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Abstract

In view of extending classical micromechanics of poroelasticity to the non-saturated regime, one has to deal with different pore
stresses which may be affected by the size and the shape of the pores. Introducing the macrostrain and these pore stresses as loading
parameters, the macrostress of a representative volume element of a porous material can be derived by means of Levin’s theorem or
by means of the direct formulation of the stress average rule, respectively. A consistency requirement for a given homogenization
scheme is obtained from the condition that the two approaches should yield identical results. Classical approaches (Mori–Tanaka
scheme, self-consistent scheme) are shown to be only conditionally consistent. In contrast, the Ponte Castañeda–Willis scheme
proves to provide consistent descriptions both of porous matrix-inclusion composites and of porous polycrystals. To cite this
article: B. Pichler, L. Dormieux, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Cohérence des approches d’homogénéisation en poroélasticité linéaire. En vue d’étendre l’approche micromécanique de la
poroélasticité dans le régime non saturé, il convient de prendre en compte différentes contraintes dans les pores, en fonction de leur
forme et de leur taille. En adoptant la déformation macroscopique et ces contraintes de pores comme paramètres de chargement,
la contrainte macroscopique peut être formulée à partir du théorème de Levin, ou bien en explicitant directement la règle de
moyenne sur les contraintes. Une condition de cohérence du schéma d’homogénéisation retenu est obtenue en écrivant l’égalité des
résultats de ces deux approches. On montre que les schémas classiques (Mori–Tanaka et autocohérent) ne satisfont cette condition
que dans des cas particuliers. En revanche, elle est toujours vérifiée par le schéma de Ponte Castañeda et Willis. Pour citer cet
article : B. Pichler, L. Dormieux, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Drying of deformable porous media results in their shrinkage, and it may even cause cracking when shrinkage
deformations are hindered by kinematic constraints. The description of drying requires consideration of partially
saturated conditions. Because of the related surface tensions which are to be considered in all interfaces between
solid, liquid, and gaseous matters, average pore stresses depend both on pore shape and on pore size (Section 2).
Micromechanics-based drying analyses may raise the need to consider different pore morphologies exhibiting different
average pore stresses on the same level of observation. This is the motivation for the present work, where we deal with
a representative volume element (RVE) of a microheterogeneous porous material, satisfying the separation of scales
requirement. The work is carried out within the framework of linear poroelasticity. Introducing the macrostrain and
average pore stresses as loading parameters, we study the capability of different micromechanical homogenization
schemes to provide reliable estimates of average phase quantities such as averages of stresses or of strains.

First, the Mori–Tanaka [1,2] and the self-consistent scheme [3,4] are considered, which can be interpreted as being
directly related to generalized Eshelby problems, see, e.g., [5,6]. By analogy to [7], the consistency of both schemes
is investigated, (i) by expressing the macrostress of the RVE based on Levin’s theorem [8,9] as well as based on the
direct implementation of the stress average rule, and (ii) by comparing these model predictions which, doubtlessly,
should be equal (Section 3).

Secondly, the Ponte Castañeda–Willis scheme [10] is considered, i.e. generalized Hashin–Shtrikman estimates [11]
resting on phase distribution statistics with ellipsoidal symmetries. We implement this approach with phase pre-
stresses, and we prove its consistency with Levin’s theorem (Section 4).

2. Porous materials under partially saturated conditions

Let Ω denote the domain occupied by an RVE of a microheterogeneous material, comprising ns solid phases
(i = 1, . . . , ns ) capturing the solid domain Ωs and np pore families (j = ns + 1, . . . , nα = ns + np) constituting the
pore space Ωp . As loading parameters, we introduce the uniform macrostrain E and the average pore stresses π j ,
j − ns = 1, . . . , np . The stress field σ , the strain field ε, and the displacement field ξ , characterizing the response of
the RVE in linear poroelasticity, satisfy

divσ = 0 (Ω), σ = C( x ) : ε + π( x ) (Ω)

ξ = E · x (∂Ω), ε = 1

2
(∇ξ +t ∇ξ) (Ω)

(1)

where ∂Ω stands for the boundary of the RVE. We consider both the microheterogeneous stiffness tensors C(x) and
the prestress tensors π(x) to be phase-wise constant:

C(x) =
{

Ci (Ωi ⊆ Ωs),

0 (Ωp),
π( x ) =

{
0 (Ωs)

π j (Ωj ⊆ Ωp)
(2)

