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Abstract

The analytical model derived by Howe assessing the acoustic effect of perforated plates has been implemented in a 3D Helmholtz
solver. This solver allows one to compute the acoustic modes of industrial chambers taking into account the multiperforated plates
present for the cooling of the walls. An academic test case consisting of two coaxial cylinders, with the inner one being perforated is
used to validate the implementation in the general purpose AVSP code. This case is also used to show the effects of the presence of
the plates. In particular, the sensitivity of the acoustic damping to the bias flow speed will be studied. A maximum absorption speed
is shown, and the behaviour towards an infinite speed will be illustrated by the academic case. Computations are also conducted in
the case of an industrial helicopter chamber. The value of the maximum absorption speed is discussed to explain why the modes
are in fact not much absorbed by the perforated plates, and that the frequencies are the same as for walls. To cite this article:
E. Gullaud et al., C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Impact des plaques multiperforées sur l’acoustique dans les chambres de combution. Le modèle analytique de Howe
évaluant l’impact des plaques multiperforées sous l’effet d’une onde acoustique a été intégré dans un solveur de Helmholtz 3D.
Ce code ainsi modifié permet de calculer les modes de chambres industrielles tout en prenant en compte la présence des plaques
multiperforées utiles pour le refroidissement des parois. Le cas académique de deux cylindres coaxiaux dont l’un est perforé est
considéré pour valider l’implémentation du modèle dans le code AVSP. Ce premier cas est aussi l’occasion d’illustrer l’effet des
plaques perforées sur l’acoustique et en particulier l’influence de la vitesse de l’air dans les trous. Une vitesse correspondant à une
absorption maximale est mise en évidence. Le comportement à grande vitesse est aussi étudié. Des calculs sont ensuite effectués
dans le cas d’une chambre d’hélicoptère. Le fait que les modes de cette chambre ne sont pas très impactés dans le cas d’une
utilisation industrielle est expliqué par le fait que la vitesse maximale d’absorption est loin de celle réellement utilisée. Pour citer
cet article : E. Gullaud et al., C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Multiperforated plates (MP) are widely used in the combustion chambers of turbofan engines to cool the walls of
the chambers which are submitted to high temperatures [1]. These plates consist of submillimeter apertures, across
which the mean pressure jump forces a cold jet through the holes, from the casing into the combustion chamber. The
micro-jets then coalesce to form a cooling film. Due to the tiny diameter of the perforations, the holes cannot be
meshed for numerical computations. It is therefore necessary to have a model to account for the impact of perforated
plates. This problem was encountered when performing computational fluid dynamics calculations [2,3] but also when
computing acoustic modes of a combustion chamber. Indeed, MP are known to have a damping effect on acoustics
[4,5], which is enhanced by the presence of a mean bias flow [6]. Acoustic waves interact with the shear layer, creating
a vortex breakdown at the rims of the apertures, which converts part of the acoustic energy into vortical energy.

Howe proposed a model for this phenomenon [5], which will be recalled in Section 2. This model provides the
acoustic impedance of a multiperforated plate in the presence of an acoustic wave and is well adapted to be inserted
in the Helmholtz solver. It was validated, showing good agreement with experiments [6]. Improvements of this model
have been made to take into account the thickness of the plate [7] and the interaction between the apertures [8]. Studies
of the parameters influencing the sound absorption have been conducted [6]. In the present study, the implementation
of Howe’s model in the Helmholtz solver AVSP [9,10] is presented. AVSP solves the eigenvalue problem related to
the wave equation in the frequency domain, and is able to provide the acoustic modes of a combustion chamber. With
the implementation of Howe’s model, it is now possible to compute the acoustic modes of a chamber, taking into
account the multiperforated plates. After a brief description of Howe’s model in Section 2, the coding is validated by
comparing AVSP results to the ones given by an analytic solution on an academic test case in Section 3. A study of
the influence of the parameters is also conducted in this section. The computations are then performed in Section 4 on
a real industrial chamber.

