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Abstract

This note generalizes an earlier suggested simple example of a trapped mode in a linearly elastic waveguide. A semi-infinite
string with a point end mass is considered in the presence of a weakly non-linear support. The effect of non-linearity involves small
amplitude non-localized disturbances resulting in a slow time-decay of the vibration amplitude. The rate of the decay is evaluated
along with the correction to the vibration phase using the method of multiple scales. To cite this article: J. Kaplunov, E. Nolde,
C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un exemple de mode quasi-piégé dans un guide d’ondes élastique faiblement non linéaire. Cette note généralise un exemple
simple de mode piégé dans un guide d’ondes élastique linéaire, suggéré précédemment. Une corde semi-infinie terminée par
une masse ponctuelle est considérée en présence d’un support faiblement non linéaire. Les effets non linéaires entraînent des
composantes de petites amplitudes non localisées, qui conduisent à une décroissance lente de l’amplitude de vibration au cours
du temps. Le taux de décroissance temporelle ainsi que la correction de phase sont évalués à partir de la méthode des échelles
multiples. Pour citer cet article : J. Kaplunov, E. Nolde, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Apparently, the simplest example of a trapped mode in a linear elastic system may be observed in the case of an
elastically supported infinite string with an attached point mass (see [1]). For the latter, a unique explicit solution
exists for all values of the parameters. Other examples of trapped modes in inhomogeneous elastic waveguides may
be found in [2–6].
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Fig. 1. Quasi-trapped mode.

In this paper we generalize the formulation of [1] by introducing a weak cubic non-linearity into the equation of
string motion. In contrast to [1] we consider a semi-infinite waveguide. Asymptotic analysis based on the method
of multiple scales reveals the presence of small amplitude non-localized disturbances along with a dominant trapped
component. The lowest-order disturbance executes vibration with the triple frequency of the corresponding linear
trapped mode. Below we recall the sought-for nearly localized mode, a “quasi-trapped” one.

The developed procedure is oriented to the elimination of the secular terms with respect to the time variable. At the
same time it allows secular-type terms exponentially decaying with respect to the longitudinal coordinate.

It is shown that the assumed weak non-linearity leads to perturbations in a slow time to the phase and amplitude
of the associated linear solution in the first and second order, respectively. As might be expected, the amplitude
demonstrates a time decay due to the radiation to infinity with the aforementioned non-localized components.

We also remark that a similar problem was formulated in [7] within the context of the forced transient vibration
under a point instantaneous excitation. However, our derivation is more complete concerning asymptotic consistency.

2. Statement of the problem

Consider a semi-infinite string resting on a weakly non-linear support with a point mass attached to its end, see
Fig. 1. The governing equations of the problem can be written as

T
∂2v

∂x2
− ρ

∂2v

∂t2
− Kv − ηv3 = 0 (1)

and

T
∂v

∂x
= M

∂2v

∂t2
at x = 0 (2)

Here x is longitudinal coordinate (0 � x < ∞), t is time, v is lateral displacement, T is tension in the string, ρ is
density, K and η are foundation parameters, and M is point mass.

First, we scale the lateral displacement v and the independent variables x and t setting

v = w

√
T

K
, x = ξ

√
T

K
, t = τ

√
ρ

K

and rewrite (1) and (2) in the form

∂2w

∂ξ2
− ∂2w

∂τ 2
− w − εw3 = 0 (3)

∂w

∂ξ
= m

∂2w

∂τ 2
at ξ = 0 (4)

with two dimensionless problem parameters ε and m given by

ε = ηT

2
, m = M

√
K

K ρ T
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where ε is assumed to be small (ε � 1).
At infinity we impose the Sommerfeld radiation condition. In addition, we require w(∞, t) = O(ε) to bound the

contribution of non-localized disturbances to the analyzed quasi-trapped mode.

3. Asymptotic analysis of the quasi-trapped mode

Let us define the time scales T0, T1, T2, . . . (Tn = εnτ ), according to the method of multiple scales (e.g. see [8]),
and introduce an asymptotic series in terms of the small parameter ε. Then, we have

w(ξ, τ ; ε) = w0(ξ, T0, T1, T2, . . .) + εw1(ξ, T0, T1, T2, . . .) + ε2w2(ξ, T0, T1, T2, . . .) + · · · (5)

Below we restrict ourselves to the scales T0, T1 and T2, setting in particular

∂

∂τ
= ∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2

By substituting the three-scale expansion in (5) into the equation of motion (3) and boundary condition (4) we arrive
at leading order

∂2w0

∂ξ2
− ∂2w0

∂T 2
0

− w0 = 0 (6)

∂w0

∂ξ
= m

∂2w0

∂T 2
0

at ξ = 0 (7)

The solution of this problem corresponds to a trapped mode in the associated linear waveguide (e.g. see [1]) and can
be written as

w0 = e−λξ
(
AeiωT0 + Āe−iωT0

)
(8)

where

λ =
√

1 − ω2, ω =
√

λ

m
(9)

and therefore

ω = 1

m

√√
m2 + 1

4
− 1

2
< 1 (10)

In the above, A = A(T1, T2); here and below the bar denotes a complex conjugate.
The first order problem takes the form

∂2w1

∂ξ2
− ∂2w1

∂T 2
0

− w1 = 2
∂2w0

∂T0∂T1
+ w3

0 (11)

∂w1

∂ξ
= m

(
∂2w1

∂T 2
0

+ 2
∂2w0

∂T0∂T1

)
at ξ = 0 (12)

with w0 given by (8). Its solution is expressed as

w1 = ξe−λξ
(
B1eiωT0 + B̄1e−iωT0

) + e−3λξ
(
B2eiωT0 + B̄2e−iωT0 + B3e3iωT0 + B̄3e−3iωT0

)
+ Cei(3ωT0−kξ) + C̄e−i(3ωT0−kξ) (13)

with

k =
√

9ω2 − 1 (14)

where the terms with coefficients Bi = Bi(T1, T2) and B̄i , i = 1,2,3, are particular solutions of the inhomogeneous
equation (11), whereas the terms with C = C(T1, T2) and C̄ satisfy the homogeneous equation (11) and are necessary
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for satisfying the boundary conditions (12). Below we consider the parameter domain ω > 1/3. In this case the non-
localized components in (13) (terms with C and C̄) cause the loss of the vibration energy due to radiation to infinity.