Given ellipsoidal pores shapes in the considered framework of partially saturated conditions, a part of the volume
of each pore is liquid-occupied, while the rest of the pore is gas-filled. The prestress tensor π j of the j -th pore
family accounts (i) for the average pore pressure (the pore-volume average over liquid and gas pressures) and for the
surface tensions prevailing in all interfaces between solid, liquid, and gaseous matters [12]. Consequently, all π j are
symmetric (πj

k� = π
j
�k), but anisotropic for non-spherical pores, see, e.g., [13] for the average pore stress of a partially

saturated penny-shaped crack.
Average pore stresses within spherical pores are pore size-dependent, because the intensity of the surface tension

effects depends on the pore radius. The description of progressive drying shrinkage with decreasing liquid saturation
requires consideration of several pore sizes. Since the pore radii spectrum remains commonly on one scale of obser-
vation, spherical pores of different sizes are introduced in one homogenization step [14]. The size-dependent average
pore stresses, in turn, raise the need to introduce spherical pores of different sizes as distinct phases. Accordingly,
pores of one family are considered in the following to exhibit not only the same shape and the same orientation, but
also the same size.
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Denoting the average of a (tensorial) quantity Q over the volume of the RVE as Q, and using Levin’s theorem [8,9]
to express the RVE-related macrostress � = σ̄ , the first state equation of poroelasticity is obtained in the form

� = Chom : E + π : A, Chom = C : A (3)

where A denotes the microheterogeneous strain concentration tensor. Since during the derivation of (3) repeatedly use
is made of Hill’s theorem (see, e.g., [12]), the validity of Levin’s theorem (3) requires the microscopic displacement
field ξ to be kinematically admissible and the stress field σ to be statically admissible, which is noted for later
reference. Eq. (3) can be interpreted as an elegant way of writing the stress average rule, the direct formulation of
which reads—under consideration of (2)—as

� =
nα∑
r=1

ϕr σ̄
r =

ns∑
i=1

ϕiC
i : ε̄i +

nα∑
j=(ns+1)

ϕj π j . (4)

σ̄ r stands for the volume average of σ over Ωr (intrinsic phase average) and ϕr denotes the volume fractions of the
r-th material phase. Eqs. (3) and (4) are rigorously equivalent from a theoretical viewpoint.

3. Consistency of homogenization schemes based on generalized Eshelby problems

In general, analytical expressions for strain concentration tensors are not available. As a remedy, they are estimated
based on homogenization schemes. Regarding approaches which are directly related to generalized Eshelby problems,
the following ansatz for the average phase strains ε̄r is made [5,6,12]:

ε̄r = Ar∞ : (E0 − Pr : π r
)
, Ar∞ = [

I + Pr : (Cr − C0)
]−1

, ∀r = 1, . . . , nα (5)

ε̄r can be interpreted as the spatially constant strain prevailing in an ellipsoidal inclusion (with elastic stiffness Cr and
with prestress π r ) which is embedded in an infinite matrix of elastic stiffness C0 subjected (at infinity) to Hashin-type
[15] displacement boundary conditions referring to uniform strain E0. Accordingly, Pr stands for the Hill tensor of
this ellipsoidal inclusion and I denotes the symmetric 4-th order identity tensor. The auxiliary strain E0 is related to
the RVE-related macrostrain E such that the strain average rule E = ε̄ is satisfied

E0 = L : (E + Ep), L−1 = A∞, Ep =
nα∑

j=(ns+1)

ϕjA
j∞ : Pj : π j (6)

Inserting (6) into (5) delivers the average phase strains as

ε̄r = Ar
esh : (E + Ep) − Ar∞ : Pr : π r , Ar

esh = Ar∞ : L (7)

where Ar
esh stands for the strain concentration tensor of schemes related to generalized Eshelby problems.

3.1. Remarks on the diagonal symmetry of homogenized stiffness tensors of porous media

Stiffness estimates follow from inserting Ar
esh from (7) into Eq. (3)2. Mori–Tanaka estimates for matrix-inclusion

composites are obtained by choosing C0 to be equal to the matrix stiffness Cs [5,6]. They are only conditionally sym-
metric [16]. As regards matrix-inclusion composites where all inclusions are pores with the same (vanishing) stiffness,
symmetry of Mori–Tanaka stiffness estimates is ensured [16], which is noted for later reference. Self-consistent esti-
mates for polycrystals representing highly disordered arrangements of material phases are obtained by choosing C0 to
be equal to the homogenized stiffness Chom [5,6], which raises the need for an iterative computation of Chom. Though
there exists no rigorous proof for the symmetry of Chom, all numerical implementations of the self-consistent scheme
used herein have so far yielded symmetric stiffness estimates.

