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Abstract

This note generalizes an earlier suggested simple example of a trapped mode in a linearly elastic waveguide. A semi-infinite
string with a point end mass is considered in the presence of a weakly non-linear support. The effect of non-linearity involves small
amplitude non-localized disturbances resulting in a slow time-decay of the vibration amplitude. The rate of the decay is evaluated
along with the correction to the vibration phase using the method of multiple scales. To cite this article: J. Kaplunov, E. Nolde,
C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un exemple de mode quasi-piégé dans un guide d’ondes élastique faiblement non linéaire. Cette note généralise un exemple
simple de mode piégé dans un guide d’ondes élastique linéaire, suggéré précédemment. Une corde semi-infinie terminée par
une masse ponctuelle est considérée en présence d’un support faiblement non linéaire. Les effets non linéaires entrainent des
composantes de petites amplitudes non localisées, qui conduisent a une décroissance lente de 1’amplitude de vibration au cours
du temps. Le taux de décroissance temporelle ainsi que la correction de phase sont évalués a partir de la méthode des échelles
multiples. Pour citer cet article : J. Kaplunov, E. Nolde, C. R. Mecanique 336 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Apparently, the simplest example of a trapped mode in a linear elastic system may be observed in the case of an
elastically supported infinite string with an attached point mass (see [1]). For the latter, a unique explicit solution
exists for all values of the parameters. Other examples of trapped modes in inhomogeneous elastic waveguides may
be found in [2-6].
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Fig. 1. Quasi-trapped mode.

In this paper we generalize the formulation of [1] by introducing a weak cubic non-linearity into the equation of
string motion. In contrast to [1] we consider a semi-infinite waveguide. Asymptotic analysis based on the method
of multiple scales reveals the presence of small amplitude non-localized disturbances along with a dominant trapped
component. The lowest-order disturbance executes vibration with the triple frequency of the corresponding linear
trapped mode. Below we recall the sought-for nearly localized mode, a “quasi-trapped” one.

The developed procedure is oriented to the elimination of the secular terms with respect to the time variable. At the
same time it allows secular-type terms exponentially decaying with respect to the longitudinal coordinate.

It is shown that the assumed weak non-linearity leads to perturbations in a slow time to the phase and amplitude
of the associated linear solution in the first and second order, respectively. As might be expected, the amplitude
demonstrates a time decay due to the radiation to infinity with the aforementioned non-localized components.

We also remark that a similar problem was formulated in [7] within the context of the forced transient vibration
under a point instantaneous excitation. However, our derivation is more complete concerning asymptotic consistency.

2. Statement of the problem

Consider a semi-infinite string resting on a weakly non-linear support with a point mass attached to its end, see
Fig. 1. The governing equations of the problem can be written as
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Here x is longitudinal coordinate (0 < x < 00), ¢ is time, v is lateral displacement, T is tension in the string, p is
density, K and n are foundation parameters, and M is point mass.
First, we scale the lateral displacement v and the independent variables x and ¢ setting
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and rewrite (1) and (2) in the form
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with two dimensionless problem parameters ¢ and m given by
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where ¢ is assumed to be small (¢ <« 1).
At infinity we impose the Sommerfeld radiation condition. In addition, we require w(oo, t) = O(¢) to bound the
contribution of non-localized disturbances to the analyzed quasi-trapped mode.

3. Asymptotic analysis of the quasi-trapped mode

Let us define the time scales Ty, T, T2, ...(T, = " 1), according to the method of multiple scales (e.g. see [8]),
and introduce an asymptotic series in terms of the small parameter €. Then, we have

wE, t;8)=we&, Ty, T1, Ta,...) +ew1(§, Ty, T1, Tp, ...) +82w2(§, To, T, T2,...)+ - ®))
Below we restrict ourselves to the scales Ty, 71 and 75, setting in particular
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By substituting the three-scale expansion in (5) into the equation of motion (3) and boundary condition (4) we arrive
at leading order
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The solution of this problem corresponds to a trapped mode in the associated linear waveguide (e.g. see [1]) and can
be written as

wo = e—)»éj (Aein() + Ae—ia)To) (8)

where
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In the above, A = A(Ty, T»); here and below the bar denotes a complex conjugate.
The first order problem takes the form
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with wq given by (8). Its solution is expressed as
wy = e (Blei“’TO + Ble_i”’T") e 3 (Bzei“’TO + Bye—@To 4 ByedioTo 4 I§3e_3i“’T‘))
+ CelBGoTo—ké) | Go—iGoTo—kE) (13)
with
k=+v9»?* —1 (14)