It is also remarkable that we allow in (13) the terms with ξe−λξ . These, however, are not of great interest at large
values of the longitudinal coordinate ξ . Therefore, they do not require a special care characteristic of secular terms.

As a result, we have from (11) and (12)

B1 = − iω

λ

∂A

∂T1
, B2 = 3

8λ2
A2Ā, B3 = 1

8
A3, C = − 3λ(9λ + ik)

32(10 − 9ω2)
A3

In addition, by canceling out the secular terms in time, resulting from the summands with e±iωT0 in the right-hand
sides of (11) and (12), we arrive at the equation

∂A

∂T1
− 4iδA2Ā = 0 (15)

with

δ = 3ω

16(2 − ω2)
(16)

By taking

A = 1

2
αeiβ (17)

where α = α(T1, T2) and β = β(T1, T2) are real quantities, we obtain

∂α

∂T1
= 0,

∂β

∂T1
− δα2 = 0 (18)

Thus,

α = α0(T2), β = δα2
0T1 + β0(T2) (19)

and

w0 = α0e−λξ cos
(
ωT0 + δα2

0T1 + β0
)

(20)

Next, we investigate a second order problem to establish an explicit time dependence for the real amplitude factor
α0 in (20). It takes the form

∂2w2

∂ξ2
− ∂2w2

∂T 2
0

− w2 = ∂2w0

∂T 2
1

+ 2
∂2w0

∂T0∂T2
+ 2

∂2w1

∂T0∂T1
+ 3w2

0w1 (21)

∂w2

∂ξ
= m

(
∂2w2

∂T 2
0

+ ∂2w0

∂T 2
1

+ 2
∂2w0

∂T0∂T2
+ 2

∂2w1

∂T0∂T1

)
at ξ = 0 (22)

with w0 and w1 given by (8) and (13), respectively. The sought-for solution can be written as

w2 = e−λξ
[
(D1ξ + D2ξ

2)eiωT0 + (D̄1ξ + D̄2ξ
2)e−iωT0

]
+ e−3λξ

[
(D3 + D4ξ)eiωT0 + (D̄3 + D̄4ξ)e−iωT0 + (D5 + D6ξ)e3iωT0 + (D̄5 + D̄6ξ)e−3iωT0

]
+ e−5λξ

[
D7eiωT0 + D̄7e−iωT0 + D8e3iωT0 + D̄8e−3iωT0 + D9e5iωT0 + D̄9e−5iωT0

]
+ e−2λξ

[
D10ei(ωT0−kξ) + D̄10e−i(ωT0−kξ) + D11ei(3ωT0−kξ)

+ D̄11e−i(3ωT0−kξ) + D12ei(5ωT0−kξ) + D̄12e−i(5ωT0−kξ)
]

+ (C1 + C2ξ)ei(3ωT0−kξ) + (C̄1 + C̄2ξ)e−i(3ωT0−kξ) + C3ei(5ωT0−χξ) + C̄3e−i(5ωT0−χξ) (23)

with χ = √
25ω2 − 1, Cj = Cj(T1, T2) (j = 1,2,3) and Di = Di(T1, T2) (i = 1, . . . ,12). The terms with the coeffi-

cients Di , D̄i , C2 and C̄2 are particular solutions of inhomogeneous equation (21), whereas the terms with Cj and C̄j

(j = 1,3) satisfy related homogeneous equations. For the sake of brevity, we omit here the explicit expressions for
these coefficients.
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Fig. 2. Coefficients δ and σ in (16) and (27) vs. ω.

The presence of non-localized terms with the time-dependence e±iωT0 in (23) leads to the decay of the complex
vibration amplitude A in the time scale T2. It satisfies the equation

∂A

∂T2
+ μA3Ā2 = 0 (24)

with a complex coefficient expressed as

μ = 3iδ

2

[
3ω4 − 3ω2 − 2

(2 − ω2)2λ2
− 2

9
+ λ2 13 − 9ω2 − 3ikλ

4(10 − 9ω2)

]
(25)

where λ, k and δ are defined by (9), (14) and (16). As before, Eq. (24) follows from the requirement of the absence of
secular (in time) terms associated with the components with e±iωT0 in the right-hand sides of (21) and (22).

Now, assuming (17) with α and β given by (19), we have for the real amplitude factor α0

∂α0

∂T2
+ 1

4
σα5

0 = 0 (26)

where

σ = 9kλ3δ

32(10 − 9ω2)
(27)

Then, we obtain the explicit formula describing a slow time-decay in (20). It is

α0 = α∗√
α4∗σT2 + 1

= α∗√
α4∗σε2τ + 1

(28)

where α∗ is an arbitrary constant. Thus, the problem parameters come to the expression of the quasi-trapped mode (20)
with (19) and (28) through the dimensionless coefficients δ and σ . These depend only on the natural frequency ω given
by (10) and are depicted in Fig. 2.

In conclusion we mention that a weak non-linearity should have a similar effect on mode trapping in more compli-
cated elastic waveguides studied in [2–6].
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