3.2. Assessment of consistency with Levin’s theorem

The consistency of the direct implementation of the stress average rule within the framework of the Mori–Tanaka
scheme with the macrostress derived from Levin’s theorem has already been investigated in the case of thermal loading
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applied to a two-phase material in [7]. We follow this line of consistency assessment, but our main focus lies on porous
materials comprising not only one pore phase but arbitrarily many pore families with different pore stresses.

Inserting the average phase strains ε̄r and the strain concentration tensor Ar
esh from (7) into (4) and into (3),

respectively, and defining δ� as the difference between the two expressions for �, yields the following consistency
condition

δ� =
nα∑

j=(ns+1)

ϕj

(
π j : (I − A

j

esh) + Chom : A
j∞ : Pj : π j

) = 0 (8)

Considering the symmetries Cijk� = Cjik� = Cij�k = Ck�ij of both Chom and C0, as well as the symmetries πk� = π�k

of the prestress tensors π j , condition (8) can be re-arranged to take the form

δ� =
nα∑

j=(ns+1)

ϕjπ
j : [I − A

j∞ : L + t (Chom : A
j∞ : C0−1) − C0−1 : Chom] = 0 (9)

where tQ stands for the transpose of the 4th order tensor Q, reading in index notation: t (Qijk�) = (Qk�ij ).

3.3. Frequently considered special case: Two-phase materials with one pore family

For a two-phase material comprising one solid phase (s) and one pore family (p) exhibiting an arbitrary (but
symmetric) prestress πp , consistency equation (8) can be re-arranged into the form

A
p∞ : [(Ps − Pp) : (C0 : Cs−1 − I)

] : πp = 0 (10)

Eq. (10) is satisfied (i) if the elastic stiffness of the infinite matrix of the generalized Eshelby problem is equal to the
one of the solid phase (C0 = Cs ), and/or (ii) if the Hill tensors of the solid and of the pores are identical (Ps = Pp).
Condition (i) is satisfied when relying on the Mori–Tanaka scheme (C0 = Cs ). Accordingly, the Mori–Tanaka scheme
is consistent with Levin’s theorem when used for the description of a two-phase material with one pore family, no
matter what Hill tensor is associated with the pores; see [7] for a similar consistency conclusion. When relying on
the self-consistent scheme (C0 = Chom), condition (i) is violated since Chom �= Cs . Consequently, consistency of the
self-consistent scheme requires condition (ii) to be satisfied, that is, the Hill tensors associated with the solid and with
the pores, respectively, must be identical. Given Ps = Pp , it can be shown [12] that L = I, which is noted for later
reference.

3.4. Matrix-inclusion composites with np pore families: consistency of the Mori–Tanaka scheme

Consider a material comprising one solid matrix and arbitrarily many prestressed pore families, and let us inves-
tigate the consistency of the Mori–Tanaka scheme by choosing C0 = Cs in (9). It is noteworthy that Mori–Tanaka
stiffness estimates are symmetric for this class of composites, see Subsection 3.1 and [16]. Given np pore families
with different average pore stresses, each summand in condition (9) must vanish, since the prestresses of the different
pore families are independent from each other:

π j : [I − A
j∞ : L + t (Chom : A

j∞ : Cs−1) − Cs−1 : Chom] = 0 ∀j = ns + 1, . . . , nα (11)

All np conditions (11) can be shown to be satisfied, if all pore families are associated with the same Hill tensor,

since this property brings (11) back to (10) specified for C0 = Cs . Given that np pore families with different pore
prestresses are associated with different Hill tensors, however, (11) is, in general, not satisfied. This highlights that
the Mori–Tanaka scheme is only conditionally consistent with Levin’s theorem, even if the related stiffness estimate
exhibits diagonal symmetry (Chom

ijk� = Chom
k�ij ).

3.5. Polycrystals with ns solid phases and np pore families: consistency of the self-consistent scheme

The consistency of the self-consistent scheme is studied in the framework of a polycrystal comprising a highly
disordered arrangement of ns solid phases and np prestressed pore families. To this end, we specify (9) for C0 = Chom
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and we consider that each summand in the obtained consistency equation must vanish, since the prestresses of the
different pore families are independent from each other:

π j : [Aj∞ : L − t (Chom : A
j∞ : Chom−1)

] = 0 ∀ j = ns + 1, . . . , nα (12)

Noting that t (Chom : A
j∞ : Chom−1) = A

j∞, all np conditions (12) are readily seen to be satisfied if

L = I (13)

Remarkably, (13) was already obtained at the end of Subsection 3.3. Condition (13) is satisfied in the special cases
where all phases are associated with the same Hill tensor [12]. As regards polycrystals built up by phases associated
with different Hill tensors, Eq. (13) is, in general, not satisfied. Hence, the self-consistent scheme is only conditionally
consistent with Levin’s theorem.

