as h → 0:

lim
ε→0

∫
Dε,h∪Ωε

m


ε(x)
∣∣∇V ε,h

∣∣pε(x) = o(1), lim
ε→0

∫
Ωε

f


ε(x)
∣∣∇V ε,h

∣∣pε(x) �
∫
Ω

A(x,∇w) + o(1) (15)
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Lemma 3.3. Let {p
ε}(ε>0) be the sequence of functions defined in condition (C.2) and let the sequence {π

ε }(ε>0)

defined in Ω by π
ε = min{p

ε,p0}. Assume that a sequence {uε}(ε>0) ⊂ W
1,p

ε(·)
0 (Ω) converges to a function u ∈

C1
0(Ω) in Lp0(·)(Ωε

f ) and, moreover,
∫
Ω

(1ε
f (x)
ε(x)|∇uε|pε(x) + 1

σ(x)
|uε|σ(x))dx � C. Then there are a set Gε ⊂ Ω

with Ωε
m ⊂ Gε , a function ûε and a subsequence εk → 0 (still denoted by ε for convenience) such that

(i) limε→0 meas Gε
f = 0, where Gε

f = Gε ∩ Ωε
f ;

(ii) ûε = uε in Ωε
f \ Gε

f and, moreover, limε→0 ‖ûε‖
W 1,π

ε (·)(Gε
f )

= 0;
(iii) the following inequality holds true:

lim
ε→0

∫
Gε

(

ε(x)

∣∣∇uε
∣∣π

ε (x) + 1ε
m(x)

σ (x)

∣∣uε
∣∣σ(x)

)
dx �

∫
Ω

b(x,u)dx (16)

4. Proof of Theorem 2.1

The minimizer uε of problem (2) is such that ‖uε‖W 1,pε(·)(Ωε
f ) � C. It follows from (C.2) that there is a function

uε = Pεuε such that uε = uε in Ωε
f and ‖uε‖

W 1,p
ε (·)(Ω)

� C. Since pε converges uniformly to p0, then there exists
a parameter ς that does not depend on ε such that ‖uε‖W 1,p0(·)−ς (Ω) � C and the family {uε}(ε>0) is a compact set

in the space Lp0(·)(Ω). Then one can extract a subsequence (still denoted by {uε}) which converges to a function
u ∈ Lp0(·)(Ω). In particular,

uε → u in Lp0(·)(Ωε
f

)
(17)

It remains to show that u is the solution to the homogenized problem (11). The proof will be done in three steps. In
step 1, we prove that limJ ε[uε] � Jhom[w] for any w ∈ W 1,p0(·)(Ω). Step 2 is devoted to the proof of the inequality
limJ ε[uε] � Jhom[u]. Thus u is the minimizer of functional Jhom in W

1,p0(·)
0 (Ω). Finally, we prove in step 3 the weak

convergence of 1ε
m( 1

pε
|uε|σ(·)−2(uuε − |uε|2) + 1

σ
|uε|σ(·)) to b(·, u).

Step 1. Upper bound. Thanks to density arguments it is sufficient to state the result for an arbitrary function
w ∈ C1

0(Ω). Let Y ε,h, V ε,h, Dε,h be the corresponding functions and set defined in Lemmas 3.1 and 3.2. We define
the function T ε,h ∈ W 1,pε(·)(Ω) by

T ε,h(x)
def= Y ε,h(x)V ε,h(x), x ∈ Ω (18)

Since uε minimizes the functional J ε , J ε[uε] � J ε[T ε,h] and it is sufficient to prove that

lim
h→0

lim
ε→0

J ε
[
T ε,h

]
� Jhom[w] (19)

Let us enumerate the basic ingredients leading to (19). First, it follows from condition (C.1), assertions (i)–(ii) of
Lemma 3.1, and assertion (ii) of Lemma 3.2 that

lim
h→0

lim
ε→0

∫
Ω

gε(x)T ε,h(x)dx =
∫
Ω

g(x)ρ(x)w(x)dx (20)

It follows from assertion (i) of Lemma 3.1 and assertion (i) of Lemma 3.2 that

lim
h→0

lim
ε→0

∫
Ω

1

σ(x)

∣∣Y ε,h
∣∣σ(x)∣∣∣∣V ε,h

∣∣σ(x) − |w|σ(x)
∣∣dx = 0 (21)

We note that ∇T ε,h = ∇V ε,h in Ωε
f \ Dε,h. Thus we have

lim
h→0

lim
ε→0

∫
Ωε

f \Dε,h


ε(x)
∣∣∇T ε,h

∣∣pε(x) dx �
∫
Ω

A(x,∇w)dx (22)