2. Howe’s model in AVSP

Howe’s approach is the most classical model used to represent the behaviour of a multiperforated plate with bias
flow and submitted to an acoustical excitation. Let us consider an array of circular perforations of diameter 2a, with
an inter-orifice spacing d , through which a mean flow of speed U , parallel to the apertures axis is imposed (see Fig. 1).
When an acoustic perturbation is imposed, Howe’s model can represent the behaviour of a multiperforated plate under
the following hypotheses [5]:

– The acoustic excitation is at a low frequency, so that the wavelength is much larger than the orifice radius;
– The flow has a high Reynolds number, the viscosity is then only dominant at the rims of the aperture leading to

the shedding of vorticity;
– The Mach number of the mean flow is low, so that the flow is incompressible in the vicinity of the aperture;
– The plate is infinitely thin;
– The aperture spacing is high compared to the aperture radius, so that the interaction between the apertures is

negligible.

Acoustic energy is converted into vortical energy, due to the vortex shedding occurring at the aperture rims.
The Rayleigh conductivity KR [11] of the aperture, relating the harmonic volume flux Q̂ to the acoustic pressure

jump across the plate, is defined by

KR = iωρQ̂

p̂+ − p̂− (1)

where ρ is the mean density in the vicinity of the aperture, ω is the pulsation of the acoustic perturbation and p̂+ and
p̂− are the harmonic pressures upstream and downstream of the aperture respectively. We have

Q̂ = d2û± (2)
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Fig. 1. Array of circular apertures, of diameter 2a and aperture spacing d , with a bias flow of speed U .

Fig. 2. Academic configuration: cylinder of radius r2, with a perforated plate at r1.

where û± is the acoustic velocity on the plate, equal on both sides. Hence,

KR = iωρ0d
2û±

p̂+ − p̂− (3)

Howe expresses the Rayleigh conductivity for a circular aperture in an infinitely thin plate [5] as:

KR = 2a(ΓR − i�R) (4)

where

ΓR − i�R = 1 +
π
2 I1(St)e−St − iK1(St) sinh(St)

St(π
2 I1(St)e−St + iK1(St) cosh(St))

(5)

St is the Strouhal number defined by ωa/U . Using the momentum equation and Eq. (3), we obtain:

∇p̂ · n = KR

d2

[
p̂+ − p̂−]

(6)

Eq. (6) can be used as a Neumann boundary condition in the Helmholtz solver. The normal pressure gradient on each
multiperforated boundary is expressed as a function of a, d , U , but non-linear in the pulsation ω. This non-linearity is
handled by using an iterative method where a quadratic eigenvalue problem is solved at each sub-iteration in the code.
Note that this procedure was developed initially to deal with complex valued boundary impedance in the Helmholtz
solver [10].

3. Analytic validation

3.1. Analytics

First, an academic test configuration, for which an analytic solution can be derived, is presented. We consider the
geometry depicted in Fig. 2. It consists of two coaxial cylinders, the inner one being perforated. The outer radius
is r2. The perforated plate is located at r1. r−

1 and r+
1 denote the upstream part of the plate and the downstream part

respectively. Although the cylinder is 3D, the third dimension is considered small in regard to the others and so we
will only consider radial and azimuthal modes, the longitudinal ones appearing at much higher frequencies.

Let us consider the wave equation written in the frequency domain [12].
The interior of the domain is denoted by Ω , and the boundary by δΩ .{

�p̂ + k2p̂ = 0 on Ω
(7)
∇p̂ · n = 0 on δΩ
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Considering k2 = k2
r + k2

z , Eq. (7) can be cast in polar coordinates (Eq. (8)), with p̂ = R(r)Θ(θ)Z(z) [13].