4. Ponte Castañeda–Willis scheme: consistency of generalized Hashin–Shtrikman estimates

4.1. Extension of the PCW scheme towards consideration of phase-wise constant prestress

The Ponte Castañeda–Willis scheme [10] allows for a sound consideration of phase distribution statistics with
ellipsoidal symmetry. In the following, we implement this approach with phase prestresses. The related strain-energy
function of any point x ∈ Ω takes the form W(x,ε) = 1

2ε : C( x ) : ε + π( x ) : ε. Let W 0 denote the strain-energy
function associated with a reference material with elastic stiffness C0 chosen such that ε : (C0 − Cr ) : ε � 0, for all
ε �= 0 and for all material phases r = 1, . . . , nα . The Legendre transform gives

(W − W 0)∗( x,τ ) = min
ε

{
τ : ε − [

W(x,ε) − W 0(ε)
]} = 1

2
(τ − π) : (C − C0)−1 : (τ − π) (14)

Assuming both the polarizations τ and the prestresses π to be phase-wise constant and following the line of [10], the
sought upper bound for the effective (RVE-related) strain energy can be expressed as

W eff � min
τ

[
1

2
E : C0 : E + τ : E − 1

2

nα∑
r=1

nα∑
s=1

(τ r − τ 1) : Grs : (τ s − τ 1)

− 1

2

nα∑
r=1

ϕr(τ
r − π r ) : (Cr − C0)−1 : (τ r − π r )

]
(15)

where Grs = ∫
Ω

{∫
Ω

χr( x )[χs( x′) − ϕs]Γ0( x − x′)dx′}dx with χr( x ∈ Ωs) = δrs as the characteristic function of
phase r , and with Γ0 as a linear integral operator whose kernel is linked to the Green’s function [10]. Polarizations
minimizing the r.h.s. of (15) read as

τ 1 − π1 =
[
E + 1

ϕ1

nα∑
r=2

nα∑
s=2

(τ s − τ 1) : Grs

]
: (C1 − C0)

(τ i − π i ) : (Ci − C0)−1 + 1

ϕi

nα∑
r=2

(τ r − τ 1) : Gri = E, i = 2, . . . , nα (16)

Re-inserting the optimal polarizations into (15) gives

W eff � 1

2
E : C0 : E + 1

2
τ̄ : E (17)

Under the assumption of ellipsoidal statistical distribution of phases, the ensemble average of Grs (denoted as �Grs�)
takes the form [10]

�Gri�= ϕr(δriP
r − ϕiP

ri
d ) = ϕi(δirP

i − ϕrP
ir
d ) (18)

where Pir
d is a Hill tensor accounting for ellipsoidal symmetry of the distribution of the ellipsoidal inclusions consti-

tuting phase i and phase r [10]. Relatively simple closed-form bounds for W eff are obtained when the distribution of
all inclusion phases is the same for all inclusion pairs, so that Pir

d = Pd for i and r = 1, . . . , nα , which is considered
throughout the following.
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4.2. Application to matrix-inclusion composites—consistency proof

Estimates for matrix-inclusion composites can be obtained from Eqs. (16)–(17) by setting the stiffness of the
reference medium equal to the one the matrix of the RVE (phase 1): C0 = Cm (= C1); throughout this Subsection,
index m is equivalent to index 1. Inserting this choice into (16), it is readily seen that the optimal matrix polarization
is equal to the matrix prestress: τm = πm. If the matrix stiffness Cm does not satisfy ε : (Cm − Cr ) : ε � 0 for all
ε �= 0 and for all r = 1, . . . , nα , the r.h.s. of (17) does not represent an upper bound of W eff, but can be used as an
estimate of this quantity. Accordingly, we replace the sign “�” (17) in by “	”.

