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Abstract

We present a computational method for the optimal control of linear distributed systems. Its derivation is based on the functional
calculus of self-adjoint operators, and on the Dunford–Schwartz representation formula. It has been devised to be implementable
on very fine grained computing processors with semi-decentralized coordination. Finally, it is illustrated by an example related to
vibration stabilization of a micro-cantilever array. To cite this article: M. Lenczner, Y. Yakoubi, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Approximation semi-décentralisée d’un contrôle optimal pour des equations aux dérivées partielles dans un domaine
borné. Nous présentons une méthode de calcul de contrôle optimal pour des systèmes distribués linéaires. Sa construction repose
sur le calcul fonctionnel des opérateurs auto-adjoints et sur la formule de représentation de Dunford–Schwartz. Elle est conçue
pour des architectures de calcul à très fine granularité avec coordination semi-décentralisée. Enfin, elle est illustrée par un exemple
portant sur la stabilisation des vibrations dans une matrice de micro-cantilevers. Pour citer cet article : M. Lenczner, Y. Yakoubi,
C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The method presented in this note is motivated by the emerging field of arrays of microsystems like arrays of atomic
force microscopes, micro-mirrors, or micro-membranes. They are, or will be, comprised of a very large number of
units subjected to wanted or unwanted interactions (cross-talk effect). Achieving a global control in such system
remains a challenging task. Due to computing power and data transmission bottlenecks, it is required to design, in a
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joint effort, an architecture and dedicated algorithms. With this paper, we propose a computational strategy dedicated
to very fine-grained computing processors allowing semi-decentralized exchanges, i.e. between neighbors only. We
refer to this concept by using the term semi-decentralized architecture or computing. The method is based on a general
theory of optimal control for linear infinite dimensional systems, and is illustrated through an example of a two-scale
model of micro-cantilever arrays.

Let us consider the Linear Quadratic Regulator (LQR) problem, where we denote by z the state variable and by u

the control variable,

dz

dt
(t) = Az(t) + Bu(t) for t > 0 and z(0) = z0

min
u∈U

J (z0, u) = min
u∈U

+∞∫
0

‖Cz‖2
Y + (Su,u)U dt (1)

In the note, we restrict this formulation to bounded input operators, and follow the mathematical setting developed
in [1]. So, A is the infinitesimal generator of a continuous semigroup on a separable Hilbert space Z with dense
domain D(A), B ∈ L(U ;Z), C ∈ L(Z;Y) and S ∈ L(U ;U) where U and Y are two Hilbert spaces. We assume
that (A,B) is stabilizable and that (A,C) is detectable, in the sense that there exist K ∈ L(Z;U) and F ∈ L(Y ;Z)

such that A − BK and A − FC are the infinitesimal generators of two uniformly exponentially stable continuous
semigroups. For each z0 ∈ Z, the LQR problem (1) admits a unique solution

u∗ = −Kz

where K = S−1B∗P , and P ∈ L(Z) is the unique self-adjoint nonnegative solution of the operational Riccati equation

(
A∗P + PA − PBS

−1
B∗P + C∗C

)
z = 0 (2)

for all z ∈ D(A). The adjoint A∗ of the unbounded operator A is defined from D(A∗) ⊂ Z to Z by the equality
(A∗z, z′)Z = (z,Az′)Z for all z ∈ D(A∗) and z′ ∈ D(A). The adjoint B∗ ∈ L(Z;U) of the bounded operator B is
defined by (B∗z,u)U = (z,Bu)Z , the adjoint C∗ ∈ L(Y ;Z) being defined similarly.

The note is devoted to the formulation of our method of semi-decentralized approximation of the controller opera-
tor K . It is based on the concept of matrices of functions of a self-adjoint operator Λ which is be reminded in Section 3.
We denote by σ(Λ) the spectrum of Λ and by Iσ an open interval that includes σ(Λ). The core of our method is the
factorization (3) of K as a product of a function of Λ with other operators admitting a natural semi-decentralized
approximation. The factorization is made possible thanks to the following assumption:

(H1) There exist three integers nZ , nU and nY ∈ N∗, three isomorphisms ΦZ ∈ L(XnZ ,Z), ΦU ∈ L(XnU ,U)

and ΦY ∈ L(XnY ,Y ) and four matrices of functions a(λ) ∈ R
nZ×nZ , b(λ) ∈ R

nZ×nU , c(λ) ∈ R
nY ×nZ and

s(λ) ∈ R
nU ×nU continuous on Iσ such that A = ΦZa(Λ)Φ−1

Z , B = ΦZb(Λ)Φ−1
U , C = ΦY c(Λ)Φ−1

Z and
S = ΦUs(Λ)Φ−1

U . The three isomorphisms have a simple semi-decentralized approximation.