1

R

d2

dr2
R + 1

rR

d

dr
R + 1

r2Θ

d2

d2θ
Θ + 1

Z

d2

dz
Z + (

k2
r + k2

z

) = 0 (8)

Since we only consider the radial and azimuthal modes, we have

1

R

d2

dr2
R + 1

rR

d

dr
R + 1

r2

(
1

Θ

d2

d2θ
Θ + n2

θ

)
+ k2

r − n2
θ

r2
= 0 (9)

In these conditions, the radial part of Eq. (8) can be reduced to a Bessel equation:(
d2

dr2
R + 1

r

dr

dr
R

)
+ R ×

(
k2
r − n2

θ

r2

)
= 0 (10)

whose general solution is of the form:

R(r) = AJnθ (krr) + BNnθ (krr) (11)

where Jnθ and Nnθ are Bessel functions of the nθ order. In the domain r � r1, the pressure can be written:

R(r) = AJnθ (krr) (12)

The Neumann function, which is singular in r = 0, is put aside. In the domain r+
1 � r � r2, solutions may be written:

R(r) = BJnθ (krr) + CNnθ (krr) (13)

A null acoustic speed is imposed on the outer cylinder. Applying the condition û = 0 in r = r2, we obtain:

BJ ′
nθ

(krr) + CN ′
nθ

(krr) = 0 (14)

Jump conditions can also be written across the perforated plate:

p̂
(
r = r+

1

) − p̂
(
r = r−

1

) = iωρ d2

KR

û
(
r = r−

1

)
(15)

p̂
(
r = r−

1

) − p̂
(
r = r+

1

) = − iωρd2

KR

û
(
r = r+

1

)
(16)

We then obtain the system

[M][X] = 0

where M is the matrix obtained by using Eq. (14), Eq. (15) and Eq. (16), and given by⎡
⎢⎢⎣

0 J ′
nθ

(kr r2) N ′
nθ

(krr2)

d2

KR
krJ

′
nθ

(krr1) + Jnθ (krr1) −Jnθ (kr (r
+
1 )) −Nnθ (kr (r

+
1 ))

Jnθ (krr1) −Jnθ (kr (r
+
1 )) + d2kr

KR
J ′

nθ
(kr (r

+
1 )) −Nnθ (kr (r

+
1 )) + d2kr

KR
N ′

nθ
(krr2)

⎤
⎥⎥⎦

and X is the vector[
A

B

C

]

Solving

det(M) = 0 (17)

releases the eigenvalues of the configuration.
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Table 1
Comparison of the eigenfrequencies between AVSP and analytics.

AVSP results with MP Analytics with MP

Re(f ) Im(f ) (A%) Re(f ) Im(f ) (A%)

nθ = 1 382.5 Hz −18.8 s−1 (26.7%) 382.56 Hz −18.9 s−1 (27.8%)
nθ = 0 534.1 Hz −97.5 s−1 (68.2%) 533.21 Hz −97.5 s−1 (68.3%)
nθ = 2 610.48 Hz −21.4 s−1 (19.8%) 611.04 Hz −21.64 s−1 (19.9%)

Fig. 3. First azimuthal mode: nθ = 1, Re(f ) = 382.5 Hz, Im(f ) = −18.8 s−1. Left: Re(p̂). Right: Im(p̂). Above: AVSP results. Below: Radial
profiles of the real and imaginary part of p̂ along the radius represented by the arrow (comparison analytics/AVSP).

3.2. Results

Let us consider the following parameters for the plate: U = 5 m/s, a = 3 mm and d = 35 mm, r1 = 0.2 m and
r2 = 0.25 m. The configuration calculated in AVSP contains a tetrahedric mesh of 1186 nodes shown on Fig. 2.
The sound speed is uniform and equal to 347 m/s. The eigenfrequencies are gathered in Table 1 and compared to
the analytical results obtained by solving Eq. (17). The first three modes are considered. AVSP provides a complex
frequency Re(f )+ i Im(f ) where Re(f ) consists of the frequency of the mode, and Im(f ) expresses the amplification
rate of the mode. With the adopted convention p′(x, t) = Re 5(p̂(x)e−iωt ), the ratio between the value of the pressure
fluctuation at t = 0 and t = T is given by Eq. (18).

|p′(x, t = T )|
|p′(x, t = 0)| = ∣∣eIm(ω)T

∣∣ (18)

Hence, the attenuation factor A in percent at a period T is given by 100[1 − |e2π
Im(f )
Re(f ) |].