where the terms with coefficients B; = B; (T}, T») and B, = 1,2, 3, are particular solutions of the inhomogeneous
equation (11), whereas the terms with C = C (71, T>) and C satisfy the homogeneous equation (11) and are necessary
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for satisfying the boundary conditions (12). Below we consider the parameter domain @ > 1/3. In this case the non-
localized components in (13) (terms with C and C) cause the loss of the vibration energy due to radiation to infinity.
It is also remarkable that we allow in (13) the terms with £e~*¢. These, however, are not of great interest at large
values of the longitudinal coordinate &. Therefore, they do not require a special care characteristic of secular terms.
As a result, we have from (11) and (12)
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In addition, by canceling out the secular terms in time, resulting from the summands with e**“70 in the right-hand
sides of (11) and (12), we arrive at the equation
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By taking
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where o« = (71, Tz) and B = B(T1, T») are real quantities, we obtain
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Thus,
a=ag(Ty),  B=3dagTi+ po(T2) (19)
and
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Next, we investigate a second order problem to establish an explicit time dependence for the real amplitude factor
o in (20). It takes the form
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with wo and w; given by (8) and (13), respectively. The sought-for solution can be written as
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with x =+/25w% — 1, Ci=C;j(T1,Tr) (j=1,2,3)and D; = D;(T1,T>) (i =1,...,12). The terms with the coeffi-
cients D;, D;, C2 and C; are particular solutions of inhomogeneous equation (21), whereas the terms with C; and C;
(j =1, 3) satisfy related homogeneous equations. For the sake of brevity, we omit here the explicit expressions for
these coefficients.
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Fig. 2. Coefficients § and o in (16) and (27) vs. w.

The presence of non-localized terms with the time-dependence e in (23) leads to the decay of the complex
vibration amplitude A in the time scale 7. It satisfies the equation

O L uARA =0 (24)
0T,

with a complex coefficient expressed as
3i6[3w* —3w? =2 2,13 —90? — 3k
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where A, k and § are defined by (9), (14) and (16). As before, Eq. (24) follows from the requirement of the absence of

secular (in time) terms associated with the components with et@To ip the right-hand sides of (21) and (22).
Now, assuming (17) with @ and 8 given by (19), we have for the real amplitude factor «

(25)

dag 1 &

4z =0 26

0T, + 40’0[0 (26)
where

9238
o=—+ 27
32(10 — 9w?)
Then, we obtain the explicit formula describing a slow time-decay in (20). It is
& & (28)
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where « is an arbitrary constant. Thus, the problem parameters come to the expression of the quasi-trapped mode (20)
with (19) and (28) through the dimensionless coefficients § and o . These depend only on the natural frequency w given
by (10) and are depicted in Fig. 2.

In conclusion we mention that a weak non-linearity should have a similar effect on mode trapping in more compli-
cated elastic waveguides studied in [2-6].

Acknowledgements

The research is partly supported by a BRIEF Award of Brunel University. The authors also express their gratitude
to Dr A.V. Pichugin, Brunel University, for useful discussions.

References

[1] J.D. Kaplunov, S.V. Sorokin, A simple example of a trapped mode in an unbounded waveguide, JASA 97 (1995) 3898-3899.



558 J. Kaplunov, E. Nolde / C. R. Mecanique 336 (2008) 553558

[2] J.D. Kaplunov, G.A. Rogerson, P.E. Tovstik, Localized vibration in elastic structures with slowly varying thickness, Q. J. Mech. Appl. Math. 58
(2005) 645-664.

[3] D. Gridin, A.T.I. Adamou, R.V. Craster, Trapped modes in bent elastic rods, Wave Motion 42 (2005) 352-366.

[4] C. Forster, T. Weidl, Trapped modes for an elastic strip with perturbation of the material properties, Q. J. Mech. Appl. Math. 59 (2006) 399-418.

[5] J. Postnova, R.V. Craster, Trapped modes in topolographically varying elastic waveguides, Wave Motion 44 (2007) 205-221.

[6] R. Porter, Trapped waves in thin elastic plates, Wave Motion 45 (2007) 3-15.

[7] D.A. Indeitsev, E.V. Osipova, Localization of nonlinear waves in elastic bodies with inclusions, Acoustical Phys. 50 (2004) 420-426.

[8] A.H. Nayfeh, Perturbation Methods, John Wiley & Sons, New York, 1973.