In practice, the three isomorphisms are chosen to be combinations of the partial differential operators, excepted Λ,
involved in A,B , C and S. Apart the classical spatial discretization, the remaining step consists in an approximation
of a general function k of Λ by an other function of Λ which is easily discretized and implemented in a semi-
decentralized architecture. The strategy must be general, and in the same time the approximation must be accurate.
A simple choice would be to adopt a polynomial or a rational approximation of k, but their discretization would yield
large errors when discretizing high powers of Λ. This is avoided when using the Dunford–Schwartz formula (4),
representing a function of an operator, see [2]. Indeed, it involves only the operator (ζ I −Λ)−1 which may be simply,
and accurately approximated. However, this formula requires the function k to be holomorphic in an open vicinity
of σ(Λ). Since its explicit expression is generally unknown, the holomorphy region cannot be easily determined. So
we replace k by a highly accurate rational approximation kN . The integration path in (4) is chosen to enlace Iσ and
the poles of kN . A simple quadrature formula yields an estimate kN,M of the integral, M referring to the number of
quadrature points.
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The operator kN,M(Λ) is easy to approximate on a semi-decentralized architecture, it is derived through a general
and robust method and is an accurate approximation of k(Λ) parameterized by Nand M. As explained in the core of
the note, the real-time computation cost is governed by M only.

2. Example: A model of cantilever array

We refer to the two-scale model [3], of a large one-dimensional cantilever array, see Fig. 1(a), derived through an
homogenization method dedicated to strongly heterogeneous systems. The homogenized model is build within three
steps. First, a change of variable is introduced so that to formulate the full model in a two-scale referential comprised
of micro and macro variables. Then, it is approximated in the sense of large number of cantilevers. Finally, it is mapped
back onto the natural referential in which the actual system is described. The present control theory is developed on
the model resulting from the second step, so it is expressed in the two-scale referential, and a large but finite number
of cantilevers is approximated by a distribution of an infinite number of cantilevers.

After a number of simplifications, the approximate model expressed in the two-scale referential, appears as posed
in a rectangle Ω = (0,LB) × (0,LC). The parameters LB and LC represent respectively the base length in the
macroscale direction x, and the scaled cantilever length in the microscale variable y. The base is modeled by the line
Γ = {(x, y) | x ∈ (0,LB) and y = 0}, and the rectangle Ω is filled by the distribution of cantilevers. We describe the
system motion by its bending displacement only. The cantilevers are oriented in the y-direction, and their motion is
governed by an infinite number of Euler–Bernoulli beam equations distributed along the x-direction. Each of them is
subjected to a control force uC(t, x) taken independent of y for simplicity. This simplistic choice does not affect the
method presented hereafter, so it can be replaced by any other realistic force distribution. To simplify the presentation,
we fix all model parameters to one. The bending displacements wC(t, x, y) in cantilevers are solution to an Euler–
Bernoulli beam equation

∂2
t twC + ∂4

y···ywC = uC in Ω

endowed with the boundary conditions wC = wB , ∂ywC = 0 at y = 0 and ∂2
yywC = ∂3

yyywC = 0 at y = LC represent-
ing an end clamped in the base, and a free end. The base is governed by an Euler–Bernoulli beam equation with two
kind of distributed forces, one exerted by the attached cantilevers and the other, denoted by uB(t, x), originates from
an actuator distribution. The bending displacements wB(t, x) in the base are solution to a second Euler–Bernoulli
beam equation

∂2
t twB + ∂4

x···xwB = −∂3
yyywC + uB

The base is assumed to be clamped, so the boundary conditions are wB = ∂xwB = 0 at both ends. Finally, both
equations are completed with initial conditions on displacements and velocities, wB = wB,0, ∂twB = wB,1, wC =
wC,0, and ∂twC = wC,1. The LQR problem, corresponding to a vibration stabilization problem, is set for the control
variables (uB,uC) ∈ U = L2(Γ )2 and for the cost functional

J (wB,0,wB,1,wC,0,wC,1;uB,uC) =
∞∫

0

∥∥∂2
xxwB

∥∥2
L2(Γ )

+ ∥∥∂2
yywC

∥∥2
L2(Ω)

+ ‖uB‖2
L2(Γ )

+ ‖uC‖2
L2(Γ )

dt

3. Matrices of functions of a self-adjoint operator

Since the approximation of K is based on the concept of matrices of functions of a self-adjoint operator, this section
is devoted to their definition. Let Λ be a self-adjoint operator on a separable Hilbert space X with domain D(Λ).