We decompose the remaining term in J ε[T ε,h] as follows:
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∫
Ωε

m


ε(x)
∣∣∇T ε,h

∣∣pε(x) dx =
∫

Ωε
m∪Dε,h


ε(x)
∣∣∇Y ε,h

∣∣pε(x)(∣∣V ε,h
∣∣pε(x) − ∣∣w(x)

∣∣pε(x))dx

+
∫

Ωε
m∪Dε,h


ε(x)
(∣∣∇T ε,h

∣∣pε(x) − ∣∣V ε,h∇Y ε,h
∣∣pε(x))dx

+
∫

Ωε
m∪Dε,h


ε(x)
∣∣w(x)∇Y ε,h

∣∣pε(x) dx (23)

Finally, it follows from (22)–(23), assertion (iii) of Lemma 3.1, assertion (ii) of Lemma 3.2 and Hölder’s inequality
that ∫

Ω


ε(x)
∣∣∇T ε,h

∣∣pε(x) dx �
∫
Ω

A(x,∇w)dx +
∫
Ω


ε(x)
∣∣w(x)∇Y ε,h

∣∣pε(x) dx + jε,h1 (24)

where limh→0 limε→0 |jε,h1 | = 0. Now inequality (19) immediately follows from (20), (21), (24) and assertion (iii) of
Lemma 3.1.

Step 2. Lower bound. In view of Lemma 3.3, we aim to reduce the problem to the case where u ∈ C1
0(Ω). But the

functional J ε is not continuous in the W 1,p0(·) topology unless we restrict ourself to the case when pε � p0. So, we
note that

lim
ε→0

J ε
[
uε

]
� lim

ε→0

∫
Ω


ε(x)
∣∣∇uε

∣∣π
ε (x)(∣∣∇uε

∣∣pε(x)−π
ε (x) − 1

)
dx + lim

ε→0
Jπ

ε
[
uε

]

where

Jπ
ε [u] def=

{∫
Ω

(
ε(x)|∇u|π
ε (x) + 1

σ(x)
|u|σ(x) − gε(x)u)dx

def= ∫
Ω

Fπ
ε
(x,uε,∇uε)dx if u ∈ W 1,π

ε (·)(Ω)

+∞ otherwise

Since max0<B<1(−Bπ
ε (x)(Bpε(x)−π

ε (x) − 1)) � C(ε), for any x ∈ Ω , with C(ε) → 0 as ε → 0, it is now sufficient to
prove that limε→0 Jπ

ε [uε] � Jhom[u].
First let u be an arbitrary C1

0(Ω) function and {uε}(ε>0) be a sequence which converges to the function u strongly
in Lp0(·)(Ωε

f ) and such that Jπ
ε [uε] � C. We will show that

lim
ε→0

Jπ
ε
[
uε

]
� Jhom[u] (25)

Let {xα} be a set of points in Ω forming an h-periodic space lattice. We cover the domain Ω by cubes Kxα

h with non-
intersecting interiors. We now apply Lemma 3.3 to the sequence {uε}(ε>0) and the function u. Using the regularity of
u and the strong convergence of the sequence {uε}(ε>0) to u in Lp0(·)(Ωε

f ), we check that

lim
ε→0

∑
α

∫
Kα

h ∩(Ωε
f \Gε

f )


ε(x)
∣∣∇ûε

∣∣π
ε (x) dx � lim

ε→0

∑
α

c
ε,h
π

ε (·)
(
xα,∇u

(
xα

))

− lim
ε→0

k−1
0

∫
Gε

f

∣∣∇ûε
∣∣π

ε (x) dx + o(1) as h → 0

It follows from the latter relation and Lemma 3.3(ii) that

lim
ε→0

Jπ
ε
[
uε

]
� lim

ε→0

(∑
α

c
ε,h
π

ε (·)
(
xα,∇u

(
xα

)) +
∑
α

∫
Kα

h ∩Ωε
f

(
1

σ(x)

∣∣uε
∣∣σ(x) − gε(x)uε

)
dx

+
∫
ε

Fπ
ε

(
x,uε,∇uε

)
dx

)
+ o(1) as h → 0 (26)
G
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We pass to the limit in the inequality (26) first as ε → 0 and then as h → 0. Taking into account the strong convergence
of the sequence {uε}(ε>0) to u in the space Lp0(·)(Ωε

f ), the properties of the function pε , conditions (C.1), (C.3), and
Lemma 3.3 we obtain (25).