As expected, the eigenfrequencies have a negative imaginary part, which means the pressure fluctuation is damped.
AVSP results are in good accordance with the theory. Figs. 3 and 4 show the radial profiles of the real and imaginary
parts of p̂ given by AVSP for the first and second modes. Analytic solutions are also given for comparison. Again,
a good accordance is found. Note that the pressure jump across the perforated plate is visible on the real and imaginary
parts of the harmonic pressure fluctuations, as well as on the isolines for the first azimuthal mode (Fig. 3). This
comparison is conducted for a fixed bias flow speed (5 m/s), but Fig. 5 also shows good accordance between AVSP
and analytical results for various bias flow speeds.
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Fig. 4. Radial mode: nθ = 0, Re(f ) = 534.1 Hz, Im(f ) = −97.5 s−1. Left: Re(p̂). Right: Im(p̂). Above: AVSP results. Below: Radial profiles of
the real and imaginary part of p̂ (comparison analytics/AVSP).

Fig. 5. Comparison between AVSP frequencies and analytics, for various speeds.

3.3. Study of the influence of the parameters

The impact of MP is further analysed in this section by comparing the results of four runs in Table 2.

– No plate: the inner cylinder is removed;
– Wall: the inner cylinder is replaced by a impermeable solid wall.
– MP5: the MP inner cylinder is present and the bias flow speed is U = 5 m/s;
– MP120: the MP inner cylinder is present and the bias flow speed is U = 120 m/s.

No damping occurs in absence of a MP: Im(f ) = 0 for the cases “wall” and “no plate”. The influence of the mean
bias flow speed on the damping is investigated at a fixed porosity (σ = πa2/d2). Table 2 shows the comparison of the
first azimuthal mode (nθ = 1), at low bias flow speed (5 m/s) and at a high bias flow speed (120 m/s). The MP has a
strong influence on the frequency. Fig. 6 shows that not only the frequency tends to the frequency of a wall at a high
bias flow speed but also the structure of the mode does. Isolines of the harmonic pressure fluctuations are also plotted
for a better understanding of the mode structure.

Fig. 7 shows the evolution of the damping in percent generated by the plate, when the bias flow speed changes
between 5 m/s and 120 m/s. As previously shown by Hughes and Dowling [6], a speed optimizing the absorption
is found. For the plate with a 3 mm radius perforation and a 35 mm inter-orifice distance (σ = 2.3%), the jet speed
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Table 2
Comparison of the first azimuthal mode, without MP, at low bias flow speed, at high bias flow speed, and with a wall. σ = 2.3%.

No plate MP5, U = 5 m/s MP120, U = 120 m/s Walls

Re(f ) Im(f ) Re(f ) Im(f ) (A%) Re(f ) Im(f ) (A%) Re(f ) Im(f )

406.5 Hz 0 s−1 382.5 Hz −18.8 s−1 (26.7) 247.9 Hz −16.8 s−1 (34.7) 246.5 s−1 0 s−1

Fig. 6. Evolution of the first mode, without plate, at low (MP5: f = 382.5 Hz, A = 26.7%) and high bias flow speed (MP120: f = 247.9 Hz,
A = 34.7%), and with a wall (f = 246.5 Hz, A = 0%).

Fig. 7. Evolution of the damping as a function of the bias flow speed U , σ fixed.

corresponding to the maximum absorption is 20 m/s. Above this value, the damping drops. Another set of parameters
is tested here (σ = 1.6%) for which the maximum absorption speed is 12 m/s. This will be discussed in Section 4.