We recall that if Λ is compact then σ(Λ) is bounded and is constituted of real eigenvalues λk. They are the solutions
to the eigenvalue problem Λφk = λkφk, where φk is an eigenvector associated to λk chosen normed in X, i.e. such
that ‖φk‖X = 1. For a given real valued function f , continuous on Iσ , f (Λ) is the linear self-adjoint operator on
X defined by f (Λ)z = ∑

k f (λk)zkφk where zk = (z,φk)X, with domain D(f (Λ)) = {z ∈ X|∑k |f (λk)zk|2 < ∞}.
Then, if f is a n1 × n2 matrix of real valued functions fij , continuous on Iσ , f (Λ) is a matrix of linear operators
fij (Λ) with domain D(f (Λ)) = {z ∈ Xn2 |∑k

∑n2 |fij (λk)(zj )k|2 < ∞ ∀i = 1, . . . , n1}.
j=1
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In the general case, where Λ is not compact and where f is a continuous function, the self-adjoint op-
erator f (Λ) is defined on X by the Stieltjes integral f (Λ) = ∫ +∞

−∞ f (λ)dEλ, and its domain is D(f (Λ)) =
{z ∈ X| ∫ +∞

−∞ |f (λ)|2 d‖Eλz‖2
X < ∞} where Eλ is the spectral family associated to Λ, see [4]. When f is a ma-

trix, f (Λ) is a matrix of linear operators with entries defined by the above formula and with domain D(f (Λ)) =
{z ∈ Xn2 | ∫ +∞

−∞
∑n2

j=1 |fij (λ)|2 d‖Eλzj‖2
X < ∞ ∀i = 1, . . . , n1}.

4. Factorization of K by a matrix of functions of Λ

We supplement assumption (H1) by imposing that Z, U and Y are endowed with the inner products (z, z′)Z =
(Φ−1

Z z,Φ−1
Z z′)XnZ , (u,u′)U = (Φ−1

U u,Φ−1
U u′)XnU , and (y, y′)Y = (Φ−1

Y y,Φ−1
Y y′)XnY .

Proposition 1. Under the assumption (H1), the controller K admits the factorization

K = ΦUk(Λ)Φ−1
Z (3)

where k(λ) = s−1(λ)bT (λ)p(λ), and where for all λ ∈ σ(Λ), p(λ) is the unique symmetric nonnegative matrix
solving the algebraic Riccati equation

aT (λ)p + pa(λ) − pb(λ)s−1(λ)bT (λ)p + cT (λ)c(λ) = 0

Sketch of the proof. The algebraic Riccati equation can be found after replacing A, B, C and S by their decompo-
sition in the Riccati equation (2). �
5. Approximation of k(Λ)

Let kN be a matrix of rational approximations of k over the bounded interval Iσ with approximation degrees stored
in a matrix N . The path, in the Dunford–Schwartz formula,

kN(Λ) = 1

2iπ

∫
kN(ζ )(ζ I − Λ)−1 dζ (4)

is chosen to be an ellipse parameterized by ζ(θ) = ζ1(θ) + iζ2(θ), with θ ∈ [0,2π]. So, for each z ∈ XnZ the integral
kN(Λ)z is approximated by kN,M(Λ)z computed by quadrature formula involving vζ = −iζ ′kN(ζ )(ζ I − Λ)−1z

estimated at M points ζ along the ellipse. Decomposing vζ into its real part v
ζ
1 and its imaginary part v

ζ
2 , each couple

(v
ζ
1 , v

ζ
2 ) is solution to the system{

ζ1v
ζ
1 − ζ2v

ζ
2 − Λv

ζ
1 = Re

(−iζ ′kN(ζ )
)
z

ζ2v
ζ
1 + ζ1v

ζ
2 − Λv

ζ
2 = Im

(−iζ ′kN(ζ )
)
z

(5)

Remark. For real-time realization, computing kN,M(Λ)z requires solving M systems like (5) corresponding to the M

nodes ζ. The matrices kN(ζ) can be computed off-line once and for all, and stored in memory, so their determina-
tion does not penalize a rapid real-time computation. In short, the only parameter governing accuracy in a real-time
computation, apart from spatial discretization discussed in next Section, is the number M of quadrature points.