This result in C1
0(Ω) remains true in W 1,p0(·)(Ω) because the family {Jπ

ε } is uniformly in ε continuous in the
W 1,p0(·)(Ω) topology. In addition, as emphasized after the main theorem, the functional Jhom is continuous in the
W 1,p0(·)(Ω) topology. This completes the proof of the “lim inf”-inequality for the functional Jπ

ε , and thus for J ε .
Step 3. Convergence result (13) in the matrix part. Suppose that the solution u of the homogenized problem is a

sufficiently smooth function (if not we use smooth approximations of u to construct ũε). Let ũε be the function defined
in (18) with w = u. Since uε is the solution to the variational problem (2), then∫

Ω

(−div
(
Kε(x)

∣∣∇uε
∣∣pε(x)−2∇uε

) + ∣∣uε
∣∣σ(x)−2

uε
)(

ũε − uε
)

dx =
∫
Ω

gε(x)
(
ũε − uε

)
dx (27)

It also follows from steps 1–2 that limε→0 J ε[ũε] − limε→0 J ε[uε] = 0. This relation together with (27) implies:

lim
ε→0

∥∥ũε − uε
∥∥

Lσ(·)(Ω)
= 0 (28)

Consider now the functional b
ε,h
pε(·)(z;β) defined in (8). It is clear that the minimizer w

ε,h
z of the functional (8)

satisfies the Neumann boundary value problem for the following equation:

−div
(
Kε(x)∇wε,h

z

∣∣∇wε,h
z

∣∣pε(x)−2) + 1ε
m(x)wε,h

z

∣∣wε,h
z

∣∣σ(x)−2

+ pε(x)h−pε(x)−γ 1ε
f (x)

(
wε − β

)∣∣wε − β
∣∣pε(x)−2 = 0 in Kz

h (29)

Using (29) and condition (C.4), we prove that

b(x,β) = lim
ε→0

h−n(ε)

( ∫
Kz

h

1

pε(x)

∣∣wε,h
z

∣∣σ(x)−2(
βwε,h

z − ∣∣wε,h
z

∣∣2)1ε
m(x) +

∫
Kz

h

1

σ(x)

∣∣wε,h
z

∣∣σ(x)1ε
m(x)

)

and then

lim
ε→0

∫
Ωε

m

(
1

pε(x)

∣∣ũε
∣∣σ(x)−2(

uũε − ∣∣ũε
∣∣2) + 1

σ(x)

∣∣ũε
∣∣σ(x)

)
ζ(x)dx =

∫
Ω

b(x,u)ζ(x)dx (30)

for any smooth function ζ . Relation (13) follows from (28) and (30). This completes the proof of Theorem 2.1.

5. Periodic example

It is important to show that the “intersection” of the conditions (A.1)–(A.3), (K.1)–(K.2), (C.1)–(C.4) is not empty.
We thus illustrate our result with a periodical example. We assume that, in the standard periodic cell Y = (0,1)n,
there is an obstacle M ⊂ Y with Lipschitz boundary ∂M. We assume that this geometry is repeated periodically
in the whole R

n. The geometric structure within the domain Ω is then obtained by intersecting the ε-multiple of
this geometry with Ω . Let p0 be a log-Hölder continuous function such that 2 < p− ≡ minx∈Ω p0(x) � p0(x) �
maxx∈Ω p0(x) ≡ p+ < +∞ in Ω . Let {pε}(ε>0) be a sequence satisfying (A.1)–(A.3), defined by

pε(x)
def= p0(x) + dε(x), dε = o(1) as ε → 0, lim

ε→0
ε−dε(·) = d(·) (31)

We denote by ua = ua(x, y) and wβ = wβ(x, y) the unique solutions in respectively W
1,p0(·)
# (F ) and W

1,p0(·)
# (M) of

the following cell problems:

divy

(
kf

∣∣∇yua
∣∣p0(x)−2∇yua

) = 0 in F(
kf

∣∣∇yua
∣∣p0(x)−2∇yua − a,νM

) = 0 on ∂M; y → ua(y) Y -periodic (32)

−divy

(
kmd(x)

∣∣∇ywβ
∣∣p0(x)−2∇ywβ

) + ∣∣wβ
∣∣p0(x)−2

wβ = 0 in M
wβ(y) = β on ∂M; y → wβ(y) Y -periodic (33)
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where F = Y \ M, νM is the outward normal vector to ∂M, a ∈ R
n, and β ∈ R. In the cell problems (32) and (33)

x is a parameter. Regularity results for ua and wβ are thus easily deduced from [14]. The following result holds.

Theorem 5.1. Under the aforementioned assumptions (see the beginning of the present section and especially (31)),
the solution uε of (2) converges strongly in Lp0(·)(Ωε

f ) to u the solution to the variational problem:

Jhom[u] =
∫
Ω

(
A(x,∇u) + ρ

σ (x)
|u|σ(x) + b(x,u) − g(x)ρu

)
dx → min, u ∈ W

1,p0(·)
0 (Ω)

where ρ = meas F , A(x,a) = 1
p0(x)

∫
F |∇yua(x, y) − a|p0(x) dy, b(x,β) = ∫

M( 1
p0(x)

(βwβ |wβ |σ(x)−2 − |wβ |σ(x)) +
1

σ(x)
|wβ |σ(x))dy.
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