4. Computations on an industrial helicopter chamber

Computations are now conducted with AVSP in the case of an actual industrial chamber. This helicopter chamber
is a reverse-flow annular chamber fueled by 15 injectors and is equipped with MP for cooling purpose, allowing the
fresh air coming from the casing into the chamber to cool the walls. The computational domain is limited here to a
24◦section, corresponding to one injector (Fig. 8). It contains the combustion chamber, the casing and the swirler. The
influence of the geometry on the acoustics of this chamber was previously studied [14] and many computational fluid
dynamics calculations were conducted [15,16]. The purpose here is to study the influence of the MP on the acoustics
of the chamber. The locations of the MP are given in Fig. 8. The sound speed field is deduced from a previous LES1

computation [17] (Fig. 9).
A unstructured mesh of 36 445 nodes is used in AVSP. Since we only consider a section of the chamber, only

longitudinal modes will here be studied. The bias flow speed is calculated from the LES data and the geometrical
characteristics of each plate.

4.1. Results

To assess the impact of MP in this chamber, we use a reference case when walls are used in place of the MP. Table 3
gives the eigenmodes for the computation with walls and MP. Frequencies are very close. The damping on the first
eigenmode is very low (6.7% per period).

1 Large Eddy Simulation.
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Table 3
Comparison of the first two eigenfrequencies corresponding to the first two longitudinal modes, with walls, and with MP.

Walls MP

Re(f ) Im(f ) (A%) Re(f ) Im(f ) (A%)

506.4 Hz 0 s−1 (0%) 507.04 −5.60 s−1 (6.7%)
1105.4 Hz 0 s−1 (0%) 1118.7 Hz −61.54 s−1 (29.2%)

Fig. 8. Location of the MP on the chamber. Fig. 9. Sound speed field.

Fig. 10. Evolution of the damping of the first mode at 506.4 Hz in a period as a function of U/Umd .

For a better understanding of this low impact of the MP of the modes on this chamber, we are looking for the
maximum absorption speed, for a fixed porosity. In Fig. 7, the set of parameters corresponding to the porosity of the
chamber studied here was taken on the cylinder case, and the maximum absorption speed turned out to be 12 m/s.
The maximal absorption occurs here at Umd (Fig. 10), which is the same order of magnitude as for the cylinder. But
still the difference is not negligible and shows that the full geometry must be accounted for to predict the maximum
absorption speed. At U = Umd , the damping is 25% per period. But at the real bias flow speed of the regime considered
here, the damping drops to 6.7% per period. Indeed, the speed Umd is in the domain where the frequencies tend to be
the ones when there is a wall. This shows that acoustics and the cooling process are two decoupled phenomena. For
the bias flow speed corresponding to the best cooling of the chamber walls, acoustics are not impacted. Indeed, the
behaviour of the chamber is very close to the one when walls are in place of the plates (see Fig. 11). On this figure,
the acoustic pressure fields (real part of the acoustic pressure fluctuation) and its isocontours are presented for two
different regimes of MP and with a wall. At the maximum absorption speed, the pressure node is not in the same place
in the casing and the pressure gradient diminishes in the swirler.

5. Conclusion

A model for the acoustic behaviour of perforated plates has been implemented in the Helmholtz solver AVSP.
This tool allows one to take into account MP in computations of the acoustics of a chamber. AVSP predicts damped
acoustic modes, in agreement with what could be expected with perforated plates. The frequencies given by the code
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Fig. 11. Spatial structure and isolines of p̂ for the first mode.

have a negative imaginary part. But this damping strongly depends on both the parameters of the perforated plate
and the bias flow speed. There exists a speed for which the damping reaches its maximum, and beyond this value,
the perforated plate tends to behave like a wall and the damping drops. MP are used in industrial chambers in the
purpose of cooling the chamber walls. They are not designed to have the best acoustic damping. It was found that with
the geometrical characteristics of the perforated plates of the helicopter chamber considered here, and the flow rate
injected in the perforations, the speed appears to be far above the maximum absorption speed. Therefore, the damping
observed is low, and the frequencies of oscillations are not changed significantly. The cooling of the chamber is carried
out without impacting on the chamber acoustics. However, with this tool, it is possible to know if by changing the
regime of the cooling of the chambers, the acoustics will also get impacted.
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