6. Spatial discretization

The method is not complete until Λ−1 has been discretized by an operator Λ−1
h yielding a spatial discretization of

Eq. (5){
ζ1v

ζ
1,h − ζ2v

ζ
2,h − Λhv

ζ
1,h = Re

(−iζ ′kN(ζ )
)
zh

ζ2v
ζ
1,h + ζ1v

ζ
2,h − Λhv

ζ
2,h = Im

(−iζ ′kN(ζ )
)
zh

and the final semi-decentralized approximation kN,M,hzh of the realization k(Λ)z.
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7. Application

We set w̄C = wC − wB and introduce the basis of normalized eigenfunctions (ψk)k solutions of the eigenvalue
problem ∂4

y···yψ = λCψ in (0,LC) with boundary conditions ψ(0) = ∂yψ(0) = 0, ∂2
yyψ(LC) = ∂3

yyyψ(LC) = 0,

and the normality condition ‖ψk‖L2(0,LC) = 1. In practical applications, a very small number of cantilever modes is
sufficient to describe properly the system. We take into account only the first one, keeping in mind that the method can
handle more than one mode. Therefore, we adopt the approximation w̄C(t, x, y) 	 w̄1

C(t, x)ψ1(y), where w̄1
C is the

coefficient of the first mode ψ1 in the modal decomposition of w̄C. Introducing ψ̄1 = ∫ LC

0 ψ1 dy, u1
C = ∫ LC

0 uCψ1 dy,

w̃C = w̄1
C + ψ̄1wB and c1 = ∂3

yψ1(0), the couple (wB, w̃C) is solution of the system of equations posed on Γ ,{
∂2
t twB + ∂4

x···xwB + c1w̃C = uB in Γ

∂2
t t w̃C + λC

1 w̃C − λC
1 ψ̄1wB = u1

C in Γ

with the boundary conditions wB = ∂xwB = 0 at both ends. The cost functional is simplified accordingly,

J 	
∞∫

0

∥∥∂2
xxwB(t, x)

∥∥2
L2(Γ )

+ ∥∥λC
1 w̃C(t, x)

∥∥2
L2(Γ )

+ ‖uB‖2
L2(Γ )

+ ∥∥u1
C

∥∥2
L2(Γ )

dt

We set zT = [wB w̃C ∂twB ∂t w̃C ], uT = [uB u1
C ],

A =

⎡
⎢⎢⎣

0 0 I 0
0 0 0 I

−∂4
x···x −c1 0 0

λC
1 ψ̄1 −λC

1 0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎣

0 0
0 0
I 0
0 I

⎤
⎥⎦ , C =

⎡
⎢⎢⎢⎣

∂2
xx 0 0 0

0 λC
1 I 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦

and S = I . Here, A is the infinitesimal generator of a continuous semigroup on the separable Hilbert space
Z = H 2

0 (Γ ) × L2(Γ )3 with dense domain D(A) = H 4(Γ ) ∩ H 2
0 (Γ ) × L2(Γ ) × H 2

0 (Γ ) × L2(Γ ). It is known that
B ∈ L(U ;Z), C ∈ L(Z;Y), and S ∈ L(U ;U), where Y = L2(Γ )4. We also know that (A,B) is stabilizable and that
(A,C) is detectable. For the isomorphisms, we choose

ΦZ =
⎡
⎢⎣

Λ1/2 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

⎤
⎥⎦ , ΦU = I, and ΦY =

⎡
⎢⎣

∂2
xxΛ

1/2 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

⎤
⎥⎦

which yields

a(λ) =

⎡
⎢⎢⎣

0 0 λ−1/2 0
0 0 0 1

−λ−1/2 −c1 0 0

λC
1 ψ̄1λ

1/2 −λC
1 0 0

⎤
⎥⎥⎦ , b(λ) =

⎡
⎢⎣

0 0
0 0
1 0
0 1

⎤
⎥⎦ , c(λ) =

⎡
⎢⎣

1 0 0 0
0 λC

1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦

and s(λ) = 1. In a numerical experiment, we have discretized Λ−1 = ∂4
xxxx by a finite differences scheme and have

set LC to one, and LB to 4.73. Thus, all eigenvalues of Λ turn to be included in (0,1). It is observed that the functions

(a) (b)

Fig. 1. (a) Array of cantilevers. (b) Errors between k and kN,M .



250 M. Lenczner, Y. Yakoubi / C. R. Mecanique 337 (2009) 245–250
kij (λ) are singular at 0, so their rational approximation has been build on the interval Jσ = (10−2,1) at a precision
of 10−7. This is equivalent to truncate high frequencies. Numerical integrations have been performed with a standard
trapezoidal quadrature rule. Four relative errors Eij = ‖kij,N,M − kij‖L2(Jσ )/‖kij‖L2(Jσ ), between the exact functions
and their final approximation, are reported in Fig. 1(b), in logarithmic scale, where M varies from 10 to 103. The
errors decrease exponentially until some limits corresponding to the limited precision of the rational approximations.
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