In order to assess the consistency of the Ponte Castañeda–Willis (PCW) scheme with Levin’s theorem, it is note-
worthy that the volume average over the optimal polarizations (16) can be written as

τ̄ = E : (C − Cm) : Apcw
inc + π : Apcw, Qinc :=

nα∑
r=2

ϕrQ
r (19)

with

Ar
pcw = Ar∞ : [I − Pd : (C − Cm) : A∞inc]−1

, r = 2, . . . , nα, Am
pcw = 1

ϕm

(
I − Apcw

inc) (20)

We have to show now that (20) contains the strain concentration tensors of the PCW scheme: Inserting τ̄ from (19) into
the r.h.s. of (17), specifying the resulting expression for a natural initial state of the RVE (no prestresses: π = 0), and
comparing the result with W eff = 1

2 E : Chom : E, allows for extracting the unconditionally symmetric PCW estimate
of the homogenized stiffness tensor, see, e.g., Eq. (3.20) of [10]. Comparing this estimate with the classical Hill–Laws
[17,9] expression Chom = Cm + ∑nα

r=2 ϕr (Cr − Cm) : Ar proves (20) to contain the strain concentration tensors of
the PCW scheme. In the presence of prestresses (π �= 0), insertion of τ̄ from (19) into �pcw = σ̄ = Cm : E + τ̄ yields
�pcw = C : Apcw : E + π : Apcw. Comparison of this result with (3) proves the PCW scheme to be unconditionally
consistent with Levin’s theorem.

4.3. Application to polycrystals

PCW-type self-consistent estimates for polycrystals are obtained by choosing C0 to be equal to the homogenized
stiffness Chom, and by setting the E-proportional part of τ̄ in (19) equal to zero [10]. Consistency of this approach

with the strain average rule, Apcw = I, can be shown to require Chom to satisfy

Nα∑
r=1

ϕr(P
r − Pd) : (Cr − Chom) : Ar∞ = 0 (21)

Considering condition (21) in (20)1 specified for Cm = Chom, lets the strain concentration tensor of the PCW scheme
degenerate to the one of the Eshelby problem-based self-consistent scheme of Section 3. Consistency of the latter
scheme with Levin’s theorem requires condition (13) to be satisfied, which results in Ar

pcw = Ar
esh = Ar∞, and further

in

Chom =
Nα∑
r=1

ϕr Cr : Ar∞ ⇒
Nα∑
r=1

ϕr(C
r − Chom) : Ar∞ = 0 (22)

Comparing (22)2 with (21), it is readily seen that all phase shape-related Hill tensors must be the same such that the
Hill tensor difference (Pr − Pd) can be taken out of the sum in (21), which, in turn, highlights that the distribution-
related Hill tensor Pd has no influence on Chom. This indicates that taking the distribution statistics of all inclusion
phases to be the same for all inclusion pairs (Pir

d = Pd for i and r = 1, . . . , nα) is a very strong assumption when deal-
ing with polycrystals. We conclude that in the framework of a polycrystal comprising phases with different shapes,
the Ponte Castañeda–Willis approach is to be based on different Hill tensors Pir

d accounting for different ellipsoidal
symmetries of phase distribution statistics. Preferentially, the Pir

d tensors should be identified from experimental ob-
servations. This way, the Ponte Castañeda–Willis scheme will be consistent with Levin’s theorem, also for polycrystals
with arbitrarily many prestressed pore families.
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5. Conclusions

Levin’s theorem requires both a kinematically admissible displacement field and a statically admissible stress
field. From this property we conclude that consistency of a homogenization scheme with Levin’s theorem reflects
that the predicted average phase strains are kinematically admissible, and that the predicted average phase stresses
are statically admissible. Both situations are very desirable, particularly when performing drying analyses of porous
materials.

Regarding schemes based on Eshelby problems (the Mori–Tanaka scheme and the self-consistent scheme), diago-
nal symmetry of obtained stiffness tensor estimates does not represent a sufficient condition for their consistency with
Levin’s theorem. Nonetheless, these schemes have a certain potential for modeling drying of porous materials, includ-
ing the special case of a medium comprising one solid phase and several pore families (exhibiting different average
pore stresses) if the same Hill tensor is associated with all phases. Hence, Eshelby-based schemes can be used, e.g.,
for drying analyses of materials whose pore space is built up by spherical pores, with radii which are different, but on
the same order of magnitude [14].

Different pore shapes and different pore pressures—such as those encountered when considering spherical pores
and cracks on the same level of observation, in order to study the cracking risk during drying—should be modeled
in the framework of the Ponte Castañeda–Willis scheme. Regarding matrix-inclusion composites, this approach can
be based on the simple assumption of one identical distribution Hill tensor (Pir

d = Pd ). As for polycrystals, phase
distribution statistics have to be accounted for in more detail, by identifying different distribution Hill tensors, prefer-
entially from experimental observations. This way, the Ponte Castañeda–Willis scheme will be consistent with Levin’s
theorem, when analyzing microheterogeneous porous materials comprising arbitrarily many prestressed pore families.
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